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Abstract
This paper reviews the current understanding of the vitamin D-induced differentiation of neoplastic cells, 
which results in the generation of cells that acquire near-normal, mature phenotype. Examples of the cri-
teria by which differentiation is recognized in each cell type are provided, and only those effects of 1α,25-
dihydroxyvitamin D3 (1,25D) on cell proliferation and survival that are associated with the differentiation 
process are emphasized. The existing knowledge, often fragmentary, of the signaling pathways that lead to 
vitamin D-induced differentiation of colon, breast, prostate, squamous cell carcinoma, osteosarcoma, and 
myeloid leukemia cancer cells is outlined. The important distinctions between the different mechanisms 
of 1,25D-induced differentiation that are cell-type and cell-context specific are pointed out where known. 
There is a considerable body of evidence that the principal human cancer cells can be suitable candidates 
for chemoprevention or differentiation therapy with vitamin D. However, further studies are needed to 
fully understand the underlying mechanisms in order to improve the therapeutic approaches.
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Abbreviations and Glossary:  
1,25D, 1,25-dihydroxyvitamin D3; 24OHase, 24-hydroxylase; A, androgen; AKT, serine/threonine-
specific, protein kinase B; Alk-Pase, alkaline phosphatase; AML, acute myeloid leukemia; AP-1, activating 
protein-1; APC, adenomatous polyposis coli; APL, acute promyelocytic leukemia; AR, androgen receptor; 
ATRA, all-trans retinoic acid; BMP, bone morphogenetic protein; BRCA-1, (Breast Cancer-1)-breast 
cancer tumor suppressor gene; CaCo-2, human epithelial colorectal adenocarcinoma cell line;  CaR, 
calcium-sensing surface receptor; Cdk5, cyclin-dependent kinase 5; C/EBP, CCAAT/enhancer binding 
protein; CoA, co-activator; COX, Cyclooxygenase; DRIP, Vitamin D Receptor-Interacting Protein; E2, 
estrogen; EGFR, epidermal growth factor receptor; EGR-1, early growth response protein-1; EP, early 
progenitor; ER, estrogen receptor; ERK, extracellular-signal regulated kinase; FC, flow cytometry; GF, 
growth factor; GFR, growth factor receptor; GM-CSF, granulocyte macrophage-colony stimulating 
factor; hOC, human osteocalcin; hOP, human osteopontin; IBP-5, IGF binding protein-5; IGF, Insulin-
like Growth Factor; IGFBP-3, insulin-like growth factor binding protein-3; IL-4, Interleukin-4;IP3, inositol 
triphosphate; JNK, Jun N-terminal kinase; KLF-4, Kruppel-like factor 4; KSR-1, kinase suppressor of Ras-1; 
LPS, lipopolysaccharides; MALDI-TOFMS, matrix-assisted laser desorption/ionization time-of-flight 
mass spectrometry; MAPK, mitogen-activated protein kinase; MG-63, Human osteosarcoma cell line; 
MSE, monocyte-specific esterase (“non-specific” esterase); NBT, nitroblue tetrazolium; Nck5a, “cyclin-
like” neuronal Cdk5 activator; NFkappaB, Nuclear factor kappa-light-chain-enhancer of activated B cells; 
NR, nuclear receptor; NSE, non-specific esterase; P, progenitor; PGDH, Prostaglandin Dehydrogenase; 
p90RSK, ribosomal S6 kinase (MAPK-activated protein kinase-1); PI3K, phosphatidylinositol 3-kinase; PIP3, 
phosphatidylinositol 3, 4, 5-triphosphate; PKC, protein kinase C; PLC-1, phospholipase C gamma-1; PPAR, 
Peroxisome Proliferator-Activated Receptors; Rb, retinoblastoma protein; PSA, prostate-specific antigen; 
RAR, retinoic acid receptor; ROS, reactive oxygen species; RXR, retinoid X receptor alpha; SCC, squamous 
cell carcinoma; Sp-1, specificity protein-1; Src, Non-Receptor Protein Tyrosine Kinase; TCF4, T-cell 
transcription factor-4; Wnt, Wingless-related MMTV integration site; TPA, 12-O-tetradecanoylphorbol-
13-acetate; U2-OS, Human osteosarcoma cell line expressing wild type p53 and Rb, but lacking p16; VDR, 
vitamin D receptor; VDRE, vitamin D3 response element.
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Introduction

In general, differentiation is a term that signifies the 
structural and functional changes that lead to matura-
tion of cells during development of various lineages. 
Cancer cells are unable, to varying degrees, to achieve 
such maturation, and thus malignant neoplastic cells 
show a lack of, or only partial evidence of, differentia-
tion, known as anaplasia. Since the basic underlying 
cause for the failure to differentiate can be attributed 
to structural changes in the cell’s DNA, i.e. mutations, 
which are essentially irreversible, it is remarkable 
that some compounds can induce several types of 
malignant cells to undergo differentiation toward the 
more mature phenotypes. The physiological form of 
vitamin D, 1,25-dihydroxyvitamin D

3
 (1,25D), is one 

such compound, and the importance of this finding is 
that it offers the potential to be an alternative to, or to 
provide an adjunctive intervention to, the therapy, as 
well as to act in the prevention of neoplastic diseases.

The feasibility of differentiation therapy of cancer is 
supported by the early observations that some cases of 
neuroblastoma, a childhood malignancy, can sponta-
neously differentiate into tumors that are composed of 
normal-appearing neuronal cells, and the child’s life is 
spared(1,2). The reasons for this conversion have not been 
elucidated, but it seems reasonable to assume that, as 
the child matures, the endocrine and immune systems 
become more efficient, and one or more of such factors 
are able to induce differentiation of neural precursor 
cells to the more mature, non-invasive forms.

An example of an already successful interventional 
approach to differentiation therapy of a neoplastic 
disease is the use of all-trans retinoic acid (ATRA) for 
the treatment of acute promyelocytic leukemia (APL) 
and perhaps other leukemias (3–5). Additionally, a syn-
thetic analog of ATRA, Fenretinide, can potentially 
serve as an agent that can prevent breast cancer in 
women(6), illustrating the fact that a demonstration of 
a clear clinical therapeutic effect of a differentiation 
agent opens up the possibility that it may also serve 
as a cancer chemopreventive compound.

While the role of 1,25D in cancer chemotherapy 
and cancer chemoprevention is only beginning to be 
established, there are several reasons to believe that 
its promise will be fulfilled. These reasons include the 
fact that 1,25D is a naturally occurring physiological 
substance and thus unlikely to cause the adverse reac-
tions that occur when xenobiotics are administered to 
patients, unless it is given in very high concentrations. 
Second, the issue of hypercalcemia, which occurs 
when the concentrations of 1,25D greatly exceed the 
physiological range and has previously limited its 
clinical applications (7,8), can be addressed by the dual 
strategy of developing analogs of 1,25D with reduced 

calcium-mobilizing properties (9–12),and combining 
these with other compounds that enhance the differ-
entiation-inducing actions of 1,25D or its analogs(13-

15). Also, progress is being made in understanding the 
mechanisms responsible for 1,25D-induced differen-
tiation, summarized later in this review, and although 
this understanding is by no means complete, it is 
likely that insights will be obtained that can be trans-
lated into clinical applications.

