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Topical Review Article

The Role of Vitamin D in Human Health:
A Paradigm Shift

Joan M. Lappe, PhD, RN, FAAN1

Abstract
Vitamin D deficiency is pandemic, spanning many continents and including all ages, genders and racial/ethnic groups. Currently,
world-wide attention is focused on the importance of vitamin D in optimizing health and preventing disease. This focus is largely
the result of the scientific discovery that vitamin D receptors are present in nearly every tissue and cell in the body and that
adequate vitamin D status is essential for optimal functioning of these tissues and cells. An impressive body of research has
accumulated over the past two decades providing new information about the role of vitamin D in prevention of a broad range of
diseases. The purpose of this paper is to provide a review of this new information.
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Vitamin D Metabolism

Vitamin D (which includes both D2 and D3) carries out essen-

tial biologic functions through both an endocrine mechanism

and an autocrine mechanism. It is found in all animals, and

in humans, it is made in skin exposed to ultraviolet (UV)-B

radiation. It is derived from a cholesterol precursor in the skin,

7-dehydrocholesterol. When the skin absorbs UV-B radiation,

the precursor is converted to previtamin D3, which undergoes

thermally induced transformation to vitamin D3 (cholecalci-

ferol). Vitamin D2 (ergocalciferol) is a synthetic product pro-

duced by irradiation of plant sterols. Vitamin D, whether

from the diet or the skin, is metabolized in the liver to 25(OH)D

by 25-hydroxylase. Since 25(OH)D is the most plentiful and

stable metabolite of vitamin D in the human bloodstream, it has

been accepted as the functional indicator of vitamin D status.1

25(OH)D is a prohormone that serves as an immediate

precursor to the active form of vitamin D, 1,25-

dihydroxyvitamin D (1,25(OH)2D; calcitriol). A single enzyme,

25(OH)D-1-a-hydroxylase (encoded by CYP27B1), is responsi-

ble for production of 1,25(OH)2D, which serves as a high-affinity

ligand for the vitamin D receptor.2 In its endocrine action,

25(OH)D is converted by hydroxylation in the kidney to

1,25(OH)2D, which circulates in the blood as a hormone to regu-

late mineral and skeletal homeostasis. The primary target of

1,25(OH)2D is the intestinal mucosa in which it directs the cal-

cium transport system to adapt to varying calcium intakes.

Renewed interest in vitamin D has been stimulated by the

discovery that vitamin D also acts through an autocrine path-

way. In this system, 25(OH)D is converted to 1,25(OH)2D

intracellularly by 25(OH)D 1-a-hydroxylases in various cells

of the immune system as well as in many epithelial cell types,

such as breast, colon, lung, skin, and prostate.3-7 When these

cells receive an extracellular signal to produce certain proteins,

enzymes, or signaling molecules, 1,25(OH)2D binds to the vita-

min D receptor and, in combination with tissue-specific and

stimulus-specific proteins, binds to vitamin D response ele-

ments on the chromosomes, inducing transcription of needed

substances. In this manner, 1,25(OH)2D serves as an intermedi-

ary between external stimuli and genomic response. Since the

tissue level 1-a-hydroxylase operates well below its kM, this

local conversion of 25(OH)D to 1,25(OH)2D is dependent on

adequate levels of circulating 25(OH)D. Also produced in these

cells that have 1-a-hydroxylases is vitamin D 24-hydroxylase,

which degrades excess 1,25(OH)2D intracellularly and pre-

vents excess accumulation of 1,25(OH)2D.8 Thus, vitamin D

serves as a quick on-off switch, necessary for expression of cer-

tain cellular actions but also limiting their duration and extent.

This well-worked out model illustrates the key role of vitamin

D in mediating certain cellular responses to external signals

(see Figure 1).
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Optimal Levels of Serum 25(OH)D

As mentioned earlier, the indicator of vitamin D status is serum

25(OH)D. There is lack of agreement on the definition of opti-

mal 25(OH)D and the cutoff for low vitamin D status. Until

recently, the index disease for vitamin D deficiency in adults

has been osteomalacia, which is associated with serum

25(OH)D concentrations <8 ng/mL (<20 nmol/L).9 However,

it is now recognized that 25(OH)D �8 ng/mL (�20 nmol/L)

can also be associated with skeletal disease. Although ‘‘normal

ranges’’ in US laboratories vary between 20 and 100 ng/mL

(50-250 nmol/L), there is a growing consensus that the optimal

range for 25(OH)D values lies above 30 to 32 ng/mL (75-80

nmol/L) for most populations. This is based on studies of the

inverse relationship between serum parathyroid hormone and

25(OH)D, showing that parathyroid hormone concentrations

plateau at serum 25(OH)D levels of 28 to 40 ng/mL (70-100

nmol/L).10-14 Further evidence is provided by studies that show

calcium absorption efficiency increases with rising 25(OH)D

and plateaus at 25(OH)D levels about 32 ng/mL (80 nmol/

L).15-17

An optimal level of at least 30 to 32 ng/mL (75-80 nmol/L)

is also suggested by the relationship between 25(OH)D and

both bone mineral density and lower extremity neuromuscular

function in National Health and Nutrition Examination Survey

III (NHANES III).18,19 Numerous other disorders, in addition

to skeletal diseases, have been associated with low 25(OH)D,

although these conditions have not been linked definitively to

specific 25(OH)D levels. For example, observational studies

show that 25(OH)D levels above 30 to 32 ng/mL (75-80 nmol/L)

are associated with reduced incidence of colorectal adenomas

and cancer.20,21 A study in nondiabetics found that insulin

sensitivity is inversely associated with vitamin D status and

that at 25(OH)D levels of about 46 ng/mL (114 nmol/L) no

further lowering of serum glucose is observed.22

That higher levels of 25(OH)D are optimal is also supported

by values found in persons who spend time outdoors. Dark-

skinned workers in tropical climates have 25(OH)D values of

about 60 ng/mL (150 nmol/L).23 Others have shown that

25(OH)D as high as 80 ng/mL (200 nmol/L) can be achieved

by cutaneous production.16,24 Thus, the preponderance of

evidence points to optimal serum 25(OH)D levels of at least

32 ng/mL (80 nmol/L). Furthermore, emerging data suggest

that higher levels are needed to prevent some of the nonskeletal

disorders associated with inadequate vitamin D.

