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Abstract
Nanoemulsions (NEs) of essential oil (EO) have significant
potential to target microorganisms, especially viruses. They act
as a vehicle for delivering antiviral drugs and vaccines.
Narrowing of drug discovery pipeline and the emergence of
new viral diseases, especially, coronavirus disease, have
created a niche to use NEs for augmenting currently available
therapeutic options. Published literature demonstrated that
EOs have an inherent broad spectrum of activity across bac-
terial, fungal, and viral pathogens. The emulsification process
significantly improved the efficacy of the active ingredients in
the EOs. This article highlights the research findings and
patent developments in the last 2 years especially, in EO
antiviral activity, antiviral drug delivery, vaccine delivery, viral
resistance development, and repurposing EO compounds
against SARS-CoV-2.
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Introduction
The world has persistently witnessed a multitude of
viral disease outbreaks and epidemics since ancient
times. Although there are several advanced life-saving
medical technology available today, emerging new viral
infections pose a significant threat to global health. In
www.sciencedirect.com
the past 25 years, several viral disease outbreaks have
occurred around the world, in particular, the 1997 avian
influenza A (H5N1) viral epidemic in which the virus
directly spread from poultry to humans [1], the 1999
Nipah virus outbreak in Malaysia and Singapore caused
severe encephalitis in humans [2], and 2002 SARS
(severe acute respiratory syndrome) by novel coronavi-
rus SARS-CoV occurred in China and spread to 37
countries with 9.6% mortality rate [3]. Apart from these

outbreaks, significantly higher mortality and morbidity
cases were reported in the 2009 influenza pandemic by a
swine H1N1 influenza A virus [4], the 2012 MERS
(Middle East respiratory syndrome) by MERS-CoV [5],
the 2010 severe fever with thrombocytopenia syndrome
(SFTS) caused by SFTS bunyavirus [6], the 2014 Ebola
outbreak caused by Western African Ebola virus [7], the
2015 Zika fever caused by Zika virus [8], and currently
ongoing COVID-19 pandemic caused by SARS-CoV-2
[9]. A detailed list of viral disease outbreaks in the
past 25 years is available in Table 1.

Although there are several advancements available in
antiviral therapy, the newly evolving novel strains and
mutation-mediated drug resistance development in vi-
ruses certainly decrease the efficacy of many antiviral
therapies. For instance, there were multiple levels of
antiviral drug resistance recognized in the herpes sim-
plex virus (HSV) [10], hepatitis C virus (HCV) [11,12],
and HIV strains [13,14]. Now there is no specific anti-
viral medication available to cure or manage the
COVID-19 [15,16]. Therefore, it is highly essential to

develop a broad-spectrum, multitargeting antiviral agent
to control these viral infections. Presently, scientists
around the globe are working intensively to develop
drugs and vaccines against the SARS-CoV-2 virus.
Several research groups were involved in repurposing US
Food and Drug Administration (FDA)-approved syn-
thetic drugs and well-known antiviral phytochemicals to
address the emergency. EOs are concentrated liquid
consisting of hydrophobic phytocompounds, tradition-
ally used in several parts of the world to treat ailments.
Over the past few decades, EOs acquire immense

recognition as a potent reservoir with ample antiviral and
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Table 1

Details of viral diseases outbreaks over the past 25 years.

Disease outbreak/epidemic/pandemic Year Affected areas Virus Reference

Avian influenza epidemic 2013–2019 China Influenza A virus subtype
H7N9

FAO [108]

Chikungunya outbreak 2013–2015 Americas Chikungunya Deilgat et al. [109]
COVID-19 pandemic 2019 to present Worldwide SARS-CoV-2 virus Dong et al. [110]
Dengue fever epidemic 2019 to present Asia–Pacific, Latin America Dengue fever Moloo [111], WHO

[112,113]Dengue outbreak 2011 Pakistan Dengue fever
Dengue outbreak 2013 Singapore Dengue fever
Dengue outbreak 2017 Pakistan Dengue fever
Dengue outbreak 2017 Sri Lanka Dengue fever
Ebola epidemic 2018–2020 The Democratic Republic of

the Congo and Uganda
Ebola Aceng et al. [114]

Ebola outbreak 2020 The Democratic Republic of
the Congo

Ebola

Hand, foot, and mouth disease epidemic 2011 Vietnam Hand, foot, and mouth
disease

Khanh et al. [115]

Japanese encephalitis outbreak 2017 India Japanese encephalitis Kulkarni et al. [116]
Lassa fever epidemic 2019 to present Nigeria Lassa fever Adenola and Ilemobayo

[117]
Measles outbreak 2010–2014 The Democratic Republic of

the Congo
Measles Hachiya et al. [118], Kalil

et al. [119], Mahase [120],
Samaraweera et al. [121]Measles outbreak 2013–2014 Vietnam Measles

