

Elina Hyppönen, MSc, MPH, PhD Reader in Epidemiology and Public Health

UCL Institute of Child Health, London, UK Correspondence to: e.hypponen@ich.ucl.ac.uk

November, 2001

Vitamin D reduces heart risk February 2002

Vitamin D reduces heart risk February 2002

Sun's rays are good for the brain

February 2002

Vitamin D reduces heart risk February 2002

Sun's rays are good for the brain

February 2002

Sunshine "prevents cancer"

February 2002

November, 2001

Vitamin D reduces heart risk February 2002

Sun's rays are good for the brain

February 2002

Sunshine "prevents cancer"

February 2002

Vitamin D boosts cancer treatment July 2003

Vitamin D reduces heart risk February 2002

Sun's rays are good for the brain

February 2002

Vitamin D pills cut MS risk

BBC

November 2004

Sunshine "prevents cancer"

February 2002

Vitamin D boosts cancer treatment July 2003

BBC

Vitamin D 'reduces risk of diabetes'

November, 2001

Vitamin D reduces heart risk February 2002

Sun's rays are good for the brain

February 2002

Vitamin D pills cut MS risk

November 2004

Sunshine "prevents cancer"

February 2002

Vitamin D key for healthy lungs

December 2005

Vitamin D boosts cancer treatment

July 2003

November, 2001

Vitamin D reduces heart risk February 2002

Sun's rays are good for the brain

February 2002

Vitamin D pills cut MS risk

November 2004 Sunshine "prevents cancer"

February 2002

Vitamin D makes stronger babies January 2006

Vitamin D key for healthy lungs

December 2005

Vitamin D boosts cancer treatment

July 2003

Vitamin D

- Nutrient and pro-hormone
- Vitamin D receptors found from most tissues and organs of the body
 - Bone
 - Brain
 - Breast
 - Deciduas
 - Heart
 - Immune cells
 - Placonta
 - i laosiita

Vitamin D

- Nutrient and pro-hormone
- Vitamin D receptors found from most tissues and organs of the body
 - Bone
 - Brain
 - Breast
 - Deciduas
 - Heart
 - Immune cells
 - Placenta
 - Pancreas
 - Prostate
 - Etc.

Proposed health effects of vitamin D

↑↓

Holick M. NEJM 2007

Regulation of calcium metabolism

Rickets, Osteomalacia Osteoporosis Fractures

Immunomodulatory effects

Type 1 diabetes Multiple Sclerosis Psoriasis Arthritis Inflammatory Bowel disease Pre-eclampsia Allergic diseases

Cardiovascular effects

Hypertension Metabolic syndrome CVD Heart failure

Cell growth and regulation

Cancer risk (prostate, colon, breast etc.)

ipopolysaccharide or tuberculosis LR-2/1 tubercle Cytokine regulation Activated T lymphocyte Increased Tuberculosis mmunoglobulin cathel cidin tuberch synthesis Increased VEIR (noreased 1-13Hills > 1.25(OH)-D Activated B ymphocyte Immunomodulation 25(OmilE Macrophage/ monocyte 1.OHase Innate immunity 578-5 GV Parathyroid Blood 24-OHav glands 25(OH)D >30 rig/ml Calcitroic Enhances p21 and p27 Arid Inhibite anglogenesis Induces apoptos s Breast, colon, prostate, etc. Kidnays -OHate VDR-RXR OHICER -1,25(OH)-D > Increased Pancreas insuin 1.5(0円)面 Der cased Decreased. ratio parathyrold Parathyroid hormone regulation Blood pressure regulation Blood sugar control

Proposed health effects of vitamin D

↑↓

Regulation of calcium metabolism Rickets, Osteomalacia Osteoporosis Fractures

Immunomodulatory effects Type 1 diabetes Multiple Sclerosis Psoriasis Arthritis Inflammatory Bowel disease Pre-eclampsia Allergic diseases

Cardiovascular effects

Hypertension Metabolic syndrome CVD Heart failure

Cell growth and regulation Cancer risk

(prostate, colon, breast etc.)

Holick M. NEJM 2007

Immunological link between vitamin D and miscarriage/pregnancy complications?

- Fetus is an allogenic tissue graft carrying paternally derived antigens.
- Immunological adaptation by a sift towards a domination by the T helper type 2 (Th2) cytokine response required for the maintenance of normal pregnancy
 - Th1 type reaction in the placenta correlated with spontaneous preterm delivery and miscarriage, possible role in pre-eclampsia

Vitamin D - Immunomodulatory properties

- Active vitamin D attenuates Th1-mediated immune response
 - Reduces secretion of INF-γ, IL-2, IL-12
- Affects dendritic cell maturation
- Affects regulatory T-cell activity

Vitamin D may be able to prevent the immune maladaptation and loss of tolerance in pre-eclampsia / miscarriage ?