Vitamin D Deficiency

Low vitamin D status is prevalent across all age-groups,

geographic regions, and seasons.7,25,26 The NHANES data

shows that the number of persons with 25(OH)D levels below

30 ng/mL (75 nmol/L) nearly doubled from the 1994 survey to

the 2004 survey.27 The most recent survey (2004) found that

75% to 80% of the NHANES population has 25(OH)D levels

<30 ng/mL (<75 nmol/L), whereas 65% to 75% of the popula-

tion has levels <20 ng/mL (<501 nmol/L).26 More than 90%
of the black and Latino population have levels <30 ng/mL

(<75 nmol/L). Of great concern are findings that less than

3% of African American mothers are vitamin D sufficient, and

the mean cord blood levels of 25(OH)D in their infants is very

low (10 + 6 ng/mL or 25 + 15 nmol/L).27,28

Factors associated with vitamin D deficiency include low

sunlight exposure, age-related decreases in cutaneous

Figure 1. Schematic depiction of the 2 faces of vitamin D function. The principal outputs of each are designated by the symbol «. In the case of
the endocrine side, the stimulus to expression and action of the 1-a-hydroxylase is typically parathyroid hormone (PTH) and FGF23, and the
principal output is calcitriol (1,25(OH)2D). On the autocrine side the stimulus to expression of the 1-a-hydroxylase will vary from tissue to
tissue, and the principal output of the process (but not released from the cell) will be the proteins signaling, for example, cell differentiation
and apoptosis. For the autocrine function the principal input variable will be serum 25(OH)D, as circulating calcitriol levels are not usually high
enough to elicit the full autocrine response. Instead, each tissue controls its own autocrine activation independently of other tissues but is
dependent on an adequate circulating level of 25(OH)D. (Copyright 2006, Robert P. Heaney, MD)
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synthesis, low vitamin D oral intakes, obesity, and high degree

of skin pigmentation.7,25,29 The reasons for the dramatic

increase in vitamin D insufficiency are not clear, but decline

in 25(OH)D levels are associated with decreased consumption

of vitamin D–fortified milk, increased use of sun screen, and

the upward trend in body mass index.30 It has been hypothe-

sized that the worldwide increase in obesity is a major contrib-

utory factor to growing epidemic of vitamin D insufficiency.31

Achieving Optimal Levels of Vitamin D

It is very difficult to achieve and maintain optimal levels of

serum 25(OH)D by diet alone since few foods are natural

sources of vitamin D and fortified foods contain limited

amounts. Oily fish, such as salmon, mackerel, and herring,

and sun-dried mushrooms are a rich source of vitamin D.

Ocean-raised fish, which feed on vitamin D–rich plankton,

have much higher levels of vitamin D than farm-raised

varieties. Cod liver oil is a rich source of vitamin D, but many

available preparations of cod liver oil also contain large

amounts of vitamin A, which antagonizes the action of vitamin

D and can cause toxicity.32 In the United States, milk is forti-

fied with a little more than 100 International Units (IU) of

vitamin D, whereas other foods, such as yogurt, juices, cereals,

and soy, are fortified with varying amounts (see Table 1 of

sources of vitamin D).

The major source of vitamin D is sunlight exposure. For a

Caucasian adult, sunlight exposure in a bathing suit long

enough to cause the skin to turn pink raises the serum 25(OH)D

to a level comparable to a person taking 10 000 to 20 000 IU of

vitamin D2.33 Exposure to arms and legs for 5 to 30 minutes

between 10:00 AM and 3:00 PM is often adequate to meet vita-

min D requirements. However, variables such as time of day,

season, latitude, clothing, sunscreen use, skin pigmentation,

and age affect the amount of vitamin D converted in the skin.

For example, at latitudes above 37�N, from about mid-

October to mid-March the solar angle is such that no vitamin

D is converted in the skin. Although humans store some vita-

min D obtained from summer sunlight, many individuals do

not store enough to supply adequate amounts through the

winter months.34 Also, aging decreases the amount of

7-dehydrocholesterol in the skin by about 50% between the

ages of 20 and 80 years,35 which decreases the amount of

vitamin D3 older persons can make. It is well established that

persons with greater skin pigmentation produce lower amounts

of vitamin D3 compared with their lighter skinned counterparts,

and this largely accounts for the higher prevalence of vitamin D

deficiency in darker-skinned persons.36-38 Sunscreen with a sun

protective factor as low as 8 decreases conversion of vitamin

D3 in the skin by 95%.39 Probably the greatest barrier to obtain-

ing optimal vitamin D from sunlight exposure is the widespread

concern about skin cancer and photoaging resulting in sun

avoidance and widespread use of sunscreen.

Fortunately, vitamin D dietary supplements, which are safe

and inexpensive, are becoming widely available. Many

multiple-vitamin preparations contain 200 to 400 IU/capsule.

Also, calcium supplement pills commonly contain 200 to 400

IU of vitamin D. Stand-alone vitamin D supplements range

in dose from 400 to 50 000 IU and can be found in various for-

mulations such as tablets, gelcaps, liquid drops, and chewables.

The American Academy of Pediatrics’ currently recommended

intake level of vitamin D for infants and children is 400 IU/

day.40 In November, 2010, the United States Institute of Med-

icine released revised recommendations for daily intake of vita-

min D based on the body’s need for skeletal health.

(www.iom.edu/vitamind) Their recommended adequate intake

levels are 600 IU/day for everyone from age one through 70

years. The IOM report stated that persons age 71 and older may

require as much as 800 IUs per day because of potential

changes in their bodies as they age However, the new IOM rec-

ommendations are controversial and have stimulated consider-

able debate.

