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Highlights 

 This article firstly reviewed the effects of vitamin D on drugs from the aspects of efficacy and 

pharmacokinetics 

 The article suggests a general phenomenon that vitamin D improves the efficacy of drugs and 

reduces the adverse effects of drugs 

 This article reviewed the effects of vitamin D through drug metabolizing enzymes and drug 

transporters. 
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Abstract: Vitamin D supplementation and vitamin D deficiency are common in clinical and 

daily life. Vitamin D not only promotes calcium absorption and immune regulation but also 

changes drug effects (pharmacodynamics and adverse reactions) and drug disposal in vivo 

when combined with various commonly used clinical drugs. The extensive physiological 

effects of vitamin D itself may be the cause of synergism effects or alleviation of adverse 

reactions, and vitamin D affecting drug in vivo disposal through drug transporters and/or 

metabolic enzymes may also lead to changes in drug effects. In this paper, the effects of 

vitamin D combined with commonly used drugs were reviewed from the perspective of drug 

efficacy and adverse reactions. The effects of vitamin D on drug transport and metabolism 

were summarized and analyzed. It is hoped that more attention will be paid to vitamin D 

supplementation and vitamin D deficiency in clinical treatment and drug research and 

development. 
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1. Introduction  

Vitamin D (VD) is used worldwide as a calcium absorption promoter[1]. The guidelines 

for diagnosis and treatment of osteoporosis in various countries recommend daily use of VD 

to prevent the occurrence and development of osteoporosis[2, 3]. Moreover, VD deficiency 

(25[OH]D < 20 ng/ml [50 nmol/L])[4] is widespread. The degree of VD deficiency is 

affected by age, sex, nutritional status, and amount of sun exposure. Elderly individuals, 

children, and pregnant women are more likely to suffer from VD deficiency[5-7]. Thus, the 

difference in VD level among individuals is widespread(Table 1). 

VD is a class of steroid derivatives that includes vitamin D2 (ergotcalcitol) and vitamin 

D3 (cholecalcitol). It is converted into 25-hydroxyvitamin D (25(OH)D) in the liver and then 

into an activated form 1,25-dihydroxyvitamin D (1,25(OH)2D, calcitriol) in the kidney. 

Activation of the VD system can activate vitamin D receptor (VDR) in the muscle and liver, 

which causes the VDR and retinoid x receptors (RXR) to form a heterodimer, regulate gene 

transcription and biological function, and also carry on the plasma membrane of chromosome 

receptor (mVDR) effect[9]. VD deficiency often causes muscular and skeletal diseases[10] 

and is closely related to diseases of the immune, nervous, and cardiovascular systems[11-13]. 

At the same time, VD can affect drug disposal in vivo through cytochrome P450 enzyme 

(CYP450) and transporter[14-17], so as to change the efficacy or adverse reactions of the 

drug[18]. In this paper, the effects of VD on the pharmacodynamics and pharmacokinetics of 

commonly used clinical drugs are summarized, and the relationship between VD and drug 
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efficacy and adverse reactions is clarified, so as to provide a theoretical basis for rational 

clinical use of drug therapy in VD-deficient/supplement patients. 

2. VD and drug efficacy  

2.1 Neurological Drugs 

VD can regulate the development and function of the nervous system by affecting the 

production and release of neurotrophic factors, synthesis of nerve mediators, intracellular 

calcium homeostasis, and oxidative damage of nerve tissue[19], thus synergizing with 

multiple drugs. When combined with lamotrigine, VD significantly enhanced its antiepileptic 

effect[20, 21]. The anti-migraine effect of amitriptyline was enhanced and the number of 

attacks decreased after VD was adequately supplemented[22]. Even though VD has no effect 

on depression[23], when combined with the antidepressants clozapine[24] and fluoxetine[25], 

the antidepressant effect was significantly better than with a single medication, showing the 

synergistic effect and enhanced benefits of combined medication. In addition, VD alone did 

not influence Alzheimer disease, but patients with Alzheimer disease who took memantine 

plus VD (6 months) had a statistically and clinically related improvement in cognitive 

ability[26]. This may be due to the reduction of cortical axon degeneration in neurons 

exposed to amyloid beta-peptide or glutamate by memantine combined with VD[27]. VD also 

promoted the transcriptional changes of dopamine-related genes in some areas of the brain, 

increasing the release of dopamine[28].We speculate that the synergism between VD and 

nervous system drugs is not a simple superposition of drug effects but a systematic 

interaction. 