Vitamin D and pre-eclampsia

Bodnar et al. Maternal vitamin D deficiency increases the risk of preeclampsia. JCEM 2007

- Nested case-control study with 55 cases and 219 controls
- 25(OH)D concentrations measured by 16wk, pre-eclampsia onset after 20wks.
 - 25(OH)D concentrations lower in pre-eclamptic women compared to controls (45nmol/l vs. 53nmol/l. p=0.01)
 - 2-fold increase in pre-eclampsia risk for 50nmol/l increase in 25(OH)D
 - 25(OH)D concentrations lower in the offspring to pre-eclamptic women compared to offspring of controls (39nmol/l vs. 50 nmol/l, p=0.001)

Haugen et al. Vitamin D supplementation and reduced risk of preeclampsia in nulliparous women. Epidemiology 2009

- Norwegian Mother and Child Cohort, 23,423 nulliparous pregnant women (1267 with preeclampsia)
- Questionnaire Information vitamin D supplementation (week 15) and dietary intake (week 22)
- Pregnancy outcomes were obtained from the Medical Birth Registry.
 - Total vitamin D intake (15-20 μg/d vs. <5μg/d) associated with reduced pre-eclampsia risk
 - (OR 0.76, 95%Cl 0.60-0.95).
 - Vitamin D supplementation (vs. no supplements) associated with reduced pre-eclampsia risk (OR 0.73, 95%CI 0.58-0.92).
 - No association between vitamin D intake from food and preeclampsia

UCL

Does early-life vitamin D status or intake have long-term influences on immunological diseases ?

- Programming of the immune system, in particular related to tolerance development, starts before birth and stays under close control of the maternal immune system
 - Pre- and postnatal period important 'window of opportunity' for immune programming
 - Controlled by gene-environment interaction, epigenetic mechanisms
- Evidence for epigenetic regulation of genes in the vitamin D pathway
 - Placenta specific methylation of 24-hydroxylase
 - Transcriptional regulation of the CYP27B1 gene mediated by epigenetic modifications

Vitamin D and type 1 diabetes

TYPE 1 DIABETES

•Chronic autoimmune disease, multifactorial etiology with both genetic predisposition and exposure to environmental risk factors required

•Long latency from initiation to disease onset

•Insulin secreting beta cells destroyed in a T-cell dependent process

•polarization towards Th1 up-regulation is believed central to the pathogenesis

Vitamin D may be able to disrupt both the initiation and progression of the T-cell mediated pathogenesis of Type 1 diabetes?

UCL

Stene et al. Diabetologia, 2000

- Norwegian case-control study, 85 cases / 1071 control children
 - Maternal cod liver oil supplementation during pregnancy associated with a reduced diabetes risk in the offspring (OR 0.30, 95%CI 0.12-0.75)
 - Results inconclusive on the effect of infants cod liver oil intake or vitamin D supplementation

Fronzak et al. Diabetes Care 2003

- 233 children followed up for 4y, 16 developed insulin autoantibodies
 - Maternal intake of vitamin D via food associated with decreased risk of IA antibodies (HR 0.37, 95%CI 0.17, 0.78)

Brekke and Ludviggson, Pediatr Diabetes 2007

- Follow-up of 8695 children up to 1y for seroconversion to positivity for diabetes specific autoantibodies (n=774). (For 2.5y, 7766 and 774, respectively)
 - → Use of vitamin-D supplements during pregnancy associated with reduced diabetes-related autoimmunity at 1y (OR 0.71, 95%CI 0.52-0.96) but not at 2.5y.

Northern Finland Birth Cohort 1966

- * All pregnant mothers with expected date of delivery in 1966 in two most northern provinces of Finland (n=12,058)
- * Information on vitamin D supplementation (frequency, dose) and suspected rickets collected at 1 year of age (n=10,366) *****Dose recommendation 2000 IU/day (50µg/day)*****
- Follow-up for Type 1 diabetes to age 31 through linkage to Central Drug Register with further ascertainment of cases diagnosed at age 20 or older using hospital discharge register and/or medical files
 - 81 cases (total n=10,366)

Hyppönen et al. Lancet, 2001

UCL

Incidence of Type 1 diabetes by FREQUENCY of vitamin D supplementation

Hyppönen et al. Lancet, 2001

Incidence of Type 1 diabetes by FREQUENCY of vitamin D supplementation

Hyppönen et al. Lancet, 2001

Incidence of Type 1 diabetes by FREQUENCY of vitamin D supplementation

Hyppönen et al. Lancet, 2001

Incidence of Type 1 diabetes by **DOSE of vitamin D supplementation**

Incidence of Type 1 diabetes by **DOSE of vitamin D supplementation**

Incidence of Type 1 diabetes by **DOSE of vitamin D supplementation**

Incidence of Type 1 diabetes by suspected **RICKETS**

Long-term effects of infant vitamin D **LONG** Supplementation on the risk of immune mediated diseases: Th1/Th2 paradigm