Vitamin D2 Versus Vitamin D3

Vitamin D3 (cholecalciferol) is synthesized in the skin on

exposure to sunlight, whereas vitamin D2 (ergocalciferol)

is a synthetic product obtained by irradiation of plant ster-

ols. Because of differences in the chemistry of their side

chains, the 2 forms differ in their metabolism and in their

binding to vitamin D binding protein, which transports both

isoforms through the circulation42 (see Figure 2). Probably

due to these differences, recent studies suggest that vitamin

D3 is more potent than vitamin D2.43-45 Holick et al demon-

strated that daily doses of 1000 IU of vitamin D2 are equally

as effective as daily doses of 1000 IU of vitamin D3 in

maintaining 25-hydroxyvitamin.46 However, 2 studies found

that with intermittent dosing vitamin D3 stayed in the circu-

lation longer than vitamin D2.43,45 Thus, vitamin D3 would

be a better choice for persons who prefer intermittent dos-

ing. Both vitamin D2 and D3 are available commercially,

and on average, vitamin D3 is less expensive.

Table 1. Dietary Sources of Vitamin D

Food IUs per Servinga

Cod liver oil, 1 tablespoon 1360
Salmon (sockeye), cooked, 3 ounces 794
Mackerel, cooked, 3 ounces 388
Tuna fish, canned in water, drained, 3 ounces 154
Milk, nonfat, reduced fat, and whole,

vitamin D–fortified, 1 cup
115-124

Sardines, canned in oil, drained, 2 sardines 46
Liver, beef, cooked, 3.5 ounces 46
Egg, 1 whole (vitamin D is found in yolk) 25

Abbreviation: IU, International Unit.
aAdapted from Selected Food Sources of Vitamin D. US Department of
Agriculture, Agricultural Research Service. USDA Nutrient Database for Standard
Reference, Release 22; 2009.
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How Much Vitamin D Supplementation Is
Needed?

Heaney established the 25(OH)D response to various doses of

vitamin D3 (up to 10 000 IU).34,47 In brief, the serum 25(OH)D

rises by about 1 ng/mL (2.5 nmol/L) for each 100 IU of addi-

tional D3. If, for example, one wants to increase serum

25(OH)D by 15 ng/mL (37.5 nmol/L)—for example, from 15

to 30 ng/mL (37.5-75 nmol/L)—this would require additional

vitamin D3 intake of about 1500 IU (37.5 mg) per day. Applying

this information to the NHANES III national distribution data

for serum 25(OH)D, Heaney showed explicitly what the distri-

bution would be if everyone in the US population received an

additional 2000 IU vitamin D3 per day.48 The mean would rise

by about 14 ng/mL (35 nmol/L), and about 80% to 85% of

the population would have 25(OH)D value above 32 ng/mL

(80 nmol/L).

There is considerable variation in how individuals respond

to vitamin D supplementation. This is seen in clinical studies

as well as clinical practice.43,49 Starting at the same baseline

25(OH)D level, some persons will require higher doses than

others to achieve an identical target value. Thus, the only defi-

nitive way to assess for deficiency and to achieve the target

serum 25(OH)D is to measure 25(OH)D. However, serum

25(OH)D assays are expensive, and the need for universal

screening has not been established as of yet. Currently, third

party payer coverage of vitamin D measurement is limited.

Table 2 shows some of the clinical conditions for which

measurement of serum 25(OH)D is indicated and can be reim-

bursed by Medicare. Of course, paying out-of-pocket costs for

the assay is always an option and is prudent for otherwise

healthy persons who are at risk of vitamin D insufficiency

(eg, dark skin, advanced age, obesity).

Safety of Vitamin D

The Institute of Medicine (IOM) National Academy of Sciences

recently raised the tolerable upper intake level of vitamin D from

2000 IU/day to 4000 IU/day.1 The recent IOM report indicated

that serum levels of 25(OH)D above 50 ng/mL may be associated

with adverse events, but did not set that as a threshold for vitamin

D toxicity.50 Barger-Lux and Heaney16 found that healthy men

who completed a summer season of outdoor work had a mean

serum 25(OH)D of 45 ng/mL (122 nmol/L), with some men

exceeding 80 ng/mL (200 nmol/L). Others have found similarly

high levels of serum 25(OH)D in other populations exposed to

the sun.24,51 In the Barger-Lux and Heaney study, the mean sun

exposure response was equivalent in dosing to 2800 IU/d (70 mg/

d). This means that natural sunlight exposure provides healthy

young people with considerably higher doses of vitamin D than

currently considered safe for oral dosing. In fact, there is no evi-

dence of adverse effects of vitamin D3 intake at or below 10 000

IU/d.52 Based on the sunlight studies, Binkley has concluded that

designating the upper limits of serum 25(OH)D as between 80 and

100 ng/mL (200 and 250 nmol/L) is appropriate.53

Vitamin D toxicity, which is very rare, is a clinical syn-

drome of both hypervitaminosis D and hypercalcemia.54

Hyperphosphatemia and hypercalciuria are often, but not

always, present. Clinical symptoms include nausea and vomit-

ing, dehydration, muscle weakness, lethargy, and confusion.

No cases of vitamin D toxicity have been reported in vitamin

D supplementation doses less than 10 000 IU/d.52 Usually, the

large doses have been for prolonged periods of time and often

concomitant with excessive amounts of calcium. In a recent

study, vitamin D supplementation of 1600 IU/d or 50 000 IU

monthly was not associated with any signs of toxicity.55 In

another study, Hollis supplemented women during pregnancy

with 4000 IU/d vitamin D3 without any adverse clinical or

laboratory events.56 This provides confidence that we can

increase vitamin D intake from prevailing levels without incur-

ring significant risk.