2.2 Antineoplastic Drugs             
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In recent years, many studies have reported that the anticancer treatment of VD 

combined with a variety of chemotherapy drugs has been carried out in phase II or phase III 

clinical trials, some of which have achieved good clinical effects and can alleviate adverse 

reactions of chemotherapeutic drugs[29-31]. Anticancer drugs with enhanced or synergistic 

effects of VD include DNA-damaging agents (cisplatin, carboplatin, and doxorubicin), 

antimetabolic drugs (5-fluorouracil, cytarabine, hydroxyquinoline, and gemcitabine), and 

microtubule-interfering agents (paclitaxel and docetaxel calcium)
 
[32], as detailed in Table 

S1. The synergistic mechanisms of VD and these drugs are different; some function by 

activating the apoptosis-signaling pathways (e.g., As2O3[33], metformin[34, 35], 

gemcitabine[36, 37]) and others by regulating the expression of tumor-suppressor genes (e.g., 

5-Fu[38]) or by enhancing the oncology oxidative damage effect (doxorubicin[39]) and 

immune adjustment (5-Fu[40]). VD may also increase the anticancer activity of gemcitabine 

or irinotecan by inhibiting the expression of efflux protein or CYP3A4[41, 42]. 

2.3 Cardiovascular drugs 

VD has a wide range of roles in the cardiovascular system[43]. VD deficiency not only 

leads to the occurrence and progress of many cardiovascular diseases[44] but also may mask 

the effect of therapeutic drugs, resulting in the appearance of no significant effects [45]. 

Supplementation of VD not only improves the clinical symptoms caused by VD deficiency 

but also may have a synergistic effect with drugs, which is manifested as an enhanced drug 

effect.  

Although the antihypertensive effect of VD has not yet been confirmed[46, 47], it can 

produce synergistic effects with a variety of antihypertensive drugs, possibly because of the 
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role of VD in regulating the renin-angiotensin system (RAS) and reducing oxidative stress 

and the inflammatory response. VD combined with RAS-related antihypertensive drugs, such 

as enalapril[48-51], irbesartan[52], and losartan[53], demonstrated more significant 

antihypertensive effects in a rat hypertension model. Rat experiments showed that VD and 

the beta-blocker propranolol have synergistic antihypertensive effects through two different 

antihypertensive mechanisms[54]. Human trials have shown that VD can be used as a 

calcium ion antagonist as an adjuvant therapy for nifedipine. The combined application of the 

two agents results in a better antihypertensive effect, especially for the control of 

hypertensive crisis[55, 56]. VD has no effect on human insulin secretion or sensitivity[57], 

but some studies have reported that VD combined with hypoglycemic drugs have a 

synergistic effect. Combined application of VD and metformin can improve insulin 

sensitivity in the skeletal muscle of rats with diabetes mellitus type 2[58] and synergistically 

protect the liver of rats[59]. A case report of occult autoimmune diabetes in adults found that 

VD analogues and DPP-4 inhibitor Sigliptin improved beta-cell function and maintained 

good glycemic control in diabetic patients[60]. In addition, VD supplementation has been 

found in clinical trials to reduce the concentration of saturated atorvastatin and active 

metabolites (P < 0.001) and has a synergistic effect on cholesterol lowering with atorvastatin 

(P < 0.005)[61]. 

2.4 Hormone 

As a hormone, VD in combination with progesterone or glucocorticoid enhances their 

physiological effects. First, the role of VD in combination with glucocorticoid in the control 

of asthma has been verified by many clinical studies. Compared with budesonide alone or 
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budesonide combined with salbutamol/formoterol, nebulized budesonide and VD 

significantly improved lung function in children, reduced airway inflammation, improved 

asthma control[62], significantly improved forced expiratory volume for 1 second (FEV1)[63], 

reduced episodes, and reduced hormone use[64-66]. 

Second, both progesterone and VD are natural hormones known to have neuroprotective 

effects[67]. VD can alleviate ischemic injury synergistically with progesterone by regulating 

nerve inflammation, oxidative damage, and growth factors, especially by triggering the 

BDNF/TrkB/erk1/2 signal[68]. Combined treatment of progesterone and VD hormone can 

also activate mitogen-activated protein kinase, which has a neuroprotective effect, making the 

protective effect of progesterone on spatial memory and reference memory in rats superior to 

that of progesterone alone[69, 70]. 

2.5 Immunosuppressant 

Nuclear receptor VDR and VD metabolic enzymes are widely expressed in all cells of 

natural and adaptive immune systems[71]. VD deficiency is associated with an increased risk 

of various autoimmune diseases and infectious diseases[72], and the combination of VD and 

clinical immunosuppressants (such as tacrolimus, cyclosporine, and avermectin A) can 

produce synergistic effects. Clinical studies have proven that VD combined with tacrolimus is 

superior to tacrolimus alone in the treatment of children with vitiligo[73], and VD can 

improve the clinical effect of avermectin A in the treatment of psoriasis[74, 75]. Moreover, 

VD can also enhance the effect of cyclosporine on the expression of dectin-1 and 

proinflammatory cytokines in immortalized human corneal epithelial cells and resist the 

stimulation of Aspergillus fumigatus or curdlan on cells[76]. 
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2.6 Anti–hepatitis C drugs 