Differentiation of neoplastic cells induced by 1,25D 
and other agents rarely, if ever, results in the generation 
of completely normal, functioning cells. Indeed, the 
appearance of cells resulting from induced progenitors 
has been aptly described as resembling “caricatures” 
rather than normal cells. Such cells may exhibit, and 
are recognized by, some features of the normal, mature 
cells of the particular developmental lineage but seldom 
function like the mature normal cells. However, this is 
not the major objective of differentiation therapy of neo-
plastic diseases; the real benefits are due to the cessation 
of the proliferation of these cells, which is a consequence 
of cell cycle arrest associated with differentiation(16-19) 
and in some cases to the reduced survival of the differ-
entiated cells. For instance, 1,25D-induced monocytic 
differentiation of myeloid leukemia cells can result in 
the G1 phase cell cycle block, resulting in cessation of 
cell proliferation(19), while 1,25D treatment of breast or 
prostate cancer cells can induce cell death by apoptosis 
as well as by differentiation(20-22).

An important consideration in the area of 1,25D-
induced differentiation is cell type and cell context spe-
cificity. For instance, in contrast to breast and prostate 
cancer cells, which are induced to undergo apoptosis, 
in myeloid leukemia cells, 1,25D-induced differentia-
tion is accompanied by increased cell survival(23,24). The 
pathways that are known to signal 1,25D-induced dif-
ferentiation and the associated cell cycle and survival 
effects also differ, though they may overlap, in different 
cell types. This may be complicated further by the type 
of mutations that are responsible for the block of differ-
entiation and the resulting uncontrolled proliferation of 
the neoplastic cells. We therefore discuss separately the 
principal cancer cell types known to be candidates for 
differentiation therapy or chemoprevention by 1,25D.

Solid tumors

Colon cancer

It is well established that colon cancer cells in culture 
can undergo differentiation to a more mature phe-
notype, and the inducing agents include the short-
chain fatty acid butyrate and 1,25D. The evidence for 
differentiation has traditionally been the expression 
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of the hydrolytic enzyme alkaline phosphatase (Alk 
Pase), which can be demonstrated on the microvilli 
and tubulovacuolar system of the surface “principal 
cells” of the colon mucosa(25,26) but is poorly expressed 
in proliferating colon cancer cells(27). More recently, 
other markers of colonic epithelial cell differentiation 
have been identified, and these include changes in 
“transepithelial electrical resistance” and ubiquitin, as 
based on matrix-assisted laser desorption/ionization 
time-of-flight mass spectrometry (MALDI-TOFMS). 
The latter procedure generates specific mass spec-
tral fingerprints characteristic of cell differentiation, 
and it was suggested that ubiquitin can be a marker 
of differentiation of the T84 human colon carcinoma 
cell line(28). In another colon cancer cell line, SW80, 
1,25D was shown to induce easily recognizable 

morphological changes indicative of differentiated 
epithelial-like phenotype(29). These morphological 
changes include consequences of the adherence to 
the culture substratum, which make the cells look flat 
and polygonal, and it was demonstrated that these 
cells have reduced tumorigenicity when implanted 
into athymic mice. Thus, the epidemiological data 
that indicate that 1,25D has a negative effect on the 
incidence of human colorectal cancer(30,31) are well 
supported by the in vitro studies of 1,25D-induced 
differentiation of colon carcinoma cell lines.

How 1,25D signals differentiation of colon cancer 
cells is not entirely clear, but several groups of key 
molecules have been identified that appear to govern 
this process, and an outline of their postulated inter-
actions is integrated in Figure 1. One mechanism that 
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Figure 1.  The suggested pathways of 1,25D-induced differentiation in colon cancer. In proliferating colon epithelial cells the -catenin 
complexed with TCF-4 drives the expression of growth promoting genes such as c-myc. This is under the control of Wnt and its surface 
receptor Frizzled, which inactivate GSK-3 (not shown) and allow the accumulation of -catenin and thus growth promotion. Binding 
of -catenin by VDR, or by other proteins, including E-cadherin, the expression of which is induced by 1,25D (formula shown) leads to 
the loss of -catenin from the transcriptional complex in the nucleus, and, as a consequence, to decreased cell proliferation. Also shown 
is the activation of PKC by 1,25D-induced influx of calcium (Ca2+), which can activate by phosphorylation the transcriptional activity of 
VDR and repression of EGFR by 1,25D in colon-derived cells.
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can explain the reduced cell proliferation that accom-
panies differentiation is the marked inhibitory effect 
of 1,25D on the expression of epidermal growth factor 
receptor (EGFR), apparent at both mRNA and pro-
tein levels in CaCo-2 cells(32). The accumulated data 
also suggest that the central role in 1,25D-induced 
differentiation is played by the vitamin D receptor 
(VDR). An early study demonstrated that 1,25D has 
a protective effect on chemically induced rat colon 
carcinogenesis(33), and others showed that VDR can be 
a marker for colon cancer cell differentiation(34,35). This 
was followed up by Cross and colleagues in a series of 
experiments that showed that VDR levels increased 
in early stages of carcinogenesis, or in human colonic 
mucosa during early tumor development, but that 
VDR levels were low in poorly differentiated late-
stage carcinomas(36,37). This suggested that VDR levels 
have a restraining effect on the growth of colon cells. 
A mechanism that can explain the increased levels 
of VDR in differentiated colon cells was provided by 
the indication that, in CaCo-2 cells, 1,25D causes an 
increased activity of the AP-1 transcription factor(27), 
which is downstream from the mitogen-activated pro-
tein kinases (MAPK) pathways and can transactivate 
VDR gene expression(38). The consequent up-regula-
tion of VDR may further be increased in the presence 
of 1,25D by stabilization of the VDR protein(39), but the 
nature of the initial activation of MAPK pathways in 
colon cancer cells is not entirely clear. The suggested 
calcium-induced activation of protein kinase C alpha 
(PKC ) as an upstream event in MAPK activation (27,40) 
appears to be feasible, as an influx of calcium into the 
cells is known to occur after 1,25D exposure of many 
types of cells including colon cancer(41), but this path-
way remains to be further investigated. Nonetheless, 
the importance of VDR in colon cancer cell differ-
entiation is further underscored by the suggestion 
that butyrate-induced differentiation of CaCo-2 
cells is mediated by VDR(42) and by the recent report 
that decreased recruitment of VDR to the vitamin D 
response elements (VDRE) contributes to the reduced 
transcriptional responsiveness of proliferating CaCo-2 
cells to 1,25D(43).