Table 2. Clinical Conditions for Which Measurement of Serum
25(OH)D Is Indicated and May Be Reimbursed by Medicare

Hypo/hyperparathyroidism
Rickets
Osteoporosis and osteomalacia
Paget’s bone disease
Disorders of phosphorus metabolism
Disorders of calcium metabolism
Chronic kidney disease
History or risk of falls
Malabsorption syndromes
Fibromyalgia
Gastric bypass and bariatric surgery
Psoriasis
Unspecified vitamin D deficiency
Liver disease
Use of anticonvulsants

Figure 2. Isomers of vitamin D2 and Vitamin D3. Ergosterol in plants
and 7-dehydrocholesterol in skin are the precursors for vitamin D2 and
vitamin D3, respectively. Ultraviolet light B breaks the B chain of each
molecule to formthe pre-D isomer,which thenundergoes isomerization
toD.D2 and D3 differonly in the side chain in which D2 has a double bond
between C22 and C23 and a methyl group at C24. These differences
result in somewhat different binding to D binding protein and
metabolism.
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Persons with vitamin D toxicity usually have serum

25(OH)D levels above 150 ng/mL (375 nmol/L).57 In fact,

Heaney pointed out that ‘‘no credible reports’’ show vitamin D

toxicity at serum 25(OH)D levels below 200 ng/mL (500 nmol/

L).58 However, individuals with metastatic cancer or granuloma-

tous diseases, such as tuberculosis or sarcoidosis, can develop

hypercalcemia at 25(OH)D levels that are somewhat lower.49

Vitamin D and Disease Prevention

Two major scientific findings in the past decade have revolu-

tionized the field of vitamin D: (a) vitamin D receptors are

present in nearly every tissue and cell in the body and (b)

25(OH)D-1a-hydroxylase, the enzyme responsible for conver-

sion of 25(OH)D to the biologically active form of vitamin D

(1,25(OH)2D), has been identified in a multitude of cells out-

side the kidney. Subsequently, clinical studies have suggested

a preventive effect of vitamin D on a broad range of disorders.

Furthermore, preclinical research has advanced the field by

elucidating mechanisms underlying the preventive effects of

vitamin D. This section will review the disorders associated

with vitamin D that are supported with a substantial amount

of scientific evidence.

Skeletal Disorders

It is well established that vitamin D deficiency in adults leads to

secondary hyperparathyroidism, causing a loss of bone matrix

and minerals and subsequent increased risk of osteoporosis and

low-trauma fractures. In severe vitamin D deficiency, accumu-

lation of poorly mineralized bone leads to osteomalacia, a pain-

ful bone disease also associated with fractures.

Although osteomalacia can be prevented by maintaining

relatively low levels of serum 25(OH)D (>10 ng/mL or

>25 nmol/L),11,59 studies suggest that higher 25(OH)D levels

are needed to decrease the risk of osteoporosis. Among

13 432 individuals in NHANES III, higher serum 25(OH)D

was associated with higher bone density throughout the

reference range 9 to 37.6 ng/mL (22.5-94.0 nmol/L).19

A meta-analysis of randomized trials of the vitamin D effect

on fractures found that serum 25(OH)D levels more than

30 ng/mL (75 nmol/L) prevented fractures in the treatment

group.60 The antifracture effect increased with higher achieved

levels of 25(OH)D. Only trials that gave at least 700 to 800 IU

of vitamin D achieved serum 25(OH)D levels more than

30 ng/mL (75 nmol/L). These trials showed that vitamin D

reduced the incidence of nonvertebral fractures by at least 20%.

Recent studies have also established that vitamin D supple-

mentation decreases the risk of falls, a frequent event underly-

ing osteoporotic fractures.61 This is not surprising since

proximal muscle weakness is a major sign of clinical vitamin

D deficiency. Also, muscle tissue expresses vitamin D receptor,

and vitamin D receptor activation can promote synthesis of

new muscle protein.62,63 Observational studies have found a

positive association between serum 25(OH)D and muscle

strength and lower extremity function.64,65 Randomized trials

have shown the efficacy of vitamin D supplementation for

increasing muscle strength and balance65,66 and reducing the

risk of falls.67-70 A minimum 25(OH)D level of 24 ng/mL

(60 nmol/L) is needed for fall prevention, and higher levels

of 25(OH)D are associated with greater fall reduction.

Cancer

An impressive body of evidence suggests that vitamin D

decreases the risk of cancer. Actually, it has long been recog-

nized that there is an inverse association between sunlight

exposure and malignancy. In the 1930s, it was reported that

US Navy personnel with abundant sunlight exposure had

higher rates of skin cancer but lower rates of other malignan-

cies.71 In 1941, Apperly noted an inverse association between

latitude and cancer mortality rates.72 However, no further

reports were available until 1980 when Garland and Garland

noted that rates of cancer were higher in the northeast US

states than in the southwest states and attributed this to

greater sunlight exposure in the southwest.73 They further

proposed that that the apparent benefit of sunlight exposure

was mediated by vitamin D. Since then a remarkable number

of research studies have been designed to elucidate the role

of vitamin D in cancer development and prevention. Subse-

quently, an inverse association between cancer mortality rates

and regional solar UV-B radiation exposure has been found

for cancers of the breast, colon, rectum, ovary, prostate, sto-

mach, bladder, esophagus, kidney, lung, gallbladder, thyroid,

rectum, pancreas, and uterus, as well as non-Hodgkin’s lym-

phoma and multiple myeloma.74-77

Even stronger evidence for the anticancer effect of vitamin

D is provided by numerous cohort and case–control studies that

show an inverse association between serum 25(OH)D and can-

cer incidence/mortality. For example, Pilz et al reported that

low 25(OH)D predicts fatal cancer in general.78 Other studies

have found an inverse association between low serum

25(OH)D and cancer incidence/mortality specifically for

colon, rectal, prostate, breast, and ovarian cancer.79-83 The

decrease in risk is dramatic. For example, Garland et al found

that the risk of colon cancer in a group of 25 620 Maryland

community volunteers was 80% lower if they were in the high-

est quintile of 25(OH)D compared with the lowest.84 Abbas

reported that the risk of breast cancer was 70% lower in women

who were in the highest quartile of serum 25(OH)D

(>30 ng/mL, or >75 nmol/L) compared with those in the lowest

quartile (<18 ng/mL, or <45 nmol/L).85 The preponderance of

evidence supports an inverse association between vitamin D

and cancer incidence/mortality. Although there were studies

that found no effect,86-88 none of the studies showed an

increased risk between vitamin D and cancer.