The most effective antiviral therapy is currently recognized as long-acting interferon 

polyethylene glycol (PEG) interferon alpha (PEG-IFN alpha) combined with ribavirin, 

followed by common IFN alpha or compound IFN combined with ribavirin. Clinical studies 

have found that VD level and VDR gene polymorphism in patients with chronic hepatitis C 

are closely related to the response of patients to PEG-IFN combined with ribavirin 

treatment[77-79], and VD supplementation can enhance the effect of PEG-IFN/ribavirin on 

patients with hepatitis C virus (HCV) infection [80]. A meta-analysis of randomized effects 

showed that VD combined with PEG-IFN-alpha injection and oral ribavirin could 

significantly improve the viral response rate of hepatitis C at 24 weeks after treatment, and 

the additional use of VD also had a positive effect on sustained the viral response rate[81]. 

However, a retrospective study also found that 25(OH)VD level did not affect the efficacy of 

antiviral therapy on naive genotype 1 HCV-infected patients[82]. 

2.7 Antiplatelet Drugs 

Antiplatelet drugs can inhibit the growth of platelet cyclooxygenase. Platelet resistance 

is a common clinical application problem of antiplatelet drugs. VD level and VD binding 

protein in vivo are closely related to platelet resistance. A study involving 503 patients found 

that the incidence of high-residual platelet reactivity (HRPR) increased significantly with the 

decrease of VD concentration in patients treated with adenosine diphosphate antagonists 

(such as tiglilo and clopidogrel)[83]. VD-deficient patients who carry the VD binding protein 

(DBP) G allele, especially in homozygotes, can experience an increased incidence of HRPR 

[84]. López-Farré AJ et al. analyzed the plasma of 19 patients with acetylsalicylic acid (ASA) 
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sensitivity and 19 patients with ASA resistance and found that all three subtypes of DBP 

increased in patients with aspirin resistance, which showed that DBP may be a new 

regulatory factor for ASA to inhibit platelet action[85]. 

3. VD and Adverse Drug Reactions 

3.1 Nervous System Drugs 

VD improved the effects of antiepileptic agents, the Parkinson’s drug levodopa, and 

morphine on the liver, immune system, and nervous system. It was found that VD 

supplementation had significant protective effects on the formation of hepatic nodules, 

antioxidant enzymes, and DNA damage induced in hepatocellular carcinoma rats[86]. It also 

improved the development and behavior of autism-like behaviors in rats induced by valproic 

acid[87]. This may be because antiepileptic drugs could lower VD levels in the body, and VD 

supplementation may help improve symptoms caused by VD deficiency[88, 89]. Furthermore, 

cell experiments have shown that calcitriol significantly reduced the activity and proliferation 

of levodopa, an anti-parkinson drug, on neural stem cells by activating the PI3K signaling 

pathway and reducing oxidative stress[90]. VD also reduced the apoptosis of T cells induced 

by morphine through the production of reactive oxygen species and prevented the adverse 

effect of morphine on the immune system[91], without affecting the analgesic effect of 

morphine[92].  

3.2 Antitumor Drugs 

The improvement of adverse reactions of VD to antineoplastic drugs was mainly in 

reducing the incidence of adverse reactions, reducing bone loss, protecting the kidney, and 

alleviating drug-induced pain. VD intervention inhibited the production of inducible nitric 
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oxide synthase induced by nitrogen mustard, thereby alleviating local skin damage, 

enhancing tissue repair, and preventing bone marrow depletion[93]. It also alleviated kidney 

damage caused by cisplatin and doxorubicin by inhibiting fibrosis, apoptosis, and 

proliferation factors[94, 95]. Finally, VD also protected rat chromosome damage caused by 

doxorubicin in a dose-dependent manner[96]. In clinical practice, supplementation of VD 

significantly improved the concentration of serum 25(OH)D and reduced joint pain caused by 

letrozole[97]. In addition, a second-stage study found that VD analogues could improve pain 

induced by mitoxantrone[30]. 

3.3 Cardiovascular Diseases Drugs 

VD deficiency is a risk factor not only for cardiovascular disease but also for adverse 

reactions of cardiovascular drugs. Supplementary VD improved the incidence and extent of 

adverse reactions of cardiovascular drugs (such as statins and antihypertensives) (Table S2). 

Many recent studies have found that VD deficiency increased the risk of statin-related 

MRSE[98-105].
 
Therefore,

 
supplementation of VD could improve or prevent the occurrence 

of statin-related MRSE[102-104, 106] and alleviate the cardiopulmonary dysfunction[107]
 

and migraine caused by simvastatin[108]. Moreover, VD supplementation in patients with 

statin myopathy seems to be an effective strategy to improve drug compliance and prevent 

cardiovascular comorbidities and mortality[109].
 