Measles outbreak 2019–2020 The Democratic Republic of
the Congo

Measles

Measles outbreak 2019 to present New Zealand Measles
Measles outbreak 2019 to present Philippines Measles
Measles outbreak 2019 Malaysia Measles
Measles outbreak 2019 to present Samoa Measles
Middle East respiratory syndrome

coronavirus outbreak
2012 to present Worldwide Middle East respiratory

syndrome/MERS-CoV
Zumla et al. [5]

Nipah virus outbreak 2018 India Nipah virus infection Arunkumar et al. [122]
Novel bunyavirus outbreak 2020 to present China Severe fever with

thrombocytopenia
syndrome

Yu et al. [6]

Jaundice outbreak 2014–2015 India Primarily hepatitis E, but
also hepatitis A

Rakesh et al. [123]

Swine flu outbreak 2015 India Influenza A virus subtype
H1N1

Murhekar and
Mehendale [124]

Yellow fever epidemic 2020 to present Nigeria Yellow fever Lucey and Gostin [125] and
Nwachukwu et al. [126]Yellow fever outbreak 2012 Sudan Yellow fever

Yellow fever outbreak 2016 Angola and DR Congo Yellow fever
Zika virus epidemic 2015–2016 Worldwide Zika virus Bogoch et al. [8]
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Essential oil nanoemulsions for COVID-19 treatment Franklyne et al. 3
other bioactive compounds. These EO bioactive com-
pounds are absorbed in the intestine as micellar struc-
tures [17,18].

Nanoemulsion (NE) is a fine, transparent oil-in-water or
water-in-oil dispersion system stabilized by an interfa-
cial film of surfactant molecule having a droplet size
range of 20e500 nm. NE can be formulated in three

types: (1) oil-in-water NE wherein oil is dispersed in the
continuous aqueous phase, (2) water-in-oil NE in which
water droplets are dispersed in the continuous oil phase,
and (3) bicontinuous NE where the microdomains of oil
and water are interdispersed within the system [19].
The long-term stability, spontaneous emulsification,
extended shelf-life, photostability [20], and high rate of
drug solubilization capacity makes the MEs/NEs as a
potent antimicrobial agent as well as a drug delivery
vehicle [21e24]. This review aims to highlight the past
2 years’ research findings and patent developments in

antiviral NEs, antiviral EOs repurposing, and EO’s role
in antiviral drug delivery and vaccine formulation with a
special focus on SARS-CoV-2 infection.
Emulsion components delivering antiviral
activity
Essential oils
Unlike synthetic drugs, most of the essential oils (EOs)
are nontoxic and listed as generally regarded as safe by
FDA. Many researchers have begun to explore the effect
and efficacy of EOs against various infectious, acute, and
chronic diseases [25e28].

Inhibition of virus by EOs and EO substances
The in vitro evaluation of camphor comprising EOs of
Chrysanthemum indicum (36.69%) and Chrysanthemum mori-
folium (14.56%) [25] and the humulene epoxide and
caryophyllene oxide constituting EO of Egyptian Cyperus
rotundus rhizomes (38.43% and 21.03%) [26] displayed

dose-dependent inhibitory effect against HSV-1 and
hepatitis A virus. In addition, the former EOs have a
significant inhibitory effect against vesicular stomatitis
virus (VSV), and the Cyperus EO inhibited the
Coxsackie B4 virus [25,26]. The EO of tea tree (Melaleuca
alternifolia) comprising terpinene-4-ol, limonene, g- and
a-terpinene, cineol, and a-terpinolene and the volatile oil
(VO) of Cymbopogon citratus has strongly inhibited the oral
and genital herpes viruses [29,30], and the oregano EO
rich with monoterpenic phenol, carvacrol (5-isopropyl-2-
methylphenol), and its isomeric analog thymol (2-

isopropyl-5-methylphenol) derived from Origanum
vulgare plant showed a potent protective effect against
HIV and simian immunodeficiency viruse [31], and the
oxygenated and unoxygenated monoterpenes- and ses-
quiterpenes-rich herbal Hornstedtia bella EO [27], and a
monocyclic sesquiterpene, germacrene-rich Rhizoma
curcuma EOs [28] have inactivated the vaccinia and
pseudorabies virus, respectively. Furthermore, the
www.sciencedirect.com
aglycones molecules, especially, quercetin, myricetin,
and quercetagetin, and flavonoids, such as apigenin,
baicalein, biochanin A, kaempferol, luteolin, and narin-
genin, have exhibited broad-spectrum antiviral activity
toward a wide range of enveloped (hepatitis B virus
[HBV], HCV, HIV, African swine fever, influenza A,
dengue, respiratory syncytial and Newcastle disease virus
[NDV]) and nonenveloped (foot and mouth disease and

enterovirus) viruses [32].