The culmination of the decades of vitamin D research is a

4-year population-based randomized, placebo controlled trial

by Lappe et al89 showing that calcium and vitamin D supple-

mentation significantly reduced the incidence of all types of

62 Journal of Evidence-Based Complementary & Alternative Medicine 16(1)
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cancer by 60% to 77%. The study participants were 1179

community-dwelling women randomly selected from the pop-

ulation of healthy postmenopausal women aged 55 and older in

a 9-county rural area of Nebraska. Participants were randomly

assigned to receive 1400 to 1500 mg/d supplemental calcium

alone (Ca-only), supplemental calcium plus 1100 IU/d vitamin

D3 (CaþD), or double placebo. The mean serum 25(OH)D at

baseline in the 3 treatment groups was 28.8 ng/mL (72 nmol/L).

Vitamin D3 produced an elevation in serum 25(OH)D in the

CaþD group of 9.56 + 7.12 ng/mL (23.9 + 17.8 nmol/L),

whereas the placebo and Ca-only groups had no significant

change. The intention-to-treat analysis showed that the

Caþ D group had significantly fewer incident cancers of all

types (relative risk [RR] ¼ 0.40; 95% confidence interval

[CI]¼ 0.20-0.82; P¼ .013) (see Figure 3). In a second analysis

that excluded cancers diagnosed during the first year of the

study, the RR for the Ca þ D group was 0.23 (95% CI ¼
0.09-0.60; P < .005) (see Figure 4). Additionally, baseline and

treatment-induced serum 25(OH)D concentrations themselves

were strong predictors of cancer risk.

In a second randomized trial, the Women’s Health Initiative

(WHI), postmenopausal women were randomly assigned

to 1000 mg calcium and 400 IU vitamin D per day or placebo

pills.90 The primary analysis by treatment group found no

effect on colorectal cancer incidence. However, the 400 IU

dose was inadequate to raise blood levels of 25(OH)D to an

optimal level. Furthermore, the reported adherence to

supplementation was only about 50%. Although the primary

analysis found no association, a nested case–control study

found a highly statistically significant inverse relationship

between baseline 25(OH)D and incident cancer risk. The risk

of colorectal cancer in the lowest quartile of serum 25(OH)D

(<12.4 ng/mL, or <31 nmol/L) was 253% higher than in the

highest quartile (�23.36 ng/mL, or �58.4 nmol/L) (RR ¼
2.53; 95% CI ¼ 1.49-4.32).90

The principal weakness of the Lappe et al89 study was that

cancer was a secondary outcome. (Cancer was also a secondary

outcome in the Women’s Health Initiative).90 Although the

design and successful completion of the Lappe et al study ren-

der the findings quite strong, they need to be confirmed with a

randomized controlled clinical trial designed with incidence of

cancer as the primary outcome variable. Two such trials are

currently under way.

The optimal levels of 25(OH)D for prevention of cancer

have not been established. A review of several studies of

serum 25(OH)D and colorectal cancer showed that the

dose–response curve is linear up to a 25(OH)D value of

36 ng/mL (90 nmol/L).20,21,89,91,92 Garland et al93 combined

data from observational studies to estimate the dose–response

gradient between serum 25(OH)D and colon and breast can-

cer. They confirmed the estimate with an analysis of modeled

and reported 25(OH)D levels and estimated age-standardized

cancer incidence rates for 177 countries from the Interna-

tional Agency for Research on Cancer GLOBOCAN data-

base. The first apparent increase in prevention of colorectal

cancer is seen at serum 25(OH)D levels �22 ng/mL

(�55 nmol/L). The first apparent increase in prevention of

breast cancer is at �32 ng/mL (�80 nmol/L). The authors

concluded that differences in serum 25(OH)D below those

levels are unlikely to affect cancer risk.

Garland et al further estimated that if serum 25(OH)D

levels in the US population were maintained �34 ng/mL

(�85 nmol/L), 50% of colon cancer incidence could be

Figure 3. Kaplan–Meier survival curves (ie, free of cancer) for the
3 random treatment groups in the entire cohort of 1179 women.
Sample sizes are 288 for placebo, 445 for calcium only, and 446 for
calcium plus vitamin D. The survival at the end of study for the Ca þ
D group is significantly higher than that for placebo, by logistic regres-
sion. (Copyright Robert P. Heaney, 2006. Used with permission)

Figure 4. Kaplan–Meier survival curves (ie, free of cancer) for the
3 random treatment groups in the cohort of women free of cancer
at 1 year of intervention (N¼ 1,085). Sample sizes are 266 for placebo,
416 for calcium only, and 403 for calcium plus vitamin D. The survival
at the end of study for the CaþD group is significantly higher than that
for placebo, by logistic regression. (Copyright Robert P. Heaney, 2006.
Used with permission)
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prevented.93 Maintaining serum 25(OH)D levels �42 ng/mL

(�105 nmol/L) would prevent about 30% of breast cancers.

Using linear extrapolation of the known data points, an esti-

mated 50% of breast cancer could be prevented with serum

25(OH)D levels �52 ng/mL (�130 nmol/L). In the rando-

mized trial of Lappe et al,89 the mean achieved 25(OH)D

level in the group with the lowest risk of cancer was 39

+ 8.6 ng/mL (96.0 + 21.4 nmol/L). Thus, it is apparent

that serum 25(OH)D levels higher than the currently

accepted optimum of 32 ng/mL (80 nmol/L) are needed to

provide the maximum effect on cancer reduction. According

to Garland et al, a 50% reduction in colorectal cancer risk

would require a population intake of 2000 IU of vitamin

D3 per day. However, a 50% reduction in breast cancer

would require a higher dose, 3500 IU/d.93 These doses are

much higher than the currently recommended levels of

400 to 600 IU/d.