 

Telmisartan combined with VD analogues was shown to moderately improve kidney 

injury in mice with adriamycin-induced nephropathy, to inhibit the expression of bax/bcl-2 in 

podocytes and the effect of apoptosis, and to be more effective than single therapy[49]. In 
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addition, calcitriol has a protective effect on captopril-induced keratinocyte detachment and 

apoptosis[110]. 

3.4 Immunosuppressor 

Nephrotoxicity is an increasingly prominent clinical safety issue of immunosuppressants 

such as cyclosporine and tacrolimus. Renal protection is particularly important during drug 

administration[111, 112]. Compared with single-drug therapy, tacrolimus combined with VD 

could effectively alleviate renal tissue damage in IgAN rats through the immune response and 

NF-kappa B/TLR 4 pathway[113], and VD could reduce the expression of transforming 

growth factor–b1 and Smad signal transduction[114] and alleviate cyclosporin-induced 

nephropathy[115]. Moreover, VD can prevent cyclosporin-induced alveolar bone loss in rats 

and restore the production of relevant inflammatory mediators to normal levels [116]. 

In addition, VD could significantly reduce the degree of apoptosis of primary 

hippocampal cells induced by dexamethasone and the occurrence of cognitive impairment 

and severe depression induced by glucocorticoids in rats[70]. It could also improve the 

resistance of dendritic cells induced by glucocorticoids by influencing metabolic pathways 

such as lipid, glucose, and oxidative phosphorylation and responding to the production of 

reactive oxygen species [117]. It may also inhibit the cytotoxicity of dexamethasone and 

induced apoptosis[118]. 

3.5 Other drugs 

    Gentamicin (GM) is an aminoglycoside antibiotic widely used in the treatment of 

infected patients, but its associated oxidative stress and side effects of renal injury limit its 
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long-term clinical application[119-121]. Park JW et al.[122]found that VD analogues 

prevented GM-induced kidney injury by inhibiting inflammation and fibrosis of kidney tissue 

in rats. VD combined with GM resulted in decreased systolic blood pressure, increased urine 

volume, and increased glutathione in AKI rats[123]. 

Alendronate sodium combined with VD could reduce the side effects of kidney injury. 

Alendronate sodium/calcitriol complex enteric-coated tablet (Maxmarvil) could minimize the 

side effects of alendronate sodium, reduce the harm to the esophagus and gastrointestinal 

mucosa, and improve the tolerance of clinical medication[124].
 
Some studies showed that VD 

deficiency was a potential risk factor for nephrotoxicity induced by angiocontrast agent 

diatrizoate or gadoterate meglumine[125]. 

In conclusion, VD can synergize with 39 kinds of drugs and alleviate 21 kinds of 

adverse reactions. We tried to explore the reasons for this phenomenon. Except for the broad 

physiological role of VD itself, which is the main reason for increased drug efficacy and 

reduced adverse reactions, for example, the regulatory role of VD on the immune system and 

the inhibition of oxidative stress may also be important ways for VD to increase drug 

efficacy[126, 127].
 
In addition,by searching the database(https://db.yaozh.com/targets),we 

found that 31 of the 39 synergistic drugs (80%) were metabolized by CYP: CYP3A4 

participated in the metabolism of 26 drugs, and 21 drugs had a protein binding rate of more 

than 90%. Of these 21 drugs, 18 (86%) were metabolized by CYP (Table S3). Therefore, we 

speculate that VD may affect the efficacy of drugs by altering their pharmacokinetic behavior. 

3.6 Vitamin D supplementation during medication 
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In the process of drug development and marketing, healthy subjects and targeted patients 

are the main subjects and VD levels in this group of people are often normal. Current 

guidelines suggest that 400–800 IU/day of VD can meet the needs of most healthy people, 

with a maximum recommended intake of 4000 IU / day[128, 129]. However, when VD is 

used in combination with other drugs during clinic, the amount of VD may differ from the 

recommended dosage. 

In the literatures we summarized (Table S4), there were 23 drugs (31 articles) reported 

on the combined use with VD in patients. Among them, 23/31 studies used 

VD(cholecalciferol), otherwise calcipotriol (topical), calcitriol or doxercalciferol. Seven 

studies found that the incidence or severity of adverse reactions decreased when four drugs 

were combined with VD (two studies 800 UI / day, two 2000IU / day, and one 3333IU / day, 

a topical calcipotriol); 16 studies found that VD could increase 13 drugs’ clinical efficacy 

(four studies 200IU-1000IU / day, eight studies 1000-2000IU / day and two 5000IU / 

day);The dose of vast majority studies (14/19) was greater than the 400-800 UI / day which is 

recommended by the guidelines. What’s more, six studies reported no change in efficacy of 6 

drugs combined with VD, two studies used vitamin D3 (dose 2800UI / day and 4000UI / day), 

and other studies used calcitriol, calcifediol, and doxercalciferol, respectively. It can be seen 

that during clinical medication, drug interactions may also occur at the doses recommended 

by the guidelines, although they are less likely to occur. From another perspective, although 