An emerging role for VDR, other than its func-
tion as a transcription factor that binds to VDRE in 
the promoter regions of 1,25D-responsive genes, is 
exemplified by the finding that VDR can interact with 
-catenin and thereby repress its oncogenic gene-
regulatory activity in colon cells(29). The transrepres-
sion of -catenin signaling is not limited to an inter-
action with VDR, as such interactions can take place 
with other nuclear receptors, such as the retinoic 
acid receptor (RAR) and the androgen receptor(29,44). 
This interaction has been shown to involve also the 
co-activator p300, a histone acetyl transferase(45). The 

recently reported repression of the VDR gene by the 
transcription factor SNAIL(46) and the repression by 
1,25D of the Wingless-related MMTV integration site 
(Wnt) antagonist DICKOPF-4(47) may also be impor-
tant for the inhibition of Wnt/ -catenin signaling by 
1,25D and for its induction of differentiation in colon 
cancer cells.

Signaling by -catenin can also be repressed by 
the 1,25D-induced up-regulation of the expression 
of E-cadherin(29), a transmembrane protein that plays 
a major role in the maintenance of the adhesive and 
polarized phenotype of epithelial cells(48). The pres-
ence of E-cadherin can promote nuclear export of 
-catenin, and this may be augmented by direct 
VDR/-catenin interaction(48). Since -catenin/T-cell 
transcription factor 4 (TCF-4) complex is the nuclear 
effector of the Wnt growth-signaling pathway, respon-
sible for the expression of c-myc and other growth 
promoting genes(49), the repressive effects of 1,25D on 
the growth of colon cancer cells may be explained by 
the ability of 1,25D to regulate the expression of VDR, 
E-cadherin and the activity of the -catenin/TCF 
pathway, as illustrated in Figure 1.

In addition to protein-protein complex formation 
with -catenin, VDR has also been reported to inter-
act with the transcription factor-specificity protein 
1 (Sp1) in SW 620 human cancer cells and thus to 
induce the expression of p27/Kip1 inhibitor of the cell 
cycle(50). However, it is not clear precisely how this is 
achieved given the ubiquitous nature of Sp1 binding 
sites in gene promoters. Nonetheless, the direct bind-
ing of VDR to other proteins, which may be ligand 
independent, is an area that deserves further study 
and has been reported to occur in cells types other 
than colon carcinoma, such as osteoblastic cells and 
myeloid leukemia, as discussed later.

Breast cancer

The induction of differentiation of breast cancer 
cell lines by 1,25D and the role of 1,25D in normal 
development of rodent mammary tissue are well 
established. For instance, studies of VDR knock-
out mice have shown that 1,25D participates in the 
growth inhibition of the normal mammary gland(51). 
Further, the disruption of 1,25D/VDR signaling leads 
to distorted morphology of murine mammary gland 
with duct abnormalities and increased numbers of 
preneoplastic lesions, suggesting that 1,25D-liganded 
VDR serves to maintain differentiation of normal 
mammary epithelium(52).

Induction of differentiation of breast cancer 
cells by 1,25D can be demonstrated by -casein 
production(53) or by a change in overall cell size and 
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shape, associated with changed cytoarchitecture of 
actin filaments and microtubules in MDA-MB-453 
cells (54). Treatment of these cells with 1,25D resulted 
in accumulation of integrins, paxillin, and focal 
adhesion kinase as well as their phosphorylation. 
In contrast, the mesenchymal marker N-cadherin 
and the myoepithelial marker P-cadherin were 
down-regulated, suggesting that 1,25D reverses the 
myoepithelial features associated with the aggres-
sive forms of human breast cancer. However, it is to 
be noted that not all breast cancer cell lines respond 
to 1,25D. In many cases this can be attributed to the 
lack of or low VDR expression or function(55,56), but it 
may also be due to alterations in 1,25D-metabolizing 
enzymes, which can reduce the levels of 1,25D below 
its effective concentration(57).

Among the breast cancer cell lines that do respond 
to 1,25D, a range of phenotype alterations has been 
reported(58), emphasizing that the mechanistic basis 
for the differentiating effects of 1,25D in the breast 
cancer cell system will be very complex. Together with 
the uncertainty over whether induced differentiation 
of breast cancer cells, per se, has potential clinical 
significance, mechanistic studies in this system have 
been largely directed to the antiproliferative effects of 
1,25D on breast cancer cells. These studies revealed 
that induction of apoptosis and G1 cell cycle arrest 
result in inhibition of tumor cell growth in several 
types of breast cancer cells(20,57,59), but the relation-
ship of these biological effects to differentiation is 
not obvious. Nonetheless, some hints did result from 
those studies, as detailed below.

An interesting set of candidate 1,25D-target pro-
teins was identified by proteomic screening of a breast 
cancer cell line sensitive to 1,25D (MCF-7) and from a 
subclone of these cells derived by resistance to 1,25D 
(MCF-7/DRES)(60); and some of these proteins can be 
related to differentiation and associated phenotypic 
cellular changes. Examples are Rho-GDI and Rock-DI, 
known to participate in the formation of focal adhe-
sions and stress fibers, which contribute to the adhe-
sive epithelial phenotype and changes in cell shape(60). 
Proteins previously linked to pathways involved in 
1,25D-induced differentiation, such as phospho-p38, 
MEK2, and RAS-GAP, were also noted in this screen(52). 
In a tissue culture study, the JNK pathway, also known 
to contribute to 1,25D-induced differentiation of 
colon and myeloid cells(61), was shown to cooperate 
with the p38 pathway to transactivate VDR in breast 
cancer cells, but it was proposed that this contributes 
to the anti-proliferative rather than the differentiation-
inducing effects of 1,25D in these cells(38). The antipro-
liferative effects of 1,25D can also be explained by the 
reduction in EGFR mRNA and protein, but this is seen 
in only some breast cancer cell lines(62,63).

Another suggested link to differentiation in 1,25D-
treated breast cancer cells is that VDR and estrogen 
receptor (ER) pathways converge to regulate BRCA-1, 
thus controlling the balance between signaling of dif-
ferentiation and proliferation(64). Since ER is impor-
tant for mammary gland differentiation, studies that 
pursue this concept would be very valuable, and it 
already appears that the over-expression of ER and 
VDR is not sufficient to make ER-negative breast 
cancer cells responsive to 1,hydroxy-vitamin D

5
, a 

vitamin D analog known to mediate differentiation in 
a manner similar to that of 1,25D(65,66).

Prostate cancer

Similar to breast cancer, prostate cancer originates in 
hormone-dependent epithelial cells, and, as in breast 
cancer cell lines, 1,25D has anti-proliferative effects 
in some, but not all, established prostate cancer cell 
lines. The anti-proliferative action of 1,25D is, to a 
variable degree, due to the induction of cell death 
by apoptosis(67) and to cell cycle arrest(68), but to what 
extent these are associated with differentiation is 
uncertain.

