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ABSTRACT 24 

Van Kempen TATG, Deixler E. SARS-CoV-2: Influence of phosphate and magnesium, moderated by 25 

vitamin D, on energy (ATP)-metabolism and on severity of COVID-19. Am J Physiol Endocrinol Metab – 26 

The use of vitamin D to reduce the severity of COVID-19 complications is receiving considerable 27 

attention, backed by encouraging data. Its purported mode of action is as an immune modulator. 28 

Vitamin D, however, also affects metabolism of phosphate and Mg, which may well play a critical role in 29 

SARS-CoV-2 pathogenesis. SARS-CoV-2 may induce a cytokine storm that drains ATP whose regeneration 30 

requires phosphate and Mg. These minerals, however, are often deficient in conditions that predispose 31 

people to severe COVID-19, including older age (especially males), diabetes, obesity, and usage of 32 

diuretics. Symptoms observed in severe COVID-19 also fit well with those seen in classical 33 

hypophosphatemia and hypomagnesemia, such as thrombocytopenia, coagulopathy, dysfunction of 34 

liver and kidneys, neurologic disturbances, immunodeficiency, failure of heart and lungs, delayed 35 

weaning from a respirator, cardiac arrhythmia, seizures, and finally multi-organ failure. Deficiencies of 36 

phosphate and Mg can be amplified by kidney problems commonly observed in COVID-19 patients 37 

resulting in their wastage into urine. Available data show that phosphate and Mg are deficient in COVID-38 

19 with phosphate showing a remarkable correlation with its severity. In one experiment, COVID-19 39 

patients were supplemented with a cocktail of vitamin D3, Mg, and vitamin B12, with very encouraging 40 

results. We thus argue that COVID-19 patients should be monitored and treated for phosphate and Mg 41 

deficiencies, ideally already in the early phases of infection. Supplementation of phosphate and Mg 42 

combined with vitamin D could also be implemented as a preventative strategy in populations at risk.  43 

 44 

 45 

 46 

  47 
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MAIN TEXT 48 

Vitamin D is receiving considerable attention in the fight against COVID-19. Correlations between 49 

serum calcifediol and severity of COVID-19 (R2 = 0.96) have been demonstrated with two times higher 50 

infection rates for people with low vs. high circulating calcifediol (16, 34), and over 50 clinical trials have 51 

been initiated (clinicaltrials.gov, accessed Oct20) to evaluate its impact. The discussion about mode of 52 

action focuses foremost on its effect on immunity (31, 34). What we would like to argue is that the more 53 

fundamental role of vitamin D in mineral metabolism also should be considered in the etiology of 54 

COVID-19. Vitamin D plays an important role in the metabolism of Ca, phosphate (21), and Mg (24), both 55 

by stimulating intestinal uptake as well as by preventing renal excretion, while a Mg deficit can also 56 

compromise vitamin D status (71). Especially phosphate and Mg are often clinically ignored despite their 57 

critical role in energy metabolism, which is clearly perturbed in COVID-19 patients. The role of vitamin D 58 

in immunity and its role in mineral metabolism are interconnected and, more specifically, interact via 59 

ATP and energy metabolism.  60 

A key deleterious effect of a SARS-CoV-2 infection is the immune hyperreaction and cytokine storm 61 

(11). This acute hyperinflammatory response is paramount in the severity of the SARS-CoV-2 infection. 62 

Taghizadeh-Hesary and Akbari (58) elegantly explain how SARS-COV-2 may cause a depletion of cellular 63 

ATP and a dysfunction of immune cells, and they propose a repletion of cellular ATP to improve the 64 

efficiency of the immune system. In line with this, Kouhpayeh et al. (39) propose that SARS-CoV-2 65 

activates PARP-2 (poly [ADP-ribose] polymerase 2), which induces a depletion of NAD+ and consequently 66 

also drains cellular ATP. Scrutiny of this hypothesis reveals that a critical part of the process may have 67 

been overlooked. For the synthesis and regeneration of ATP, phosphate and Mg are required. Due to 68 

often diminished food intake during infectious diseases, the higher ATP requirements of activated 69 

immune cells are mainly covered by mobilization of its components, like phosphate and Mg, from stored 70 

reserves in bones and/or muscles through cytokine release (64). This catabolism in bones and muscles in 71 
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response to an inflammatory stimulus supports anabolism in immune cells, but it may also lead to an 72 

intracellular decrease of phosphate and ATP and finally to a break-down of muscle cells with release of 73 

intracellular phosphate and magnesium into the extracellular space (64). When these nutrients are 74 

already in short supply (due to age, diabetes, etc.), either cytokine release and catabolism may be 75 

enhanced, or ATP depletion may be severe and impede the immune system (47). The observed cases of 76 