VD can increase the efficacy of the drug or reduce adverse drug reactions, large doses do not 

ensure that VD can achieve this effect, but VD deficiency is likely to lead to treatment failure 

or increase adverse drug reactions, as drug development is based on groups with normal VD 
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levels. Therefore, VD supplementation to adjust the level of VD in the body to the normal 

level is very necessary for drug treatment, and if patients/doctors want to increase the efficacy 

of the drug through the combination of VD, they need to adjust the dose according to the 

situation of different drugs.. 

4. Effects of VD on Pharmacokinetics of Drugs 

The field of pharmacokinetics mainly studies the dynamic changes of the body's drug 

disposition. This includes drug absorption, distribution, biochemical transformation (or 

metabolism), and excretion in the body. This process is affected by many factors. We found 

that VD could change the pharmacokinetic behavior of many drugs (Table 2). For example, 

cefdinir and cefadroxil[130], JBP 485[131], digoxin[132, 133],
 
and adefovir dipivoxil drugs 

were affected by drug transporters[134]; midazolam[135] and mycophenolic acid[136]
 

through metabolic enzymes; and simvastatin[137]
 
by both drug transporters and metabolic 

enzymes(Figure 1). 

4.1 Effects of VD on Drug Transport 

Drug transporters are special proteins that transport endogenous or exogenous 

compounds across cell membranes, which mainly include the solute carrier family (SLCs; 

e.g., organic anion transporting polypeptides, OATPs; organic anion transporters, OATs; 

apical sodium-dependent bile acid transporter, ASBT; proton coupled transporter, PCFTlate, 

etc.) and the ATP-binding cassette (ABC) transporters (P-glycoprotein; multidrug resistance 

proteins, MRPs; breast cancer resistance protein, BCRP). They are widely distributed in the 

liver, small intestine, kidney, brain, and other tissues and organs and can regulate the 
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absorption, distribution, metabolism, and excretion (ADME) of substrates and endogenous 

substances and ultimately change their exposure in the circulatory system and the 

tissues[138]. VD could affect various drug transporter expression and activity[139], leading 

to changes in the pharmacokinetic behavior of drugs. 

4.1.1 The Solute Carrier Family  

VD could down-regulate the expression of organic anion transporters OAT1 and OAT3 in 

the kidney by activating protein kinase C(PKC)[140-144] and reduce their transport capacity 

and decrease the clearance of substrates (JBP 485, cefdinir, and cefalexin). Therefore, plasma 

concentration and AUC were significantly increased, and the exposure in vivo was 

increased[130, 131]. 

VD could up-regulate the expression of ASBT(SLC10A2) in the intestines and kidneys 

of rats by activating the VDR/RXR heterodimer, increase the absorption of 

cholylsarcosine[144, 145], and induce the FXR effect secondary to increasing the expression 

of FXR, SHP, Osta Bsep, and MRP 3 in rats[146]. 

Although studies have been conducted on the relationship between VD and organic 

anion transport polymorphic OATP, PCFT(SLC46A1), and peptide transport protein rPepT1 

(SLC15A1), the regulatory role of VD remains unclear. For OATP, the expression of 

OATP1A2 in human small intestinal Caco-2 cells increased after incubation with VD[16]. 

However, the pharmacokinetic behavior of fexofenadine and the expression of OATP1A2 and 

OATP2B1 in duodenum did not change in healthy volunteers after oral VD[147]. VD also 

up-regulated PCFT expression in Caco-2 cells[16] and 3H-labeled folic acid cell uptake in a 
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dose-dependent manner[148], but not in VDR-/- mice and healthy volunteers[147, 149]. VD 

down-regulated the expression of rPepT1 in the kidney, duodenum, and proximal jejunum of 

rats[143, 144] but enhanced the transport activity or had no effect (transport substrate 

glycocreatine, cefdinir and cefadroxil)[130, 150]. 

4.1.2 The ATP-Binding Cassette Transporters 

 VD could significantly induce the expression and activity of p-gp (also known as 

multidrug resistance protein 1, MDR1; ATP-binding cassette sub-family B member 1, 

ABCB1; Table 3). VD induced the mRNA and protein expression of Mdr1a in rat brain, small 

intestine[144], liver[146], and kidney[143] by binding the VdR/RXR alpha heterodimer to 

multiple VD response elements (VDREs)[151]; increased the removal of P-gp substrates 

(NBD-CSA, the fluorescent P-gp substrate, and quinidine) in brain and kidney[152, 153]; and 

reduced the exposure of digoxin to blood and brain[132, 154]. In addition, VD induced the 

expression of MDR-1 and P-gp in various cell lines, increased the translocation of digoxin, 

and decreased the accumulation of 5 (and 6)-carboxy-20, 70-dichlorofluorescein[15, 17, 155].
  