The evidence of prostate cancer cell differentiation 
includes the release of prostate specific antigen (PSA) 
from cells treated with a differentiating agent, such as 
1,25D(69–71). This can be useful in cultured cells, but, in 
patients, the increasing PSA levels suggest progressive 
disease, making it difficult to acquire data on the role 
of differentiation in clinical trials(72). A study of the 
role of 1,25D in the differentiation of the normal rat 
prostate gland was based on morphological charac-
teristics, which included an increased abundance of 
cytoplasmic secretory vesicles(73). This characteristic 
has been used as a differentiation marker, along with 
the expression of keratins 8, 17, and 18, in human 
prostate cancer PC-3 cells(74). In other studies(75,76), 
the increased expression of E-cadherin was used as 
a marker of differentiation. However, although many 
reports on the effects of 1,25D on prostate cancer cells 
include the word “differentiation,” the documentation 
most often focuses on the anti-proliferative effects of 
1,25D exposure, which may or may not be associated 
with phenotypic differentiation.

In a recent microarray analysis of 1,25D regula-
tion of gene expression in LNCaP cells, Krishman 
et al.(77) reported several findings that appear relevant 
to 1,25D-induced differentiation. In addition to the 
major up-regulation of the expression of the insulin-
like growth factor binding protein-3 (IGFBP-3), 
which functions to inhibit cell proliferation by up-
regulating p21/Cip1(78), it was noted that among 
about a dozen genes up-regulated by 1,25D was the 
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“prostate differentiation factor,” a member of the 
bone morphogenetic protein (BMP) family, which 
is generally involved in growth and differentiation of 
both embryonic and adult tissues(79). Also interesting 
was the finding that, in these cells, 1,25D regulates 
those genes that are androgen-responsive as well 
as the genes that encode the enzymes involved in 
androgen catabolism.

Furthermore, it has been shown that 1,25D up-
regulates the expression and activity of the andro-
gen receptor (AR)(80,81), raising the possibility that 
the differentiation effects of 1,25D on prostate cells 
are not direct but due to modifications in the level 
or activity of AR. Interestingly, it has also been sug-
gested that androgens up-regulate the expression of 
VDR(82); thus, a positive feedback loop that includes 
1,25D activation of VDR could be a factor in inducing 

differentiation of cancer cells derived from the hor-
monally regulated tissues (Figure 2), while, in nor-
mal cells, the sex hormone (androgen or estrogen) is 
sufficient to promote differentiation. Since 1,25D has 
an established anti-cancer activity in prostate cells, 
it can be assumed that, in this scenario, VDR selec-
tively enhances the AR-mediated androgenic pro-
differentiation but not the proliferation-enhancing 
activity (Figure 2). In addition, it is likely that nuclear 
receptors for retinoids, glucocorticoids, and PPAR 
affect the signaling pathways, directly or indirectly. 
Whether the demonstrated 1,25D-induced decrease 
in the expression of COX-2 and increase in 15-PGDH 
in prostate cancer cells(77,83) has any relationship to 
cell differentiation remains to be established.

Prostate cancer cells are also known to undergo 
“trans-differentiation” to a neuroendocrine phenotype, 
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Figure 2.  Signaling of differentiation by 1,25D in hormone-dependent cancer cells. This schematic illustrates the hypothesis that in nor-
mal breast or prostate cells, estrogen (E

2
) or androgen (A) is sufficient to induce differentiation, respectively. In cancer cells the differenti-

ation signal provided by the hormone-liganded nuclear receptor (NR) may need to be amplified by the cooperation with 1,25D-activated 
VDR to induce differentiation. Since cells also receive signals from growth factors (GF), several of which activate Ras, the presence of a 
Ras-activated signaling pathways is exemplified by the AKT and ERK cascades, though the role of these pathways in the differentiation of 
hormone-dependent cells is uncertain.
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and when this phenotype is found in human tumors, 
it may indicate an aggressive form of the disease(84). 
Although, currently, 1,25D has no known role in this 
form of differentiation, this may be a promising area 
of future research, since recent studies point to a key 
role for NFB, as well as IL-6, in this process(85,86). This 
suggestion is based on the finding that, in some cells, 
1,25D up-regulates the expression of C/EBP (87), which 
cooperates with NFB in regulation of the secretion of 
the cytokine IL-6 in neuroendocrine human prostate 
cancer cells(85).

Keratinocytes and Squamous cell carcinoma cells

While there is extensive evidence of 1,25D-induced 
differentiation in normal keratinocytes, the studies of 
the induction of differentiation in squamous cell car-
cinomas (SCC), composed essentially of neoplastic 
keratinocytes, are less conclusive. Differentiation can 
be detected by the presence of various components 
of the keratinizing cells, such as cytokeratins K1 and 
K10, cornifin-beta, involucrin, and transglutaminase, 
considered to be a late marker of squamous cell dif-
ferentiation to normal epidermal keratinocytes(88). 
The expression of target genes of 1,25D and analogs 
can also be taken as evidence that SCC cell lines can 
be driven to differentiation by these compounds(89). 
Such genes include N-cadherin, which, when over-ex-
pressed, restores the epithelial phenotype also in pros-
tate cancer cells(90), cystatin M, protease M, type XIII 
collagen, and desmoglein 3(89). Bikle and colleagues 
have presented persuasive models for induction of 
keratinocyte differentiation by increased calcium 
levels and by calcium-1,25D interactions(91,92). The 
key features of calcium-induced human keratinocyte 
differentiation appear to include the recruitment of 
phosphatidylinositol 3-kinase (PI3K) to a complex at 
the cell plasma membrane consisting of  E-cadherin, 
-catenin, and p120-catenin. This complex is postu-
lated to activate PI3K, leading to the accumulation of 
phosphatidylinositol 3,4,5-triphosphate (PIP

3
), which 

binds to and activates phospholipase C gamma-1 
(PLC-1)(93,94). The activated phospholipase gener-
ates inositol triphosphate (IP

3
), which stimulates the 

release of calcium from the intracellular stores in the 
endoplasmic reticulum, and diacylglycerol, which, 
together with increased intracellular calcium, acti-
vates PKC. PKC, and perhaps calcium activation of 
other enzymes, then initiate signaling cascades that 
impinge on nuclear transcription factors such as 
AP-1, which lead to differentiation (95).

