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The COVID-19 pandemic has reached most of the countries world-
wide causing death, which often results from an inflammatory
storm associated with severe acute respiratory syndrome (SARS).
This has prompted researchers to seek specific novel and definitive
treatments urgently. In this context, it is interesting to evaluate the
preventive and therapeutic effects of existing pharmacological
agents that could be useful. In this regard, vitamin D supplementa-
tion, particularly in individuals likely to be deficient, may be a
promising option. Vitamin D is a hormone that modulates many
of the same inflammatory and oxidative signaling pathways trig-
gered during COVID-19. For example, vitamin D suppresses the
actions of the renin-angiotensin system, which has a determining
role in the pathophysiology of the inflammatory response related
to COVID-19. This paper analyzes the evidence that vitamin D
supplementation might be a valuable preventive/therapeutic mea-
sure in groups at risk for or infected with COVID-19. It also dis-
cusses how clinical studies could be best designed to evaluate the
possible advantages of vitamin D supplementation for the benefit
of public health during the pandemic.

COVID-19; inflammation; oxidative stress; renin-angiotensin system;
vitamin D

INTRODUCTION

At present, multiple therapeutic strategies are being frantically
sought to address the COVID-19 crisis. Among the most promi-
nent approaches are the development of vaccines, antiretroviral
drugs, corticosteroids, and immunomodulatory drugs. Due to the
urgency of the epidemic outbreak and the lack of sufficient expe-
rience with severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), some empirical treatments for COVID-19 are
also proposed on a rational basis. More specifically, random-
ized controlled trials (RCTs) are lacking that support the ben-
efit of vitamin D supplementation in the population and/or
patients exposed to SARS-CoV-2. However, an ever-growing

number of findings are strengthening and validating such a
claim.
The system that integrates vitamin D has an ancestral origin

that involves it with a primordial defense system. Vitamin D
receptors (VDRs) were present in very primitive organisms that
lacked skin, bones, cardiovascular systems, kidneys, and even
lungs (20), indicating that the purpose must have been other
than that conventionally known for vitamin D. More recently,
VDRs were described in the cytoplasm, nuclear membrane, and
even organelles such as mitochondria (21, 58). The genomic
and nongenomic effects of vitamin D are ultimately the result
of hormone-receptor binding that, after translocating to the
nucleus, modulates the expression of genes involved in phos-
phocalcium metabolism (36, 45). At the same time, a consid-
erable number of “nonclassical” vitamin D actions have been
described, including the inhibition of cell proliferation, secre-
tion of other hormones, suppression of T-cell proliferation,
and modulation of cytokines (14). Thus, vitamin D and its
metabolites have been shown to participate actively in the regula-
tion of innate and adaptive immune responses. Consequently, its
deficiency is associated with a series of infections as well as auto-
immune and allergic conditions (67). These data reinforce the
original notion that the VDR-metabolite system would fulfill a
central role in cellular and tissue defense through immune mecha-
nisms and/or regulation of inflammatory processes. Furthermore,
vitamin D would regulate the expression of 0.5–5% of the
total human genome, which amounts to �100–1,250 genes.
Therefore, it is not surprising that vitamin D interacts with
multiple genes commonly expressed in humans, such as those
related to the renin-angiotensin-aldosterone system (RAAS),
among others (28).

LINK BETWEEN VITAMIN D/RAAS AND COVID-19

Apart from the immune system, evolution enabled vitamin D
to interact with other fundamental systems in the maintenance
of cellular homeostasis, such as the RAAS. As described in Fig.
1 (20), vitamin D opposes or modulates RAAS signaling path-
ways. The RAAS regulates body hydroelectrolyte composition
and hemodynamics. Of central interest for the present perspec-
tive, it also functions as a complex proinflammatory system
(20). Consequently, most mammalian cells express both VDRCorrespondence: W. Manucha (wmanucha@yahoo.com.ar).
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and different RAAS receptors. Vitamin D, its metabolites, and
receptors, on the one hand, and RAAS molecules and its recep-
tors, on the other hand, are part of a delicate cellular/tissue
defense system mediating pro- and anti-inflammatory processes.
Additionally, there are some close connections between