Some studies have found that daily supplementation of vitamin D3 (1000 IU) in healthy 

subjects did not cause the p-gp–mediated interaction with digoxin; rather, it may have been 

caused by the basically unchanged plasma 25(OH)D3 level (15.4±3.7 and 14.4±3.6 ng/mL, 

respectively)[133]; It may also may because of the difference in VDR expression in different 

species or tissues. For example, VD down-regulated the expression of P-GP in 

multidrug-resistant leukemia Jurkat/ADR and K562/ADR cell lines[156] and in rumen, 

jejunum, and liver of sheep[157] but had no effect on the expression and activity of P-gp in 
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the duodenum of rats[150]. The expression of P-gp in different cell lines is also different, 

leading to different effects of VD on P-gp in different cell lines. For example, the effect of 

VD on MDR1 mRNA in LS180 cells is more significant than that in Caco-2 cells[158] and is 

stronger in LS174T cells than in HepG2 cells[159]. 

VD could regulate MRP 2, 3, and 4. 1,25(OH)2D3 treatment promoted oral absorption of 

adefovir dipivoxil by inducing the function of MRP 4 in the basal side of the intestine of 

rats[134], which has been verified in in vitro cell experiments[150, 160].
 
VD or LCA (VDR 

agonist) up-regulated the expression of Mrp-3 in colon (not liver) and colorectal 

adenocarcinoma McA-38 cells in mice[161]. However, it has also been reported that 4 days 

of intraperitoneal injection of 1,25(OH)2D3 (0-2.56 nmol/kg/d) corn oil reduced MRP 2, 

MRP 3, and MRP 4 protein expression levels in duodenal and proximal jejunal tissues of rats, 

and the mRNA level and protein level of MRP 4 in renal tissues were also decreased in a 

dose-dependent manner[143]. Whether the effect of VD on MRP is tissue specific needs to be 

confirmed by further studies. 

4.2 Effects of VD on Drug Metabolism 

The drug’s metabolic enzymes in the body require the participation of phase I metabolic 

enzymes (such as cytochrome P450; CYP450) and phase II metabolic enzymes (such as 

UDP-glucuronosyltransferase; UGT)[162]. The effect of VD on metabolic enzymes may also 

be an important factor affecting the pharmacokinetic behavior of drugs. 

4.2.1 Cytochrome P450 
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In drug metabolism, P450 participates in 75% of drug metabolism, among which 1A2, 

2C9, 2C19, 2D6, and 3A4 are involved in three-quarters of P450 enzyme metabolism, most 

of which is catalyzed by P450 3A enzyme[163]. Polymorphisms of human VDR BsmI G>A 

(Rs 1544410), ultraviolet sunlight, and VD levels were significantly correlated with CYP3A4 

expression/activity and area under the substrate drug curve (AUC)[135]. VD could also 

up-regulate the expression of CYP3A in kidney in sheep[157] and jejunum and in rats[164], 

but VD had little substantial effect on the CYP3A4 activity in human liver[165]. VD 

regulates CYP3A4 in two ways: direct regulation and indirect regulation. On one hand, VD 

could directly activate VDR/RAR and induce the expression of CYP3A4 in small intestinal 

and colon cancer cells by combining VDRE (DR3 and ER6) in the promoter region of the 

CYP3A4 gene[166]. On the other hand, VD could activate mir-627 to indirectly inhibit the 

expression of CYP3A4 and reduce the metabolism of irinotecan in tumor cells, thus 

enhancing its growth inhibition and apoptosis induction[42]. 

VD also has extensive effects on other CYP enzymes. Studies on the upstream regulation 

sequences of the CYP24 gene in rats and humans showed that multiple VDREs are 

synergistically involved in the regulation of human CYP24 gene transcription by VD[167]. 

1,25(OH)2D3 could induce a 20,000-fold increase of CYP24 mRNA transcription in 

fibroblasts[168], activate VDR to inhibit CYP 7A1 mRNA expression and bile acid synthesis 

in HepG 2 cells[168], and up-regulate the expression of CYP2B6 and CYP2C9 in normal 

differentiated primary human hepatocytes[14]. 

4.2.2 Phase Ⅱ Metabolic Enzymes 

Human UGT is Phase Ⅱ Metabolic Enzymes and a superfamily of enzymes that 
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metabolize various endogenous substances (bilirubin and steroid hormones) and exogenous 

compounds (drugs and dietary substances). Wang X et al. found that the expression of 

UGT1A8 and UGT1A10 was highly correlated with the level of VDR mRNA in human large 

intestine tissue. VD could significantly increase the transcription level of the UGT gene in the 

human intestine and also significantly increase the oxidative level of Mycophenolic acid 

(MPA) glucuronic acid in cells, reduce the exposure of the human body to MPA, and increase 

the clearance rate[136].
 