How much of this description applies to the 1,25D-
induced differentiation is less clear, but Bikle et al.(91) 
presented a plausible model in which 1,25D interacts 

with calcium to induce keratinocyte differentiation. 
This model also includes a G-protein-coupled cal-
cium-sensing surface receptor (CaR), which, when 
activated by 1,25D leads to the activation of PKC, with 
consequences described above. The associated influx 
of calcium, which occurs in human keratinocytes 
after exposure to 1,25D, has been recently shown to 
be mediated, at least in part, by the calcium-selective 
channel TRPV6 up-regulated at the mRNA and pro-
tein levels by 1,25D(96). A cohesive picture of 1,25D-
induced keratinocyte differentiation is quite well, 
but perhaps not completely, developed. For instance, 
regulation of AP-1 activity in cultured human kerati-
nocytes by 1,25D was reported to be independent of 
PKC(97), in contrast to the model presented by Bikle 
et al.(91). Takahashi et al.(98) reported that treatment of 
normal human keratinocytes with 1,25D increases the 
expression of cystatin A, a cysteine protease inhibitor, 
that is a component of the cornified envelope, and 
that it is the suppression of the Raf-1/MEK-1/ERK 
signaling pathway that is responsible for this effect. 
However, cystatin A expression is stimulated by the 
Ras/MEKK-1MKK7/JNK pathway(99), consistent with 
the schematic model of Bikle et al.(91), explaining why 
PKC activation may not be essential for AP-1 activa-
tion in this cell system.

An enigmatic role of caspase-14 in keratinocyte dif-
ferentiation induced by 1,25D has been reported(100), 
and it was suggested that the absence of caspase-14 
contributes to the psoriatic phenotype. Since cas-
pase-14 is a nonapoptotic protein, it is unclear if this 
is related to the report that 1,25D protects keratinoc-
ytes from apoptosis(101). On the other hand, the iden-
tification of Kruppel-like factor 4 (KLF-4) and c-fos as 
1,25D-responsive genes in gene expression profiling 
of 1,25D-treated keratinocytes(102) fits in well with the 
existing knowledge of differentiation signaling, as 
c-fos is a component of the AP-1 transcription factor, 
and KLF-4 is a transcription factor with a major role 
in cell fate decisions(103–105). Recently, it was reported 
that yet another transcription factor, PPAR-gamma, 
also has a major role in 1,25D-induced differentia-
tion of keratinocytes(106). In these studies, dominant 
negative (dn) PPAR-gamma inhibited the expression 
of involucrin (a differentiation marker), suppressed 
AP-1 binding to DNA, and prevented the 1,25D-in-
duced phosphorylation of p38. Thus, the keratinocyte 
system provided a wealth of interesting information 
on 1,25D as a differentiation-promoting and survival-
regulating agent.

Transformed keratinocytes, which give rise to SCC, 
tend to be resistant to the differentiation-inducing 
action of 1,25D(107,108), even though apoptosis and 
cell cycle arrest induced by 1,25D have been demon-
strated in models of SCC(109,110). While VDR expression 
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is required for 1,25D-induced differentiation, the 
resistance of SCCs to 1,25D is not due to the lack of 
functional VDR(111). The possible explanations for the 
1,25D resistance include the finding that the VDRE in 
the human PLC-1 gene is not functional(111). Another 
explanation for this resistance is that increased serine 
phosphorylation of retinoid X receptor alpha (RXR) 
by the Ras/MAPK pathway leads to its degradation, 
and thus VDR loses its heterodimeric partner for 
gene transactivation(112). Yet another possibility is that 
VDR co-activators in SCCs are not appropriate for 
transactivation of differentiation-inducing genes(95). 
Specifically, it was suggested that the expression of 
differentiation markers required a complex of VDR 
with the Src family of co-activators(113), but in SCC the 
DRIP co-activator complex is over-expressed, and 
there is a failure of SCCs to switch from DRIP to Src, 
resulting in inability to express genes required for 
differentiation. It would be interesting to learn if this 
model has a wider applicability.

Osteosarcoma and osteoblasts

Differentiation as well as growth inhibition have 
been documented in 1,25D-treated human and rat 
osteosarcoma cells(114,115). The differentiation was rec-
ognized by a morphological change to the chondro-
cyte phenotype and by increased Alk Pase staining. 
The presence of Alk Pase or osteocalcin could also be 
detected at the mRNA level(115). In a human fetal oste-
oblastic cell line responsive to 1,25D, mineralized 
nodules were detected(116), demonstrating that an 
advanced degree of differentiation can be achieved 
in this cell system. Interestingly, 1,25D-induced dif-
ferentiation in osteoblasts and osteocytes is accom-
panied by an increase in the potential for cell survival 
through enhanced anti-apoptotic signaling(117). It is 
possible that this is mediated by EGFR-relayed sig-
nals, as in contrast to other cell types(32,62,118), 1,25D-
treated osteoblastic cells show increased levels of 
EGFR mRNA(119).

Recent studies suggest that the anti-apoptotic 
effects of 1,25D on osteoblasts and osteocytes are 
mediated by Src, PI3K, and JNK kinases(117). The sug-
gested mechanisms include an association of Src 
with VDR, though transcriptional mechanisms were 
required, as shown by an inhibition of the biological 
effect by exposure to actinomycin D or cyclohex-
imide. The association of VDR with other proteins 
may be particularly important in osteoblasts induced 
to differentiate by 1,25D, as another group reported 
that IGF-binding protein-5 (IBP-5) interacts with VDR 
and blocks the RXR/VDR heterodimerization in the 
nuclei of MG-63 and U2-OS cells, thus attenuating the 

expression of bone differentiation markers(120). Also, 
in ROS 17/28 cells the NFB p65 subunit integrates 
into the VDR transcription complex and disrupts VDR 
binding to its co-activator Src-1(121). Although protein-
protein binding between VDR and p65 subunit has 
not been demonstrated, this remains a possibility, 
further highlighting the importance of this mode of 
control of VDR activity.

Leukemias

Hematological malignancies are a diverse group of 
diseases but can be divided into two major groups, 
lymphocytic and myeloid leukemias. Although nor-
mal activated B and T lymphocytes express VDR, 
and 1,25D has antiproliferative effects on these cell 
types(122,123), this does not appear to alter their dif-
ferentiation state, and lymphocytic leukemia cells 
do not respond to 1,25D. In contrast, 1,25D has been 
known since 1981 to induce maturation of mouse 
myeloid leukemia cells(124), and this can also take 
place in a wide variety of human myeloid leukemia 
cell lines, with the exception of the lines derived 
from the most immature acute myeloid leukemia 
(AML) blast cells (125–127).

Differentiation induced by 1,25D usually results in 
a monocyte-like phenotype, but prolonged exposure 
to 1,25D confers cell surface changes that result in 
adherence to the substratum, making the differen-
tiated cells macrophage-like(124,128). The monocyte 
characteristics are recognized by changes related 
to phagocytosis, such as the ability to break down 
esters, assayed by the “non-specific esterase” (NSE) 
cytochemical reaction, also known as “monocyte-
specific esterase” (MSE) since, in hematopoietic 
cells, this esterase is specific for monocytes and 
macrophages(129). Also related to phagocytosis is the 
ability to generate reactive oxygen species (ROS), 
including superoxide, usually recognized by nitro 
blue tetrazolium (NBT) or cytochrome reduction(130,131). 
The availability of flow cytometry (FC) for the recog-
nition of surface proteins has made the study of the 
differentiating effects of 1,25D on myeloid leukemia 
cells quite simple, using CD14, a receptor for com-
plexes of lipopolysaccarides (LPS) and LPS-binding 
protein(132), a near-definitive marker of the monocytic 
phenotype. This is usually supplemented by the FC 
determination of CD11b or another subunit of the 
human neutrophil surface protein that mediates cel-
lular adherence(133).