COVID-19 and the RAAS, since serum angiotensin II (Ang II)
levels in infected patients were significantly elevated and
directly proportional to the viral load and lung damage observed
(35). SARS-CoV-2 has been shown to bind to angiotensin-con-
verting enzyme 2 (ACE2) receptors to invade human lung epi-
thelial cells and initiate the infection. At the same time, ACE2
produces anti-inflammatory, antioxidant, antifibrotic, and anti-
hyperplasia effects. This leads to the degradation of Ang II at
the lung level through the ACE2/Ang (1–7)/Mas receptor sig-
naling pathway, i.e., the counterregulatory RAAS axis with op-
posite actions to the classical RAAS axis (ACE/Ang II/AT1
receptor pathway). The increase in the degradation of Ang II
prevents its toxic overaccumulation, which would cause the
acute respiratory distress syndrome often present in COVID-19
(13, 18, 59, 69). Independently of COVID-19, the RAAS is also
involved in the regulation of lung tissue proliferation, inflamma-
tion, and fibrosis in several pulmonary pathologies, such as
acute lung injury, asthma, pulmonary arterial hypertension,
chronic obstructive pulmonary disease, and idiopathic pulmo-
nary fibrosis, among others (62).
Concerning vitamin D/RAAS interaction, the participation of

the ACE2/Ang (1–7)/MasR signaling pathway has been recently
demonstrated in hypertensive rats (17). In humans, vitamin D
was found to act as a cofactor in the attenuation of incident atrial
fibrillation by RAAS inhibition (68). Additionally, exacerbated
RAAS activation at the hepatic level causes liver dysfunction
and increases the risk of developing diabetes mellitus. In this
regard, calcitriol was shown to modulate the altered upregula-
tion of liver RAAS under conditions of insulin resistance in

mice (33). Vitamin D is a potent suppressor of renin production
(Fig. 1) (20). Thus, low plasma levels of vitamin D are associ-
ated with an increase in renin synthesis, which results in overac-
tivation of RAAS and increased production of Ang II, and vice
versa (34, 55). It has been demonstrated that vitamin D defi-
ciency also results in overexpression of angiotensin-converting
enzymes (ACE and ACE2) (73). Furthermore, in patients with
hypovitaminosis D, the reestablishment of normal vitamin D
levels causes a blockade of peripheral RAAS (9).
In vitamin D receptor-null mice, the development of induced

acute lung injury was found to be more severe than in wild-type
mice, together with increased levels of pulmonary Ang II and
renin. Pretreatment of vitamin D receptor-null mice with losar-
tan reduced the severity of pulmonary injury, indicating that
vitamin D, via its receptors, attenuates acute lung injury by
blocking RAAS (30). Additionally, Xu et al. (73) showed that
calcitriol inhibits ACE and induces ACE2 expression in rat lung
while reducing Ang II levels and inhibiting AT1R expression.
The authors suggest that VDR activation may exert protective
effects on LPS-induced lung injury by regulating the balance
between RAAS members. Moreover, if vitamin D deficiency is
chronic, the uncontrolled RAAS overactivation for extended
periods may induce pulmonary fibrosis through the exacerbated
and accelerated increase in extracellular matrix deposition in
lung tissues (56).
Lung epithelial cells exhibit a high expression of the enzyme

1-a-hydroxylase, allowing for the local synthesis of 1,25-dihy-
droxyvitamin D—the most active form of vitamin D—also
called calcitriol. Calcitriol inhibits the production and secretion
of many cytokines from bronchial smooth muscle cells, such as
platelet-derived growth factor, RANTES (regulator in the acti-
vation of expressed and secreted normal T-cells), and matrix
metalloproteinases, leading to reduced proliferation and inflam-
mation in lung smooth muscle cells. Vitamin D stimulates the