Long-term effects of infant vitamin D **UCL** Supplementation on the risk of immune mediated diseases: Th1/Th2 paradigm

Prevalence and risk of pre-eclampsia by vitamin D supplementation in infancy -Northern Finland Birth Cohort 1966

number	%(cases)	OR (95% CI)	Adjusted ^a OR (95% CI)
339	3.8 (13)	Reference	Reference
2630	2.1 (55)	0.54 (0.29, 0.99)	0.49 (0.26,0.92)
2499	2.1 (53)	Reference	Reference
120	1.7 (2)	0.78 (0.19.3.26)	0.81 (0.18,3.55)
	number 339 2630 2499 120	number%(cases)339 26303.8 (13) 2.1 (55)2499 1202.1 (53) 1.7 (2)	number%(cases)OR (95% Cl)339 26303.8 (13) 2.1 (55)Reference 0.54 (0.29, 0.99)2499 1202.1 (53) 1.7 (2)Reference 0.78 (0.19,3.26)

Long-term effects of infant vitamin D **LONG** Supplementation on the risk of immune mediated diseases: Th1/Th2 paradigm

Long-term effects of infant vitamin D **UCL** Supplementation on the risk of immune mediated diseases: Th1/Th2 paradigm

Prevalence of allergic conditions by **UCL** FREQUENCY of vitamin D supplementation

Prevalence of allergic conditions by **DOSE**^{*} of vitamin D supplementation

* Restricted to infants receiving vitamin D regularly

Gale et al. EJCN 2007

Higher maternal vitamin D status during pregnancy associated with... ...3-fold risk (95%Cl 1.2-9) of visible eczema at 9 months ...over 5-fold risk (95%Cl 1.1-27) of reported asthma at 9 years **UCL**

Hughes et al. Pediatr Allergy & Immunol 2010

In an Australian study...

...cod liver oil supplementation in childood associated with hayfever/asthma ...greater wintertime sun exposure in childood associated with hayfever

UCL

Serum IgE by variations in 25(OH)D

-geometric mean, standardized by sex and season

Hyppönen et al. Allergy, 2009

... but what about all this??

Is vitamin D deficiency to blame for the asthma epidemic? Litonjua & Weiss, J Allergy Clin Immunol 2007

"...using data from the two birth cohorts with maternal vitamin D assessments, we estimate that the population attributable **risk for asthma incidence caused by vitamin D deficiency in pregnancy** is about 40% of all cases."

Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. <u>Camargo</u> et al. AJCN 2007

1194 mother-child pairs: Compared with mothers in the lowest quartile of daily intake (median: 356 IU), those in the highest quartile (724 IU) had a <u>lower risk of having a child with</u> recurrent wheeze [OR: 0.39; 95% CI: 0.25, 0.62; P for trend < 0.001].

Maternal vitamin D intake during pregnancy and early childhood wheezing. <u>Devereux G</u>, et al. Am J Clin Nutr. 2007 Mar;85(3):853-9.

1212 children: maternal total vitamin D intake (highest: 275IU/day vs lowest: 77IU/day quintiles) conferred lower risks for ever wheeze [OR: 0.48; 95% CI: 0.25, 0.91], wheeze in the previous year (OR: 0.35; 95% CI: 0.15, 0.83), and persistent wheeze (OR: 0.33; 95% CI: 0.11, 0.98) in child at 5y.

UCL

Serum IgE by variations in 25(OH)D

-geometric mean, standardized by sex and season

Hyppönen et al. Allergy, 2009

Allergen induced cytokine secretion in vitamin D treated animals

Airway eosinophilia -a key pathophysiological feature of asthmawas also reduced, possibly suggesting beneficial Influences through a reduced inflammatory response

Matheu et al. J Allergy Clin Immunol 2003

Vitamin D status and prevalence of respiratory infections in the 1958BC

Multiple effects on immune function...

Active vitamin D (i.e. 1,25(OH)₂D)...

- leads to a general reduction in inflammation, which together with direct anti-proliferative effects in human airway smooth muscle cells (through inhibition of matrix metallo-proteinases) is believed to be instrumental for explaining the observed reductions in asthma risk
- influences barrier integrity, which could protect against the direct influence of harmful pathogens.
- reduces MHC II antigen expression on the cell membrane surface and induces macrophages and epithelial cells to produce cathelicidin, a peptide involved in antimicrobial action.
- ...in addition to affecting regulatory T cell activity, and the balance between Th1 and Th2 type immunological responses

Summary

UCL

 Vitamin D is a powerful immunomodulator, which can have long term influences on immunological disease such as diabetes and allergy risk

- Evidence accumulating for beneficial effects in infections/inflammation

- Hypovitaminosis D short of deficiency may have important implications for
 - the maintenance of normal pregnancy
 - long-term implications for offspring health.

Public health message: Avoid vitamin D deficiency!