In contrast to myeloid cells induced to differentiate 
by the phorbol ester TPA, in 1,25D-treated cells, the 
ability to adhere develops more slowly than the abil-
ity to phagocytose. Consequently, 1,25D treatment 
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results in an earlier appearance of the CD14 anti-
gen, usually accompanied in parallel by MSE 
positivity, than the appearance of CD11b and NBT 
positivity(134,135). Generally, at least two of the above 
parameters are measured to demonstrate monocytic 
differentiation, and FC methods require the use of 
paired isotypic IgG controls for each test sample to 
avoid obtaining false-positive data. Exposure of AML 
cells to 1,25D also results in G1 phase cell cycle arrest, 
which follows, rather than precedes, the phenotypic 
differentiation(134) and is often taken as the confirma-
tory evidence that differentiation has taken place. 
However, in contrast to cells from most solid tumors, 
monocytic differentiation of AML cells is accompa-
nied by increased expression of anti-apoptotic pro-
teins, and, consequently, 1,25D-treated myeloid cells 
have an increased cell survival potential(136–140).

The topic of 1,25D-induced leukemia cell differen-
tiation has been extensively studied in many laborato-
ries. These include several groups in Japan(141–145) and 
a group in Birmingham, England(146,147), who made 
many valuable contributions to the field. Notably, 
combined basic and clinical studies of 1,25D-in-
duced leukemia cell differentiation were very com-
prehensively developed by Koeffler and his various 
collaborators(148–151). What follows in the remainder of 
this section is an outline of the signaling mechanisms 
of AML cells that have occupied the attention of the 
corresponding author’s laboratory.

In these studies, we have focused on HL60 cells, 
a widely available cell line derived from a patient 
with promyeloblastic leukemia, with the objective of 
achieving with the currently available tools as clear a 
picture as possible of the signaling of monocytic differ-
entiation. In this model, outlined in Figure 3(A and B), 
a plausible sequence of events is presented, but it 
is likely that other pathways are also operative but 
remain to be convincingly demonstrated. The details 
of the scheme are described below.

Signaling of monocytic differentiation by MAPK 
and parallel pathways

Early in our investigations, we recognized that 1,25D-
induced monocytic differentiation is not a single 
continuous process but a series of events that can be 
divided into at least two overlapping phases. In the 
first phase, which lasts 24–48 h, the cells continue 
in the normal cell cycle while expressing markers 
of monocytic phenotype, such as CD14 and NSE. 
In the next phase, the G1 to S phase cell cycle block 
becomes apparent, and the expression of CD11b is 
also prominent, indicating a beginning of the transi-
tion to the macrophage phenotype. The first phase 

is characterized by high levels of ERKs activated by 
phosphorylation, and these levels decrease as the 
cells enter the second phase, while the levels of the 
cell cycle inhibitor p27KIp1 increase at that time. 
Serum-starved HL60 cells or cells treated with the 
MAPK inhibitor PD 98059 have a reduced growth rate 
and a slower rate of differentiation, but the G1 block 
under these conditions also coincides with decreased 
levels of activated ERK1/2(152). Our data suggested that 
the MEK/ERK pathway maintains cell proliferation 
during the early stages of differentiation and that the 
consequent G1 block leads to “terminal” differen-
tiation. Using a different experimental design, similar 
results were obtained by Marcinkowska (153).

We also demonstrated that the JNK pathway, as 
shown by the increased phosphorylation of c-jun, 
plays a role in the induction of differentiation of HL60 
cells by 1,25D. The data showed that 1,25D-induced 
differentiation of a stable clone of U937 cells trans-
fected with a dominant negative construct of JNK-1 
was reduced, as compared to cells transfected with 
a control construct(154), and potentiation of 1,25D-
induced differentiation by the plant anti-oxidants 
curcumin and silibinin increased the phosphorylation 
of c-jun(155). This suggested that the JNK-jun pathway 
is involved in 1,25D-induced differentiation, which 
was further established in experiments that showed 
that the AP-1 transcription factor complex is required 
for this process since c-jun, together with ATF-2, is the 
principal component of this complex (140). This appears 
to be of wider significance, as c-jun expression was 
also reported to enhance macrophage differentiation 
of U937 cells(156).

However, it seems clear that the ERK and JNK 
MAPK pathways are not the only ones involved in sig-
naling of 1,25D-induced differentiation. For instance, 
compounds SB203580 and SB2902190, reported to 
be specific inhibitors of the alpha and beta isoforms 
of signaling protein p38 MAP kinase(157), were found 
to markedly accelerate monocytic differentiation of 
HL60 cells induced by low concentrations of 1,25D(158). 
Paradoxically, these compounds also induced a sus-
tained enhancement of p38 phosphorylation and of its 
activity in cell extracts in the absence of added inhibi-
tor, which raised the possibility of a lack of specificity 
of SB compounds in this cell system or of an up-regula-
tion of the upstream components of the p38 pathway. 
In addition, SB 203580 or SB 202190 treatment of HL60 
cells resulted in prolonged activation of the JNK and 
ERK MAPK pathways(158). SB203580 treatment of HL60, 
HT93, and ML-1 human myeloid leukemia cell lines 
also increased cellular ERK activity(159). These data are 
consistent with the hypothesis that in HL60 cells an 
interruption of a negative feedback loop from a p38 
target activates a common regulator of multiple MAPK 
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Figure 3.  (A) Suggested signaling of the early stages of 1,25D-induced monocytic differentiation. Binding of 1,25D to VDR stimulates its 
translocation to the cell nucleus where it heterodimerizes with RXR, and in myeloid precursor cells, it transactivates genes containing 
VDREs in their promoter regions. These include genes that encode proteins involved in calcium homeostasis and bone integrity, such as 
osteocalcin (hOC), osteopontin (hOP), and the 1,25D-catabolic enzyme 24-hydroxylase (24OHase). It is postulated that the regulators of 
signaling pathways, e.g. KSR-1, are also up-regulated in myeloid cells and alter Ras signaling from the cell membrane so that signaling by 
MAPKs (MEKs, ERKs, and JNKs) increases the AP-1 activity. This can have a positive feedback effect on differentiation by increasing VDR 
abundance. It is also suggested that a potential negative feedback mechanism is provided by p38 MAPK, as inhibition of its signaling by 
SB203580 enhances 1,25D-induced monocytic differentiation. (B) Later stages of 1,25D-induced differentiation. This figure illustrates 
that the transcription factor EGR-1, known to be up-regulated by 1,25D (189), can increase the expression of p35/Nck5a (p35) activator 
of Cdk5. Cdk5 activated by p35 then can phosphorylate MEK on Thr286, a site that inactivates it (200), as shown by the  symbol. This 
diminishes ERK1/2 activity downstream from MEK (not shown here), but Raf-1 can activate p90RSK directly, which, in turn, activates the 
transcription factor C/EBP , perhaps bound to pRb, and increases the expression of CD14, as part of monocytic differentiation. The acti-
vation of p90RSK may also be increased by the JNK pathway, which also activates AP-1, and may lead to VDR expression. The interplay 
between the signaling by 1,25D, growth factor, and stress add to the overall complexity of the induction of the monocytic phenotype.
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pathways, but it is also possible that SB203580 has an 
additional unknown action.