The mechanism for vitamin D’s effect on cancer works

through its autocrine mode of action. Via the autocrine path-

way, in various cells of the immune system as well as in many

epithelial cell types (breast, colon, lung, skin, and prostate),

tissue-level 1-a-hydroxylases convert 25(OH)D to 1,25(OH)2D

intracellularly.3-7,75,94,95 Then this freshly synthesized

1,25(OH)2D binds to the vitamin D receptor and, in combina-

tion with tissue-specific and stimulus-specific proteins, binds

to 1 of more than 1000 vitamin D response elements on the

chromosomes, inducing transcription of the corresponding pro-

teins. These include proteins responsible for cell proliferation,

differentiation, and apoptosis, activities that are necessary for

initiation and promotion of cancer.94,96 Because the tissue-

level 1-a-hydroxylase operates well below its kM, this local

conversion of 25(OH)D to 1,25(OH)2D is dependent on circu-

lating 25(OH)D levels.

In further support of the role of vitamin D in cancer, a con-

vincing body of animal data, summarized by Welsh,97 as well

as by Holick,75 shows that vitamin D–deficient animals are

more prone both to spontaneous cancer and to chemical carci-

nogenesis by carcinogenic agents. The ecologic and serum

25(OH)D studies and the animal and in vitro reports are consis-

tent with and strongly support the randomized trial findings of

the chemopreventive effect of optimal vitamin D nutrition.

Adequate serum 25(OH)D is essential for the anticancer effect

of vitamin D.

Hypertension and Cardiovascular Disease

Evidence is accumulating for the association between inade-

quate vitamin D and hypertension and cardiovascular dis-

ease.98-103 Since the 1980s, it has been recognized that the

incidence of cardiovascular disease increases in winter with

increasing latitude and decreases at higher altitudes.104,105 It was

hypothesized that sunlight exposure, by raising vitamin D lev-

els, decreases the risk of cardiovascular disease. This has been

a consistent finding. For example, the US National Register of

Myocardial Infarction, including more than 250 000 cases,

showed 53% more myocardial infarctions in winter than in sum-

mer for all parts of the country.106 Recent cohort studies have

also shown that low vitamin D levels increase the risk of cardi-

ovascular disease.103,107-109 In the Framingham Offspring Study

over 5 years of follow-up, those with baseline serum 25(OH)D

levels <10 ng/mL (<25 nmol/L) had a statistically significant

80% greater risk for cardiovascular disease compared with those

with >15 ng/mL (>37.5 nmol/L).103 The effect was seen only in

participants with hypertension, which suggests that hyperten-

sion somehow intensifies the negative effect of inadequate vita-

min D. The only randomized clinical trial to date failed to find an

effect of vitamin D and calcium on cardiovascular mortality or

morbidity.110 This was the Women’s Health Initiative in which

36 282 postmenopausal women were randomly assigned to cal-

cium carbonate 1000 mg/d and vitamin D 400 IU/d. However, the

dose of vitamin D was likely too low to have an effect, and adher-

ence to the vitamin D supplementation was poor.110,111 Thus,

rigorously conducted randomized clinical trials are needed to

confirm the effect of vitamin D on cardiovascular events.

Epidemiological evidence from sunlight and cohort studies

also suggests an inverse relationship between vitamin D and

blood pressure.112-114 For example, a prospective study that

included subjects from both the Nurses’ Health Study and the

Health Professionals Follow-up Study found that the relative

risk for incident hypertension was 3.18 for those with 25(OH)D

levels <15 ng/mL (<37.5 nmol/L) compared with those with

levels >30 ng/mL (>75 nmol/L).114 NHANES III found that

systolic blood pressure is 3 mm Hg higher in the lowest quintile

of 25(OH)D compared with the highest quintile.115 Research-

ers estimated that this modest decrease in blood pressure could

account for a 10% to 15% decline in cardiovascular mortality in

the population.116 On the other hand, another large cohort study

failed to find an inverse relationship between dietary vitamin D

and hypertension.117 One explanation for the lack of an effect

in this study is that dietary sources of vitamin D provide much

less vitamin D than sunlight exposure, and dietary intake is dif-

ficult to measure.118

One small clinical trial found that administering vitamin D

to older adults with existing high blood pressure caused both

the systolic and diastolic blood pressure to decrease.119 In this

randomized, placebo-controlled study of 145 elderly women,

800 IU of vitamin D3 plus 1200 mg of calcium per day signif-

icantly reduced blood pressure by 9.3% after 8 weeks, whereas

supplementation with 1200 mg of calcium per day alone low-

ered blood pressure significantly by only 4.0%. These data sug-

gest that vitamin D and calcium somehow work together to

cause a reduction in blood pressure. On the other hand, at least

3 randomized trials found no effect of vitamin D alone or in

combination with calcium on lowering blood pressure.120-122

One study was short, with only 5 weeks of follow-up after a sin-

gle vitamin D dose of 100 000 IU.122 A second study was the

Women’s Health Initiative, in which the supplement dose of

400 IU/d was too low to increase serum 25(OH)D.120 In the

third study by Orwoll et al, blood pressure was a secondary out-

come.121 Normotensive men were randomly assigned to 1000
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mg of calcium per day and cholecalciferol 1000 IU/d for 3

years. Although the dose of vitamin D was likely adequate,

nearly 25% of the subjects dropped from study before the end

of 3 years. Thus, there remains a lack of rigorous trials of the

effect of vitamin D on blood pressure.