Fig. 1. Cellular interactions of angiotensin and
vitamin D receptors. RAS, renin–angiotensin
system; RXR, retinoid X receptor; VDRE, vita-
min D response element; 1,25(OH)2D3, 1,25-
dihydroxyvitamin D3. [Reproduced from
Ferder et al. (20) with permission.].
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synthesis of interleukin 10 by CD4+, CD25+, Foxp3+, and T-
regulatory cells. At the same time, it inhibits the activation of
dendritic cells by downregulating the expression of CD80/86 and
CD40. Furthermore, vitamin D stimulates the expression of cath-
elicidin and many other anti-infective molecules (12, 15, 54).
Supplementation with 1,25-dihydroxyvitamin D suppresses

the recruitment of eosinophils and lymphocytes into the air-
ways, decreases IL-4 production of T-cells, and inhibits T-cell
migration by attenuating the inflammatory response (66). It also
works as an adjuvant for other therapies, such as immunother-
apy against allergens (60). Simultaneous administration of vita-
min D and dexamethasone in steroid-resistant asthmatic patients
increased IL-10 synthesis to levels similar to those found in ste-
roid-sensitive patients treated with dexamethasone alone (74).
In a rat model of asthma, vitamin D treatment significantly

reduced serum IgE and eotaxin levels (65). Additionally, it
decreased the infiltration of inflammatory cells in the airways,
serum levels of IL-6, tumor necrosis factor-alpha (TNFa), and
IL-1b, as well as the expression of the apoptotic protein associ-
ated with Bcl 2, caspase-3, TLR4, nuclear factor kappa B (NF-
κB), and phosphorylated p65 NF-κB. As a result, vitamin D
raised serum levels of IL-10, reducing the inflammatory and ap-
optotic response in this rat model of asthma (77). Importantly,
vitamin D suppressed the synthesis of 8-isoprostane (8-iso), IL-
6, and granulocyte-macrophage colony-stimulating factors in
human bronchial epithelial cells exposed to contaminating par-
ticles. Vitamin D also increased the expression of genes of the
glucose 6-phosphate dehydrogenase (G6PD) antioxidant path-
way and the levels of oxidized glutathione. Therefore, vitamin D
seems to protect the lungs and airways of asthma patients through
its anti-inflammatory and antioxidant effects (46) (Fig. 2).
In the murine model of bleomycin-induced lung inflammation,

calcitriol reduced early lung inflammation by attenuating immune
cell infiltration, suppressing the secretion of inflammatory cyto-
kines, blocking translocation of NF-κB p65, and inhibiting

phosphorylation of lung p38 MAPK and protein kinase B (Akt).
It also attenuated the expression of smooth muscle alpha-actin (a
marker for epithelial-mesenchymal transition in the lungs, which
promotes fibrosis) while decreasing the phosphorylation of intra-
cellular effectors of the TGF-b superfamily proteins (Smad) and
the upregulation of transforming growth factor-beta 1 (TGF-b1)
(63). In addition, calcitriol caused a 40% reduction in the recruit-
ment of neutrophils to the lungs in an animal model of acute lung
injury. The anti-inflammatory effect of vitamin D may be medi-
ated by the inhibition of IL-8 secretion at the lung level (61).
Administration of vitamin D to neonatal rats exhibiting

hyperoxia-induced lung injury (as a model of bronchopulmo-
nary dysplasia) attenuated lung injury through various protec-
tive actions, such as preserving the integrity of lung structure,
decreasing inflammation by negatively regulating TLR4 activa-
tion, and reducing extracellular matrix deposition and the inhibi-
tion of lung cell apoptosis (75). Vitamin D was also shown to
have immunomodulatory and anti-inflammatory effects in the
treatment of cystic fibrosis of the airways, as it reduces the
expression of CD279 (PD-1) in CD4+ and CD8+ T-cells.
Furthermore, vitamin D decreases the frequency of CD8+ T-
cells and invariant mucosa-associated T-cells that coexpress
activation markers for CD38 and D antigen in human leuko-
cytes. Therefore, vitamin D treatment would prevent the pro-
gression of lung damage associated with cystic fibrosis of the
airways (49) (Fig. 2).

VITAMIN D LUNG PROTECTION: A RATIONAL APPROACH TO

COVID-19

Oxidative stress caused by tobacco smoke is known to wor-
sen the progression of chronic obstructive pulmonary disease
(COPD). In this sense, vitamin D has also been proposed as a
natural anti-inflammatory and antioxidant capable of improving
the prognosis of this pulmonary pathology in smokers (6).