Another signaling cascade known to be activated 
by 1,25D in human AML cells is the PI3K-AKT path-
way, which is often envisaged to signal from the cell 
membrane to the intracellular regulators in parallel 
with the MAPK pathways (160). Further, monocytic 
leukemia cells THP-1 exposed to 1,25D in serum-
free medium show a rapid and transient increase in 
PI3K activity, which was attributed to the formation 
of a VDR-PI3K protein complex (161). However, it is not 
clear if the lack of growth factors normally provided 
by the serum contributes to the observed effects. 
The role of the PI3K pathway in 1,25D induced dif-
ferentiation was also studied by Marcinkowska and 
colleagues(162–164), who showed that the activation of 
PI3K by 1,25D can also be demonstrated in HL60 cells 
and that the signal is transmitted to AKT. This func-
tion of AKT may contribute to the differentiation-
related increase in 1,25D-induced cell survival(139). 
An additional role of the PI3K, as well as of the Ras/
Raf/ERK, pathway in human leukemia cells is the 
stimulation of steroid sulfatase, an enzyme that con-
verts inactive estrogen and androgen precursors to 
the active sex hormones(147). If this is also operative 
in breast and/or prostate tissues, it could offer an 
explanation for the mutual activation of VDR and 
the estrogen and androgen nuclear receptors, as 
shown in Figure 2.

The mechanisms of the up-regulation of MAPK 
pathways in the initial phase of 1,25D action on 
leukemia cells are still unclear. The very rapid effects 
of 1,25D on the MAPK pathway in intestinal cells that 
result in rapid calcium transport (“transcaltachia”) 
have been attributed to a cell membrane receptor 
(“mVDR”)(165–167), but whether direct, non-genomic 
action of such mVDR can initiate or enhance the 
activity of MAPK pathways in leukemia cells has not 
been well documented. In non-starved leukemia 
cells, 1,25D elicits less rapid (hours rather than min-
utes) activation of the MAPKs. One possibility is that 
this is achieved by the transcriptional up-regulation 
of Kinase Suppressor of Ras-1 (KSR-1), a membrane-
associated kinase/molecular scaffold also known as 
ceramide-activated protein kinase (168,169). Although 
a kinase activity associated with KSR-1 has been 
reported(170–172), the best established function of KSR-1 
is to provide a platform for Raf-1 kinase to phospho-
rylate and thus activate its downstream targets in the 
MAPK pathways(173,174). Thus, since KSR-1 has been 
shown to have a functional DNA element regulated 
by VDR (VDRE)(175), the activation of the MAPKs may 
be a direct “genomic” action of 1,25D, as depicted in 
Figure 3A, rather than signaling initiation at the mem-
brane and “non-genomic.”

Our studies(169,176), combined with those of 
Marcinkowska and colleagues(164,177), suggest that leuke-
mia cell differentiation is initiated when 1,25D pro-
motes nuclear translocation of liganded VDR, which 
dimerizes with RXR and transactivates several VDRE-
regulated genes, including KSR-1 and KSR-2. The latter 
appears to play a role in increasing the survival poten-
tial of differentiating monocytic cells(24), while KSR-1 
acts as a scaffold that, by simultaneously binding to 
Ras and Raf-1 (and perhaps to other proteins) facili-
tates or redirects the signaling cascade, at least initially, 
to MEK/ERK and thus amplifies the signal that initiates 
monocytic differentiation (Figure 3A).

Raf-1 participation has been shown to be required 
for the later stages of differentiation, when an impair-
ment in cell cycle progression becomes apparent, 
and at this more advanced point in the differentiation 
process, MEK/ERK signaling does not appear to be 
involved(178,179). While this requires further study, the 
current model, also supported by observations in 
other differentiation signaling systems(180–182), suggests 
that Raf-1 can signal p90RSK activation independ-
ently of MEK and ERK, as outlined in Figure 3B.

A rather speculative mechanism describing how 
MEK/ERK signaling is diminished in the later stages 
of differentiation, when cell proliferation becomes 
arrested, is presented below.

p35/Cdk5, a protein kinase system that may 
interface differentiation processes with cell cycle 
arrest

After 24–48 h of exposure of myeloid leukemia cells 
to moderate concentrations of 1,25D (1– 10 nM), cell 
cycle progression becomes progressively arrested, 
principally due to a G1 to S phase block, although a G2 
phase block can also be observed(183). Several mecha-
nisms could explain these cell cycle effects, including 
activation of cyclin-dependent kinase 5 (Cdk5).

Cdk5 is a proline-directed serine-threonine 
kinase with sequence homology to the cyclin-
activated kinases that regulate cell cycle progres-
sion, but its best-known function is participation 
in differentiation of neuronal cells(184). When com-
bined with a “cyclin-like” neuronal Cdk5 activator 
(Nck5a) 35 kDa protein (p35/Nck5a, or p35), the 
p35/Cdk5 complex functions in monocytic cells 
and plays an important role in normal, and possibly 
abnormal, development of this hematopoietic line-
age. Our initial observations were that, in HL60 cells 
treated with 1,25D, the monocytic phenotype and 
expression of Cdk5 appear in parallel. Both active 
and inactive Cdk5 were associated with cyclin D1 
protein, and the inhibition of Cdk5 expression by 
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an antisense oligonucleotide construct reduced the 
intensity of 1,25D -induced expression of the mono-
cytic marker CD14(185). This finding demonstrated a 
novel (other than neuronal) cellular type for Cdk5 
activity and a concomitant enhancement of mono-
cytic differentiation.

The above study showed that protein levels and 
kinase activity of Cdk5 increase in HL60 cells induced 
to monocytic differentiation by 1,25D, but did not 
establish the specificity of the association of Cdk5 with 
the monocytic phenotype. Therefore, we showed in a 
subsequent study that the up-regulation of Cdk5 does 
not occur in granulocytic differentiation, whereas an 
inhibition of Cdk5 activity by the pharmacological 
inhibitor olomoucine, or of its expression by a plasmid 
construct expressing antisense Cdk5, switches the 
1,25D–induced monocytic phenotype (a combination 
of the positive NSE reaction, the expression of the CD14 
marker, and morphology) to a general myeloid pheno-
type (a positive NBT reaction, the CD11b marker, and 
morphology)(186). These findings showed that, in human 
myeloid cells, the up-regulation of Cdk5 is specifically 
associated with the monocytic phenotype.