Several mechanisms have been proposed to play a role in

prevention of hypertension and cardiovascular disease. The

renin–angiotensin system plays an essential role in regulating

blood pressure, and Li et al have shown that 1,25(OH)2D is a

potent suppressor of renin biosynthesis.123 Vitamin D receptor

knock out mice have increased production of renin and angio-

tensin II with resultant hypertension and cardiac hypertrophy.

Hypertrophy of cardiac and smooth muscle could be caused

by elevation of matrix metalloproteinases, associated with vita-

min D deficiency.124-126 Insufficient vitamin D levels increase

the inflammatory process, which is associated with athero-

sclerosis, endothelial dysfunction, and insulin resistance.127-

129 Considerable research effort is underway to further eluci-

date the mechanisms underlying a vitamin D effect on the cir-

culatory system.

Thus, the epidemiologic studies of vitamin D tend to support

its effects on lowering/maintaining blood pressure, and plausi-

ble mechanisms for such an effect have been proposed. How-

ever, rigorous randomized clinical trials using adequate doses

of vitamin D supplementation are needed to confirm the effect.

Optimal Functioning of the Immune System

A fascinating role of vitamin D is involvement in optimal func-

tioning of the immune system. Evidence suggests that vitamin

D insufficiency is linked to bacterial and viral infections as well

as autoimmune diseases. This article will provide only a broad

overview of this complex topic.

Regulation of Immune Function. Calcitriol (1,25(OH)2D) is a hor-

mone that regulates both adaptive and innate immunity.

Adaptive immunity. Adaptive immunity involves the produc-

tion of cytokines by T-lymphocytes and immunoglobulins by

B-lymphocytes to combat the antigens presented to them by

cells such as macrophages and dendritic cells. 1,25(OH)2D has

been found to inhibit the adaptive immune system by suppres-

sing immunoglobulin production and proliferation and retard-

ing the differentiation of B-cell precursors into plasma

cells.130 Furthermore, 1,25(OH)2D suppresses T-cell prolifera-

tion and function, particularly T helper-1 and T helper-17

cells.131,132 This ability of 1,25(OH)2D to suppress the adaptive

immune response seems to account for the beneficial effect of

vitamin D on autoimmune disorders. In fact, in experimental

models for inflammatory arthritis, autoimmune diabetes, mul-

tiple sclerosis, and inflammatory bowel disease, 1,25(OH)2D

administration has prevented or diminished the disease pro-

cess.133,134 Evidence from clinical studies also show promise.

Clinical evidence of a vitamin D effect on autoimmune disorders.
A considerable body of epidemiological evidence supports the

effect of vitamin D on prevention of various autoimmune dis-

orders such as diabetes, multiple sclerosis, inflammatory bowel

disease, rheumatoid arthritis, and systemic lupus erythemato-

sus.22,135-150 For example, data from Finland show that adults

who had been given 2000 IU/d of vitamin D during the first

year of life had greater than an 80% decrease in risk of type

1 diabetes compared with those who had not been supplemen-

ted.136 In NHANES III, nondiabetic individuals were shown to

have a higher prevalence of high blood sugar values if they had

low vitamin D.135 In animal studies, 1,25(OH)2D administra-

tion prevents development of experimentally induced type 1

diabetes.151,152

The risk of multiple sclerosis seems to be decreased with

adequate vitamin D. Studies show that persons who were born

in an area below 35�N latitude and/or resided there during the

first 10 years of life have a lower lifetime risk of multiple

sclerosis.137-140 Large observational studies have shown that

higher intake of vitamin D is associated with lower risk of

multiple sclerosis.153 Burton et al154 conducted an open-label

randomized prospective controlled 52-week trial matching

patients with multiple sclerosis for demographic and disease

characteristics. The treatment group received increasing vita-

min D doses up to 40 000 IU/d over 28 weeks to raise serum

25(OH)D rapidly, followed by 10 000 IU/d for 12 weeks, and

further decreased to 0 IU/d. Calcium (1200 mg/d) was given

throughout the study. The primary objective was to assess tol-

erability of high doses of vitamin D. Secondary endpoints

included immunologic biomarkers and relapse events. Despite

a mean peak 25(OH)D of 165.2 ng/mL (413 nmol/L), no signif-

icant adverse events occurred. Those in the treatment group

appeared to have fewer relapse events and a persistent reduc-

tion in T-cell proliferation compared with controls. A second

randomized trial found that supplemented multiple sclerosis

patients had increased serum transforming growth factor b1

levels compared with controls.155 Elevated b1 levels are asso-

ciated with the stable phase of multiple sclerosis.156,157

Thus, evidence for the relationship between vitamin D and

autoimmune diseases is accumulating rapidly. However, rigor-

ous randomized trials have not been done. Because of the long

latency of many of these disorders, designing and conducting

such trials may be challenging.

Innate immunity. Innate immunity involves the activation of

the Toll-like receptor (TLR) pathway in polymorphonuclear

cells, monocytes, and macrophages, as well as in several types

of epithelial cells.158 TLRs are transmembrane pathogen recog-

nition receptors that trigger the innate immune response of the

host to infectious agents.159 In this regard, TLRs serve as sti-

mulators of inflammation and triggers for sepsis and immune

exacerbation.160 The mechanism of vitamin D’s action in this

context has been elucidated and shows that vitamin D is a nec-

essary intermediate in the production of antimicrobial peptides,

such as cathelicidin, by monocyte-macrophages.161-168 It has
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been shown that activation of the TLR pathway in human

monocyte-macrophages by microbial agents, such as the

Mycobacterium tuberculosis, stimulates expression of the CYP

27B (25(OH)D-1-a-hydroxylase) and vitamin D receptor genes

in that cell. If there is inadequate 25(OH)D substrate available

to the cell CYP 27B, there will be insufficient production of

1,25(OH)2D locally.162,169,170 This will result in decreased

binding of 1,25(OH)2D to the vitamin D receptor and limited

activation of 1,25(OH)2D-VDR-directed antimicrobial genes.

The end result is decreased killing of ingested microbes.