VD also reduced mRNA and protein levels of UGT2B15 and 

UGT2B17 in LNCaP and 22Rv1 cells, possibly through a response region between 

UGT2B15 promoter-171 and -113 bp[170]. 

Bile salt sulfotransferase (SULT2A1) is a sulfonyl-bound phase II enzyme highly 

expressed in the liver, intestine, and steroid-producing adrenal tissue[171]. Both reporter gene 

analysis and endogenous induction results showed that hSULT2A1 gene expression was 

up-regulated after VDR activation[172]. 1,25(OH)2D3 induced Sult2A1 expression through 

the complex element of VDR/rxr-acting on the C/eBP site (9 bases downstream of VDRE) 

and the reverse repetitive DNA element (IR0) between –191 and –168 bits of 

Sult2A1[173-175]. 

5. Conclusion 

The VD level in vivo is closely related to drug efficacy and drug in vivo disposal. Kim 

Robien summarized the effect of drugs on VD absorption and metabolism[176], but the level 

of VD in vivo is an important factor affecting the efficacy of drugs, and its influence on 

pharmacodynamics and pharmacokinetics is also of great clinical significance. This paper 

summarized the changes in drug effects when VD is used in combination with drugs. 
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Supplementation with VD may result in increased efficacy or decreased adverse reactions, 

while lack of VD may result in decreased efficacy and increased adverse reactions. This is 

related to the extensive physiological effects of VD itself, such as the regulation of the 

immune system by VD and the anti-inflammation and anti-oxidative stress; but changes in 

drug effects and adverse reactions may be also caused by the influence of VD on 

pharmacokinetics. The effect of VD on drug CYP metabolic enzymes has been reviewed[177], 

while we not only evaluated VD’s role in drug transporter and drug metabolism processes 

(phase Ⅰ metabolism and phase Ⅱ metabolism) but also introduced the role of VD in drug 

pharmacokinetics and summarized the relationship between VD and pharmacodynamics, in 

the hope of providing theoretical support for clinical practice. 

At present, although VD deficiency and supplementation are very common in clinical 

medication and daily life, the level of VD in clinical medications has not received the 

attention of industry, medical institutions, or clinicians. When the drug fails to meet the 

anticipated curative effect or is associated with adverse drug reactions, the role of the VD 

level in patients is seldom considered. In addition, the selection of subjects in drug clinical 

trials or the formulation of clinical medication schemes also do not take into account the 

possibility of VD deficiency or supplementation. The population of individuals with VD 

deficiency does not receive enough clinical attention. We hope that this paper will draw 

attention to the interaction between VD and drugs and lead to a more rigorous and 

comprehensive study on the effects and safety of drugs in this special group of people. 
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Table 1. Epidemiological investigation of vitamin D deficiency/insufficiency 

Region Category VD 

deficiency(25(OH)

D<20ng/ml) 

VD insufficiency 

(<30ng/ml) 

USA Elders 26% 72%[178] 

 Pregnant (12 weeks’ gestation) 35% 96% 

 Pregnant (20 weeks’ gestation) 44% 96% 

 Pregnant (35 weeks’ gestation) 16 % 75%[179] 

 White newborn 10%-46%[180]  

China Male 5.8%[181] 67.9% 

 

 Female 10.9% 53.1%  

 Children  65.3%[182]  

 Pregnant  57.1%[183]  

Europe European population 40.4%[184]  

Italy women 77.4%[5]  
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Table 2. Effect of Vitamin D on Drugs’ Pharmacokinetics 

Drug Object Results Mechanism 
Refere

nces 

Mycopheno

lic acid 

(MPA) 

Human 

small 

intestine 

cells 

VD reduced AUC0-12 and Cmax by 40% 

and total clearance of MPA increased 

by more than 70% 

UGT1A [136] 

Cefdinir/ce

fadroxil 
Rats 

The area under the blood 

concentration-time curve (AUC) of 

cefdinir and cefadroxil increased 

significantly as the clearance rate (CL) 

decreased 

OAT 

1/OAT 3 
[130] 

JBP 485 Rats 
1,25(OH)2D3 inhibits renal excretion 

of JBP 485. 