Fig. 2. Graphic overview of vitamin D main signaling pathways as a new potential treatment in COVID-19 lung infection. Solid lines indicate stimulation/induction,
whereas dashed lines indicate inhibition/blocking.
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Patients with COPD were shown to have lower plasma vitamin
D levels than healthy patients, suggesting a possible correlation
between weak antioxidant defense and the development of this
lung disease (1). In this respect, a few years ago, our group
raised the discussion about a worldwide pandemic of vitamin D
deficiency as a possible explanation for the high cellular inflam-
matory activity induced by the RAAS (20). The original discus-
sion involved a significant number of pathologies, mainly
cardiovascular, although all of them with a similar inflammatory
basis. Currently, with the main focus on acute lung inflamma-
tion caused by COVID-19, the Irish Longitudinal Study on
Aging (TILDA 2020) reinforces the idea that adequate vitamin
D supplementation, especially in older people, may be benefi-
cial for the vulnerable population during the COVID-19 out-
break (31).
In summary, the anti-inflammatory, antioxidant, and antiviral

properties of vitamin D, in addition to its ability to modulate the
RAAS, make it an attractive strategy for preventing COVID-19
and its associated organic damage (5) (Fig. 2).

PROMISING RESULTS ACCORDING TO VITAMIN D LEVELS

AND SUPPLEMENTATION

An increasing number of papers, including systematic
reviews and meta-analyses, confirm the link between a higher
incidence of severe COVID-19, including death, and low serum
levels of vitamin D. Remarkably, serum vitamin D concentra-
tion was inversely associated with the risk and severity of acute
respiratory tract infection (47). A fundamental analysis of the
link between vitamin D deficiency and its treatment, associated
with the incidence of COVID-19, was performed by Meltzer
and colleagues (40) using data from the electronic health record
at the University of Chicago Medicine. The main result of this
analysis is the comparison of patients with a low measured basal
level of vitamin D and no supplementation treatment versus
patients with a low basal level of vitamin D but supplemented
with this vitamin. The nonsupplemented group showed a signifi-
cantly higher number of positive tests for COVID-19. Among
the treated patients, the vitamin D protective effect against the
SAR-CoV-2 virus infection was significant only in the group
with basal vitamin D deficiency (40).
Additionally, there is robust information showing that as vita-

min D levels increase, the number and severity of respiratory
infections decrease (70, 76). Several studies that evaluated the
role of vitamin D in respiratory viral infections, using different
methodologies and dosages and comparing vitamin D supple-
mentation versus placebo, have mostly found a positive effect
for vitamin D (4, 26). Although the mechanisms are not fully
understood, the combined improvements in the immunomodula-
tory and anti-inflammatory response, together with the proven
germicidal effects of vitamin D, take part in its protective
effects. This background provides the medical community with
enough support to investigate whether vitamin D effects are also
beneficial in the context of COVID-19.
Different strategies are available to increase vitamin D levels:

food fortification programs, increasing sun exposure by stimu-
lating outdoor activities, and vitamin D supplementation, among
others. Both vitamin D food fortification and sun exposure are
useful to improve low serum levels of vitamin D. It is evident
that this strategy enhances human defense against viral and bac-
terial infections. Vitamin D food fortification represents both a

feasible and a recommended measure, whose implementation as
a health policy was suggested in a recent review, taking as a
guide the program used in Finland. The related legislation, how-
ever, must be generated by each of the interested countries (48).
Both historical and recent evidence on the mechanisms of sun-
dependent vitamin D production and its protective effects were
reviewed by Wacker and Holick (71). It is worth noting that the
cutaneous production of vitamin D depends on many variables.
The lower rates of skin vitamin D production occur among indi-
viduals with darker skin or reduced sun exposure, subjects living
in higher latitudes in winter, nursing home residents, or elderly
people. Accordingly, COVID-19 is more prevalent among
African Americans, individuals living in northern cities in late
winter, and older individuals, all of whom have an increased
risk of vitamin D deficiency (39). As shown in a recent system-
atic review and meta-analysis (42), vitamin D supplementation
is superior to sunbathing at elevating vitamin D serum levels.
However, increasing sun exposure or improving the general
health condition of the population at high risk of vitamin D defi-
ciency described earlier is not easy to achieve. This explains the
key role of vitamin D supplementation. Notwithstanding this, a
balanced and healthy diet that includes foods with high vitamin
D content and an exercise routine, preferably outdoors, aimed at
reducing or at least maintaining body weight and improving aer-
obic capacity are essential preventive strategies to enhance the
defenses against SARS-CoV-2 (41).
Recently, Grant and colleagues (24) suggested that vitamin