This antimicrobial mechanism is also used by epithelial

cells in a variety of sites that serve as microbial barriers, such

as the intestine, lung, placenta, and skin.171-177 Both bacteria

and viruses can activate TLR-induced pathways.31 One of the

human cathelicidins, LL-37, has bactericidal effects and is

involved in inflammatory and tissue remodeling pro-

cesses.167,168 Furthermore, LL-37 stimulates angiogenesis, pro-

liferation of lung epithelial cells, cytokine release, and cell

migration.

That serum 25(OH)D is the key precursor is also indicated

by the fact that the first gene expressed in the macrophage is

the 25(OH)D-1-a�hydroxylase, a step that would make sense

only if the cell were expecting to use circulating 25(OH)D. It

has also been found that, in addition to the gene for cathelici-

din, the macrophage also produces the vitamin D-24 hydroxy-

lase (CYP 24), resulting in a rapid degradation of the

1,25(OH)2D synthesized within the cell. It should be noted that

dendritic cells and many epithelial cells, as well as monocyte-

macrophages, express the vitamin D receptor and produce the

25(OH)D-1-a-hydroxylase and the 25(OH)D-24 hydroxy-

lase.162,178-180 Thus, a large body of preclinical research sug-

gests that vitamin D, working through the autocrine pathway,

is essential for resisting infectious disease.

Clinical evidence of a vitamin D effect on infections. The effect of

vitamin D in prevention and treatment of the bacterial infection

tuberculosis has been known for decades. In fact, the Nobel

Prize was awarded to Niels Finsen in 1903 for discovering that

ultraviolet radiation heals lupus vulgaris, a skin form of tuber-

culosis.181 During the 1900s tuberculosis sanitariums with

abundant sunshine exposure were common for treatment of

tuberculosis patients.

A wealth of clinical evidence supports the effect of vitamin

D on decreasing the risk of infectious diseases.182-188 In the

1800s, it was recognized that patients with rickets, a vitamin

D–deficiency disease, were prone to infections and often died

of pneumonia.189 More recently, high rates of tuberculosis are

associated with vitamin D deficiency in various popula-

tions.183,184 Viral infections such as the common cold, influ-

enza, and respiratory syncytial virus peak during winter

months when the serum 25(OH)D levels are the lowest.182 This

has also been shown for scarlet fever,185 meningitis,190 and

viral infections of the gastrointestinal tract.186-188 Pandemic

influenza also appears to have a higher incidence during winter

months.191 Recently, Ginde et al182 reported that the

prevalence of upper respiratory infections in NHANES III was

higher with lower 25(OH)D levels, regardless of season of the

year. In a prospective cohort study, Sabetta et al192 found that

serum 25(OH)D levels of 38 ng/mL (95 nmol/L) or more were

associated with a significant (P < .0001) 2-fold reduction in the

risk of developing acute respiratory infections and with a

marked reduction in the percentages of days ill.

A few randomized trials support the effect on vitamin D on

infectious diseases. For example, 10 000 IU of native vitamin D

given daily along with standard tuberculosis treatment resulted

in a 24% greater clearance of mycobacterium from the sputum

compared with the standard treatment alone.193 In a study of

African American women randomized to placebo or vitamin

D3 800 IU for 2 years and 2000 IU for the third year, Aloia

et al found a significantly lower incidence of common colds

and influenza in the treated group.194 However, colds and influ-

enza were secondary outcomes in this study of bone health.

Recently, young Finnish males in military training were ran-

domly assigned to vitamin D3 400 IU/d or placebo for 6

months.195 The primary outcome was number of days absent

from duty due to respiratory infection. Although the mean

number of days absent did not differ between groups, the pro-

portion of men remaining healthy (without a respiratory infec-

tion) was significantly higher in the treatment group (51.3% vs

35.7%, P ¼ .045).

In total, the evidence is very strong for vitamin D being

essential for prevention of infectious diseases. However, rigor-

ous randomized trials remain to be done to confirm the efficacy

of vitamin D in this regard and to delineate the optimal levels of

25(OH)D for prevention of various diseases in a multitude of

population groups.

Conclusion

In conclusion, scientists are generating a strong body of evi-

dence to support a vitamin D paradigm shift. This evidence

suggests that vitamin D is much more than a nutrient needed

for bone health; it is an essential hormone required for regula-

tion of a large number of physiologic functions. It is clear that

sufficient levels of serum 25(OH)D are essential for optimizing

human health. However, many questions remain unanswered.

For example, what levels of serum 25(OH)D are optimal? Do

these optimal levels vary for prevention of various disorders

or in differing human populations? What amount of supple-

mentation or sunlight exposure is needed to achieve and main-

tain these levels?

Although innumerable clinical studies support the effect of

vitamin D in preventing a wide range of disorders, rigorous ran-

domized clinical trials of vitamin D supplementation are sorely

lacking. Successful completion of such trials is essential to

establish the efficacy and safety of vitamin D supplementation

on a population level.

However, since we are experiencing a global epidemic of

vitamin D insufficiency, it is unacceptable to continue the sta-

tus quo pending the outcome of long-term clinical trials. It is
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imperative that all individuals be encouraged to obtain vitamin

D from either sunlight or supplementation. Although relatively

few clinical research reports are available in children, it is obvi-

ous that all age-groups require optimal levels of vitamin D to

support physiologic functions that are dependent on circulating

25(OH)D. Public education should be provided about the safety

of vitamin D supplementation and the value of sensible sun-

light exposure. There is a growing consensus that the optimal

range for 25(OH)D values lies above 30 to 32 ng/mL (75-80

nmol/L) for most populations, and it seems prudent that per-

sons at high risk of vitamin D deficiency and/or vitamin D–

deficiency disorders have their serum 25(OH)D assessed.

Vitamin D is truly remarkable in that it plays a key role in a

wide range of physiologic functions. As scientists continue to

solve the remaining mysteries related to vitamin D function and

provide approaches for optimizing vitamin D status, we can

expect dramatic improvement in a broad spectrum of human

disorders.
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