OAT 1 and 

OAT 3 
[131] 

Adefovir/a

defovir 

Dipivoxil 

Rats 

1,25(OH)2D3 treatment promotes oral 

absorption of adefovir dipivoxil but not 

adefovir 

P-GP and/or 

MRP 4 
[134] 

Simvastatin Rats 

VD reduces the bioavailability of 

simvastatin and has a significant effect 

on the pharmacokinetics of simvastatin. 

oatp/cyp3a4 [137] 

Digoxin 
FXR(-/-)mic

e 

Blood (24%) and brain (29%) exposure 

decreased, kidney (74%) and systemic 

(34%) clearance increased 

P-gp [132] 

Alendronat

e 

Healthy 

menopausal 

women 

No significant effect on 

pharmacokinetic parameters of 

isoflavones 

 [124] 

Digoxin 
Healthy 

participants 

Does not affect the pharmacokinetic 

behavior of digoxin (probably because 

vitamin D levels have not changed) 

P-gp [133] 

Midazolam 
Healthy 

participants 

VD affects the AUC and oral 

bioavailability of oral midazolam. 
CYP3A4 [135] 

Tenofovir 

disoproxil 

fumarate 

Patients 

Free 1,25(OH)2D concentration 

correlated with plasma tenofovir 

concentration 

 [185] 

Isoflavones 
Menopausal 

women 

No significant differences in 

pharmacokinetic parameters of 

isoflavones. 

 [186] 
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Table 3. Effect of vitamin D on P-gp 

Active substance Objects Results References 

1,25(OH)2D3 Caco-2 cell Increase ABCB1 mRNA and multidrug 

resistance protein (MDR 1 or P-GP). 

[15] 

1,25(OH)2D3 Caco-2 cell The expression of multidrug resistance genes 

P-gp, MDR1 and MRP2 increased, digoxin 

turnover increased, and intracellular 

accumulation of 5 (and 6)-carboxy-20, 

70-dichlorofluorescein decreased. 

[17] 

1,25(OH)2D3 LS180/CaCo-

2 cell 

The expression of MDR1 mRNA increased 

slightly in LS180 cells and no effect in Caco-2 

cells. 

[158] 

1,25(OH)2D3 LS174T cell DHC increased P-gp expression by two times, 

and decreased the accumulation of Rh123(P-gp 

substrate ) in LS174T cells. 

[155] 

1,25(OH)2D3 

and LCA 

LS174T/Hep

G2 cell 

It was difficult to detect VDR mRNA in HepG2 

cells, but VDR mRNA highly expressed in 

LS174T cells.1,25(OH)2D and LCA increased 

the level of ABCB1 mRNA in LS174T, 

intestinal P-gp was up-regulated;there is no 

effect on ABCB1 (HepG2). 

[159] 

Quercetin (VDR 

activator) 

Caco-2 cell Expression of CYP3A4 ,multidrug resistance 

protein 1 and TRPV6 receptor mRNA 

increased. 

[187] 

1,25(OH)2D3 Calu-3 cell  submicromolar concentrations of di-OH vit D3 

stimulate P-gp expression in human airway 

epithalial cell line. 

[188] 

1,25(OH)2D3 Jurkat/ADR 

and 

K562/ADR 

cell lines  

The surface P-glycoprotein content and 

intracellular glutathione content ,MDR1 

mRNA,MRP1 mRNA all decreased. 

[156] 

1,25(OH)2D3 rat intestinal 

everted sac  

P-gp are not induced,the A-to-B and B-to-A 

transport of digoxin (P-gp) in the ileum was 

unchanged. 

[150] 

1,25(OH)2D3 RBE4 and 

hCMEC/D3 

cell lines 

Increased expression of Mdr1b mRNA,P-gp 

protein and increased P-gp transport activity 

(special photoaccumulation of NBD-CSA, 

fluorescent substrate of P-gp). 

[152] 

1,25(OH)2D3 fxr(-/-) and 

fxr(+/+) mice 

The expression of Mdr1 mRNA and P-gp 

protein in kidney and brain increased, Body 

[132] 
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exposure of digoxin decreased significantly, 

and fecal clearance increased. The level of 

digoxin in the brain is relatively low. 

1,25(OH)2D3 mice Increase the expression of P-gp RNA in kidney 

by 1.5 times to twice. 

[154] 

1,25(OH)2D3 rat The expression of Mdr1a mRNA and protein in 

kidney were significantly increased (2 - 20 

times). 

[143] 

1,25(OH)2D3 rat Liver multidrug resistance protein 1a (Mdr1a) 

mRNA and P-gp protein increased. 

[146] 

Doxercalciferol 

and calcitriol  

rat Increase the expression of P-gp protein in small 

intestine and kidney. 

[144] 

1,25(OH)2D3 rat The expression of P-gp in brain increased 1.75 

times and the concentration of quinidine in 

extracellular fluid decreased, which could affect 

the distribution of quinidine.  

[153] 

25(OH)D3 or 

1,25(OH)2D3 

sheep 25-OHD 3 decreased P-gp in rumen, jejunum 

and liver, but had no significant effect on renal 

P-GP. 1,25-(OH) 2D3 had no effect on P-gp. 

[157] 
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Figure 1. Transporters and metabolic enzymes affected by vitamin D 

                  