The Nck5a 35 kDa protein has hitherto been consid-
ered to be exclusively expressed in neuronal cells, as its 
name implies(187). However, since we had clear evidence 
that Cdk5 is an active kinase in human leukemia cells 
HL60 and U937 induced to differentiate with 1,25D, 
and since the “classical” cyclins (e.g. cyclin D1, cyclin 
E) are not known to activate Cdk5, we investigated 
whether p35 can be detected in cells with active Cdk5. 
Indeed, we demonstrated that p35 is expressed in nor-
mal human monocytes and in leukemic cells induced 
to differentiate toward the monocytic lineage but not 
in lymphocytes, or cells induced to granulocytic differ-
entiation by retinoic acid. The activator p35 is present 
in a complex with Cdk5 that has protein kinase activity, 
and when ectopically expressed together with Cdk5 in 
undifferentiated HL60 cells it induces the expression of 
CD14 and NSE markers of the monocytic phenotype(188). 
These observations not only indicate a functional rela-
tionship between Cdk5 and p35 but also support a role 
for this complex in monocytic differentiation.

A likely link to the diminution of ERK MAPK path-
way activity at the onset of phase 2 of 1,25D-induced 
differentiation is provided by the EGR-1→ p35/Cdk5 
--- MEK 1/2 pathway, which was elucidated in leuke-
mia cells by this laboratory (189). The schematic repre-
sentation is shown in Figure 3B, and the supporting 
data can be summarized as follows.

Control of p35 expression by the EGR-1 
transcription factor
The evidence in support of a role for EGR-1 in regu-
lating the expression of p35 includes the co-ordinate 

expression of EGR-1 along with Cdk5, and the co-in-
hibition of the 1,25D –induced up-regulation of these 
proteins by PD 98059, an inhibitor of the MEK/ERK1/2 
pathway (171,190). Further, the promoter region of human 
p35 has an EGR-1 binding site that overlaps with an 
Sp1 site, and a gel shift assay showed that a double-
stranded oligonucleotide that contained this sequence 
bound proteins in nuclear extracts from 1,25D-treated 
HL60 cells. The EGR-1-site binding proteins were com-
peted with most efficiently by an anti-EGR-1 antibody, 
though some competition was also observed with an 
anti-Sp1 antibody, but no competition was observed 
with an irrelevant antibody, e.g. anti-VDR. The data sug-
gested that EGR-1, and perhaps Sp1 proteins, regulate 
the expression of p35 and contribute to induction of 
the monocytic phenotype. A “decoy” EGR-1 response 
element oligonucleotide inhibited both 1,25D-induced 
p35 expression and monocytic differentiation (189).

The Cdk5/p35 complex phosphorylates MEK
We also found that the Cdk5/p35 can phosphorylate 
MEK in cell extracts (189). If this can be demonstrated 
to occur in leukemia cells, it will provide a potential 
mechanism for the inhibition of the MAPK/ERK path-
way seen in the later stages of differentiation (48 h after 
the addition of 1,25D to the cultures) since phospho-
rylation of MEK by p35/Cdk5 inhibits its kinase activ-
ity. Intriguingly, up-regulation of p35 (which activates 
Cdk5) is observed pari passu as ERK 1/2 phosphor-
ylation is waning, consistent with a cause-effect rela-
tionship. We have thus proposed a mechanism that 
can shut down cell proliferation, possibly by allowing 
p27Kip1 to accumulate in the cell nucleus due to a 
decline in ERK 1/2 activity, since it has been reported 
that the ERK pathway can increase nuclear export of 
p27Kip1(191).

C/EBP  transcription factor as an effector of 
monocytic differentiation

One of the downstream targets of the MAPK-RSK 
pathway is a nuclear transcription factor, the CAAT 
and Enhancer Binding Protein  (C/EBP ). This 
transcription factor has been reported to be acti-
vated by phosphorylation both by ERK(192) and by 
RSK(193) and can interact directly with the promoter 
of CD14, one of the principal markers of monocytic 
differentiation(194), as illustrated in Figure 3B. We 
showed that the expression of C/EBP  is increased by 
1,25D in parallel with markers of differentiation; con-
versely, the knockdown of its expression by antisense 
oligonucleotides, or of its transcriptional activity by 
“decoy” promoter competition, inhibited 1,25D-in-
duced differentiation(195). In an additional study, the 
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data suggested that 1,25D induced phosphorylation 
of C/EBP  isoforms on Thr235, and that the C/EBP 
-2 isoform is one of the principal differentiation-
related transcription factors in this system(87).

These findings suggest that 1,25D can induce leuke-
mic progenitor cells, which have the potential to differ-
entiate into several hematopoietic lineages, to become 
non-proliferating monocyte-like cells by changing the 
ratio of nuclear transcription factors in a manner that 
permits this form of differentiation(196). In this scenario, 
the event that initiates leukemic transformation, such 
as a mutation, alters the proper balance of transcrip-
tion factor activity necessary for normal granulocytic 
cell differentiation. However, 1,25D-induced expres-
sion of C/EBP  then allows the cells to bypass this 
block to granulocytic differentiation by becoming 
monocyte-like cells instead (Figure 4).

Interestingly, 1,25D has also been reported to 
have a negative effect on differentiation, as it inhib-
its IL-4/GM-CSF-induced differentiation of human 
monocytes into dendritic cells, and this contributes 
to 1,25D immunosuppressive activity(197,198). The data 
also suggested that 1,25D specifically down-regulates 
the expression of CSF-1 and promotes spontaneous 
apoptosis of mature dendritic cells, further demon-
strating the pleiotropic effects of 1,25D and the cell-
type specificity of the outcomes.

Conclusions

The signaling pathways presented here are shown to 
control the activity of several transcription factors, 

such as the ubiquitous AP-1 complex, the nuclear 
receptor VDR, and the lineage-determining C/EBP 
family of transcription factors. While these clearly 
play a role in 1,25D-induced differentiation of HL60 
cells, there may be redundancy of important cel-
lular regulators, and other pathways and transcrip-
tion factors are likely to be involved. The initial steps 
that activate the differentiation-inducing actions of 
1,25D are not entirely clear, and while cell mem-
brane-associated events have a role, these events 
are not necessarily rapid, but they are sustained. It is 
likely that micro-RNAs will be found to further con-
trol or modulate 1,25D signaling, as retinoic acid-
induced differentiation of NB4 AML cells has been 
shown to be associated with the up-regulation of a 
number of micro-RNAs, and the down-regulation 
of micro-RNA 181b(199). Thus, extensive additional 
investigations are warranted to provide a basis for 
the design of improved therapies of leukemia and 
solid tumors.
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