rhabdomyolysis in COVID-19 patients (45, 70) may be an indication of intracellular ATP-depletion and 77 

perhaps also severe hypophosphatemia (13). 78 

Interestingly, most risk factors for a severe course of COVID-19 are associated with a deficiency of 79 

phosphate and/or Mg. For instance, type 2 diabetics [COVID-19 odds ratio (C-OR) 5.02 (26)] are three 80 

times more likely to suffer from hypomagnesemia [incidence 14-48% (20)] while the incidence of 81 

hypophosphatemia is notably higher [62 vs. 0% for controls (54)]. Especially diabetics with a poor 82 

glycemic control are affected, because hyperglycemia leads to a reduced renal re-absorption of 83 

phosphate and Mg (51, 65). Diuretics (55) routinely prescribed against hypertension [C-OR 3.99 (26)] 84 

diminish Mg [incidence hypomagnesemia 72-100% (19)] and phosphate [incidence hypophosphatemia 85 

12.5% in patients treated with Thiazide (42)] through enhanced renal excretion. Certain anticancer 86 

medicines, like Ifosfamide or Imatinib, may cause hypophosphatemia (42). Furthermore, degree of 87 

obesity [C-OR 6.92 (26)] is associated with hypophosphatemia [r =-0.22 (23)] and hypomagnesemia [r = -88 

0.21 (57)]. While hypomagnesemia in obesity is mostly associated with low dietary intake (22), 89 

hypophosphatemia is multifactorial (66) and even suspected to play a role in the development of obesity 90 

by impeding ATP production (48). Overweight, particularly in the elderly, leads to diminished 91 

mitochondrial ATP production (approximately -30%) with secondary muscle weakness (53).  92 

Another intriguing observation is that renal phosphate and Mg re-absorption and, consequently, 93 

serum phosphate [-20% for men comparing 20 versus 70 years (14)] and cellular Mg [-13% comparing 94 

<65 and >65 years, -23% for >65 years with non-insulin-dependent diabetes mellitus (8)] levels decline 95 
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with age [age > 53: C-OR 2.59 (26)]. For phosphate, this decline is much stronger in older men than in 96 

older women (14), which is in line with COVID-19 complications being more severe in older men. The 97 

role of smoking in COVID-19 patients appears more controversial; lung damage from smoking may make 98 

people more susceptible, but odds ratios are typically close to 1 [e.g., C-OR 0.63 (26)]. Smoking dose-99 

dependently increases serum phosphate [r = 0.67 (28)] and decreases ATP [by as much as 70% in heart 100 

mitochondria (27)]. The usage of proton-pump inhibitors has also been linked to a worse outcome in 101 

COVID-19 patients [C-OR 1.79 (41)]; such proton-pump inhibitors are known to diminish intestinal Mg 102 

absorption (17). African Americans infected with SARS-CoV-2 have two times higher death rates than 103 

white Americans (69), twice the incidence of hypomagnesemia (43), and in about 76% a vitamin D 104 

deficiency mainly due to the fact that pigmentation reduces vitamin D production in the skin (25). 105 

Seasonal effects showing low levels of serum phosphate [-36% (29); -10% (61)] and Mg [-15% (61)] in the 106 

winter, which are possibly linked to seasonally fluctuating vitamin D levels, have also been observed in 107 

COVID-19 patients, which would make more severe SARS-CoV-2 complications more likely in the winter. 108 

COVID-19 patients often develop renal failure which typically begins with an acute necrosis of the 109 

proximal tubule [23% develop kidney injury (9), 75% proximal tubule abnormalities (38)]. Since this is 110 

the precise location for phosphate and Mg re-absorption, the patients’ phosphate and Mg status 111 

worsens by urinary wasting of these electrolytes. A pregnancy complication more common in women 112 

with COVID-19 is pre-eclampsia/eclampsia (1, 46), an endothelial disease often accompanied by 113 

magnesium and vitamin D deficiency (10, 11). 114 

While Mg deficiency may occur without hypomagnesemia, when present, it is usually indicative of an 115 

important systemic Mg deficit (8). Hypophosphatemia can exist when total stores are low, normal, or 116 

high. Clinically significant hypophosphatemia, however, tends to occur when there is a total-body deficit 117 

of phosphorus. Hypophosphatemia and hypomagnesemia impede ATP production, and 118 

hypophosphatemia additionally diminishes 2,3-bisphosphoglycerate in erythrocytes, which is essential 119 

Downloaded from journals.physiology.org/journal/ajpendo (024.113.160.199) on December 19, 2020.