D supplementation could reduce the risk of influenza and
COVID-19 infections. This conclusion is in line with the ex-
istence of abundant data in support of the protective action of
vitamin D in multiple inflammatory and oxidative pulmonary
diseases, such as those caused by SARS-CoV-2. Grant et al.
showed that the degree of protection against influenza and
COVID-19 increases as vitamin D levels increase. However,
the results have not allowed establishing an adequate cutoff
point level yet. Nonetheless, an observational study reported
that 38 ng vitamin D/mL is an appropriate serum value to
decrease the risk of acute viral respiratory infections (53).
Additionally, some authors suggest maintaining a serum vitamin
D level of at least 30 ng/mL or even within a range of between
40 and 60 ng/mL to reduce infectious processes. Thus, it has
been reported that postsurgical hospital infections are three
times higher when vitamin D values are lower than 30 ng/mL
(51) and that these types of infections were reduced by 33% for
every 10 ng/mL of increase in serum vitamin D (32) levels.
Following medical evidence, frequent clinical behavior sug-

gests that in the face of severe vitamin D deficiency, a two-stage
therapeutic scheme should be established. The first stage con-
sists of a high loading dose followed by a lower maintenance
dose. In this regard, the use of the so-called “loading dose” of
vitamin D has been reported to achieve a target plasma level of
30 ng/mL vitamin D by using different dosage regimens (daily,
weekly, biweekly, and monthly). Remarkably, in patients with
elevated inflammatory markers—such as obese subjects—the
necessary supplementation should be two- to threefold higher
than that established for the general population. In the case of
overweight patients, such supplementation should be at least 1.5
times higher than the general population (19).
Even though knowledge about the role of vitamin D is still

scarce, pooled data support its role as an adjuvant strategy
aimed at providing rapid and effective protection against the
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risk of infection by SARS-CoV-2. In this scenario, different
approaches have been tried, such as daily vitamin D doses for a
short time or the use of an initial loading dose followed by high
vitamin D doses for a short time. In each case, and in times of a
pandemic, this allows achieving plasma concentrations within
appropriate ranges of 30–50 ng/mL or higher. More specifically,
strategies such as that suggested by Grant et al. (23) propose a
dose of 10,000 IU/day for a month to quickly reach the goal of
40–60 ng vitamin D/mL, followed by 5,000 IU/day for a few
more weeks.
The proposed level of high vitamin D doses is striking,

neglecting its possible toxic effects; however, in this respect,
some studies show that a dose of 10,000 IU/day for 4–6 mo has
no adverse effects. Amir et al. (2) verified no toxic effects in
Canadian women with breast cancer and bone metastases.
Similarly, the research team led by Dr. Holick—one of the most
prominent groups in vitamin D studies—supplemented cancer
patients with high doses of vitamin D, finding no toxicity; on
the contrary, it improved the intestinal microbiota of treated
patients (11). The same group worked with 10,000 IU/day for 6
mo without causing hypercalcemia and achieving vitamin D
levels of the order of 78.6 ± 13 ng/mL (57). Another study
treated psychiatric patients with doses of 5,000 or 50,000 IU/
day for 16 mo without adverse effects. The only caveat was that
if a patient also received calcium supplementation, the dose
should not be high to minimize the risk of hypercalcemia (38).
The bet was higher in other studies with proposals for an initial
dose of 100,000 IU to achieve serum concentrations above 20
ng/mL, an initial dose of 300,000 IU for levels above 30 ng/mL,
and even an initial dose of 500,000 IU for healthy adults (16,
29). In another clinical trial, a monthly dose of 100,000 IU
increased neither the incidence rate of kidney stone events nor
the incidence rate of hypercalcemia (37).
Current information is controversial regarding what should