for the release of O2 from hemoglobin. This leads to hypoxia at a tissue level (36). Complications from 120 

hypophosphatemia include thrombocytopenia, coagulopathy, dysfunction of liver and 121 

kidneys, neurologic disturbances, immunodeficiency, delayed weaning from a respirator, 122 

rhabdomyolysis, failure of heart and lungs, and finally multi-organ failure (36), which are in line with 123 

complications observed in COVID-19. Hypomagnesemia can lead to, among others, cardiac arrhythmia 124 

and seizures (35), also observed in COVID-19 patients (6, 37, 44). Furthermore, Mg is an important co-125 

factor of membrane ATPases (4, 52) which are involved in the pathogenesis of the acute respiratory 126 

distress syndrome (ARDS) (60, 63). This severe complication of COVID-19 is also often associated with a 127 

vitamin D deficiency (7, 15).  128 

Intracellular ATP depletion due to low phosphate and Mg may cause cell death by necrosis instead of 129 

apoptosis associated with membrane instability and ATP release into the extracellular space (40). 130 

Extracellular ATP, however, can function as a danger signal and start an (over)activation of the immune 131 

system (30) with the possible consequence of a cytokine storm or ARDS (39, 47, 62). This may be an 132 

explanation of why people with diseases associated with pre-existing low ATP and low energy reserves 133 

due to diminished phosphate and/or Mg more easily develop severe COVID-19 symptoms, like a 134 

cytokine storm and ARDS. ARDS, itself, is also often associated with ATP-deficiency diseases like 135 

diabetes, severe burns, or sepsis (15, 50, 60). Cellular ATP depletion and cell death by necrosis with 136 

subsequent activation of the immune system are also discussed as a possible pathomechanism of 137 

autoimmune diseases and may also explain various autoimmune phenomena in COVID-19, like auto-138 

antibodies against Interferon or the Kawasaki-like syndrome in children (18). 139 

Few have reported phosphate and Mg levels in COVID-19 patients. Xue et al. (68) registered serum 140 

phosphate levels of 1.11±0.35 mM in non-critically sick, and 0.79±0.29 mM in severely sick and showed 141 

a correlation between lymphocytes and phosphate (r = 0.48). Javdani et al. (32) ranked patients for the 142 

severity of lung damage and showed that phosphate was the sole assessed parameter assessed that 143 
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correlated. Arenas et al. (5) assessed phosphate in infected renal patients and observed lower levels 144 

(0.75 mM vs. 1.45 mM) of phosphate. Alkhouli et al. (3) surveyed 14712 patients for which data were 145 

not categorized for severity of the infection. An average value of 1.07±0.033 mM was observed in men, 146 

and 1.09±0.028 mM in women. Using the reported standard deviations, however, an estimated 38% of 147 

the men and 33% of the women were hypophosphatemic using the threshold defined by Pagana (49). 148 

Booth et al. (12) assessed many clinical parameters in patients infected with the closely related SARS 149 

and showed that 53% had hypophosphatemia, 57% hypomagnesemia, and 70% hypocalcemia.  150 

Tan et al. (59) supplemented COVID-19 patients once daily with a combination of vitamin D3 (1000 151 

IU), Mg (150 mg), and vitamin B12 (500 µg); findings were that significantly fewer patients required 152 

oxygen support (18 vs. 63%) and/or intensive care support (6 vs. 32%). Our review of available 153 

information aligns with this finding. Vitamin D, beyond a role in immunity, can enhance absorption from 154 

the intestinal tract and reduce kidney losses of both phosphate and Mg, which may be critical for 155 

respiration and energy metabolism. Some kinds of renal proximal tubulopathy (so-called Fanconi 156 

syndrome) have already been treated successfully with vitamin D, phosphate and Ca (2), and urinary 157 

phosphate and Mg loss in COVID-19 patients may also be reduced by supplementation with vitamin D. 158 

Per the above, we would like to suggest that Tan’s supplement should be augmented with phosphate, 159 

especially in light of the above reported correlations between the severity of COVID-19 and phosphate. 160 

This focus on phosphate was also raised by Seers (56) while Mg was raised Wallace (67). For phosphate 161 

and magnesium, actual supplementation levels should be guided by the tissue shortages observed. 162 

Intriguingly, the rather controversial chloroquine is typically supplied as a phosphate salt (12% P), and 163 

doses used [approximately 1 g/d (33)] can supply 10-20% of the recommended dietary intake for 164 

phosphate.  165 

 166 

Conclusion 167 

Downloaded from journals.physiology.org/journal/ajpendo (024.113.160.199) on December 19, 2020.



In conclusion, we suggest monitoring and, when deficient, supplementation of vitamin D, Mg, and 168 

phosphate already during the early phase of COVID-19 or as a preventative in populations at risk, as it 169 

may diminish secondary complications.   170 
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