be the supplemental dose of vitamin D to be administered to
patients. Age, diet, weight, sun exposure, and concomitant dis-
eases may have clinical relevance because they may change the
requirements and production capacity. Consider the dose of
vitamin D needed to attain its bone action; the maximum dose
suggested for this purpose is 4,000 IU daily. Nevertheless, the
optimal serum level needed to protect our body against infec-
tions remains unclear. In this sense, serum levels of 50–60 ng
vitamin D/mL seem to be adequate. With 11,000 IU vitamin D/
day, it takes about 4 wk to achieve the above serum levels, and
with 4,000 IU vitamin D/day, it takes over 12 wk. The proposed
higher dose is not associated with an increased risk of toxicity.
In a recently published consensus, it was suggested that doses
ranging from 4,000 IU (for bone action) to 10,000 IU (for noncal-
cemic effects) are safe and effective to achieve the advantageous
effects of vitamin D (22, 23, 27). However, additional studies are
required to confirm what is the best protection threshold against
COVID-19 or to treat recently infected patients (10).
Based on scarce information comparing a high single dose

versus daily doses of vitamin D, some authors have expressed
concern about data that show better results with daily doses of
vitamin D. However, it is interesting to note that the end point
evaluated in this randomized study was not infectious diseases
(3). Additionally, in a recent publication of a randomized trial,
120 children with a confirmed diagnosis of sepsis were assigned
to receive either a single dose of 150,000 IU of vitamin D3 or a
placebo. Cardiovascular sequential organ failure assessment

(SOFA) score and the percentage of children with septic shock
were lower in the vitamin D group (72).
Finally, latest reports have proposed that vitamin D supple-

mentation could improve the clinical course of patients infected
with SARS-CoV-2 (8, 43). The same recommendation was rein-
forced by Grant and colleagues (24), who suggested that vitamin
D supplementation could reduce the risk of COVID-19.

CONCLUSIONS AND PROSPECTS

To sum up, and in the face of this devastating epidemic for
which we still lack effective treatments, the present perspective
proposes to explore the potentially protective effect of high
doses of vitamin D to increase blood and tissue levels rapidly.
This approach intends to counteract RAAS overload, thus
improving the course of COVID-19 and its respiratory compli-
cations, even protecting other organs. The purpose is to open the
discussion and create an appropriate debate on the prospect of
prescribing vitamin D to the general population—particularly
the most vulnerable—as well as achieving a serum and tissue
vitamin D level to counteract the imbalance of the RAAS and
manifest its anti-inflammatory effects.
We believe that this strategy applied at the population level

could provide an additional tool for the defense against the
SARS-CoV-2 virus without adverse effects, as demonstrated in
the review of more than 76,000 patients included in controlled
trials with vitamin D supplementation. A possible dose to obtain
rapid increases in plasma vitamin D levels could range between
5,000 IU and/or 10,000 IU daily or 50,000 IU to 100,000 IU
weekly (7). Given the tentativeness of the proposed dose, the use
of lower doses could be considered in children or young adults
with low exposure risk to the virus. In this regard, our working
group is advancing in the development of controlled protocols
with different populations of people at risk or already infected,
evaluating physiological parameters and clinical events. Even
though the said intervention does not intend to eliminate the vi-
rus, its potential is promising to hinder viral entry and/or improve
patient evolution. That is, vitamin D intake could improve the
health of the patients so that they can be in a better shape to face
COVID-19 and boost their defenses against this infection or
even against other equivalent diseases. Furthermore, it should be
borne in mind that quarantine, as a protection strategy for the
population against infection, complicates the defense mecha-
nisms due to a significant decline in serum vitamin D levels by
reduced sun exposure.
As previously described, we consider that the present recom-

mendation finds support in multiple reports. Accordingly, Grant
and colleagues (25) recently proposed to raise serum vitamin D
concentrations through supplementation, claiming that this strat-
egy could reduce the incidence, severity, and risk of death from
influenza, pneumonia, and the current COVID-19 epidemic.
Additionally, Panarese and Shahini (44) proposed the prophy-
lactic use of usual vitamin D doses to mitigate the aggressive
progression of the disease in Europe. In turn, Rhodes and collab-
orators (52) have proposed vitamin D supplementation, at least
for people in the northern hemisphere who are at higher risk of
severe illness and death. The same is recommended by the
United Kingdom Association of Dietitians (64).
Finally, 10 RCTs around the world (50), including one by our

group (No. NCT04411446), are currently investigating whether
supplementation with vitamin D could be an effective strategy
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against viral complications. Such trials aim to validate this hy-
pothesis for the benefit of public health, particularly in the con-
text of the COVID-19 crisis.
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