The synergistic antiviral effect between EOs
The synergistic activity of the EO mixture displayed a
remarkable activity against numerous virus infections.
For example, a mixture of EOs prepared from the dry
leaves of thyme (Thymus capitatus (L.) Hoffmanns, et
Link), sage (Salvia fruticosaMill.), and dittany (Origanum
dictamnus L) containing carvacrol (53%), eucalyptol
(13%), b-Caryophyllene (3%), Borneol (1.68%),
p-Cymene (1.32%), g-Terpinene (1.17%), and a-
Terpineol (1.06%) presented substantial inhibition of
influenza A and B and human rhinovirus [33]. This EO
mixture caused a nucleoprotein trafficking defect in the

H1N1 virus, signifying that the nucleoprotein could be
the primary target site for EO’s antiviral activity [33].
Another synergy essence containing carvacrol, thymol,
paracymene, and secondary constituents of thyme oil,
oregano oil, and/or cinnamon oil was found to be effec-
tive against bovine rotavirus and epizootic hemorrhagic
disease virus, equine herpes virus-1, enterovirus 71,
H5N1, HBV, HIV, NDV, MS-2 bacteriophage virus,
parvovirus, porcine epidemic diarrhea virus, bovine viral
diarrhea virus, porcine respiratory, reproductive syn-
drome virus, and transmissible gastroenteritis virus [34].
Prevention of viral infection by EOs and EO compounds
Virus entry into the host cells is one of the early key steps
in viral infections, and hence, inhibition of virusehost
interaction could be a successful prevention strategy
(Figure 1). Currently, only a few synthetic viral entry
inhibitors are available to prevent the viral infection and
spread. The EO substance thymohydroquinone
dimethyl ether (THQDE) derived from the Ayapana
triplinervis plant has shown successful prevention of viral
infection to human lung epithelial cells in which the
THQDE inhibited the internalization process, thereby
prevented theZika virus disease [35]. Similarly, theEOs
of Piper aduncum L and Ocotea quixos (Lam.) Kosterm
showed remarkable host cell protection against theWest
Nile virus, where the EOs might have interfered/
masked the virion envelope structure or viral structure
to block the virus internalization. Here, the suspected
EO constitutes that blocked the virus entry are dilla-
piole (48.21%) and 1,8-cineole (39.15%) [36]. In addi-
tion, the Hornstedtia bella EO alone or in combination

with mycophenolic acid (antiorthopoxviruses drug)
protected the Caco-2 epithelial cell monolayer from
vaccinia virus infection [27].
Current Opinion in Colloid & Interface Science 2021, 54:101458
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Figure 1

Schematic illustration of the NEs mediated inhibition of SARS-CoV-2 entry and spread into the host. (a) COVID 19 infection, (b) NEs (20–30 nm)
masking SARS-CoV-2, (c) NEs (20–30 nm) blocking the ACE2 receptor.
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Mechanism of action of antiviral EOs and EO compounds
Until now, very few studies have demonstrated themode
of action of EOs on viruses.Most of the studies predicted
that the EOs could interfere with the virion envelope
structure or mask the virus structure, which subse-
quently blocks the virus adsorption and penetration into
host cells [37]. Vimalanathan and Hudson showed the

effective inhibition of the membrane proteins (neur-
aminidase and hemagglutinin) of H1N1 by Cinnamomum
zeylanicum EO [38]. The vaporized EOs of C. zeylanicum,
Pelargonium graveolens,Salvia officinalis,Thymus vulgaris, and
Cymbopogon flexuosus displayed a strong inhibitory effect
against the H1N1 hemagglutinin. It suggests that the
viral glycoproteins could be the primary target for the
EOs action against viruses. The receptor-binding do-
mains of the surface spike glycoprotein of SARS-CoV-2
have pockets of a tube-like shape and a size matching
that of the free fatty acid molecules [39], which could

facilitate the binding of EO-based NEs (Figure 1).

On the other hand, the EOs components, namely, 1,8-
cineole, apigenin, baicalein, biochanin A, ellagic acid,
isoquercitrin, kaempferol, luteolin, myricetin, naringenin,
quercetagetin, quercetin, sesquiterpenes, and terpenes,
have effectively inhibited many viruses (as described
previously). Among these substances, the quercetin
showed a significant inhibitory effect on the nonstructural
protein-3 proteases of HCV [40], protein synthesis of
rhinovirus, and replication of dengue virus type 2 [41].
Current Opinion in Colloid & Interface Science 2021, 54:101458
Similarly, the baicalein, myricetin, quercetin, and quer-
cetagetin effectively inhibited the reverse transcriptase of
HIV and Rauscher murine leukemia virus, and except
baicalein, other flavonoids inhibited the DNA polymerase

also. Certain EO flavonoids, namely, apigenin, baicalein,
biochanin A, kaempferol, luteolin, and naringenin,
inhibited the nucleoprotein production in theH5N1 virus
[32]. These observations demonstrate that the primary
target of both EOs and EO constitutions is the surface
proteins.

Surfactants and cosurfactants
A surfactant denotes the surface-active agent acting as
the interface between the hydrophilic part and aqueous
phase or aqueous and hydrophilic phase during the
emulsification process. Surfactants are amphiphilic
substances comprised of the hydrophilic head and
lipophilic tail groups. The head groups may be nonionic,

anionic, cationic, or zwitterionic and used in the wet-
ting, dispersion, lubricant, and foaming process. Besides
emulsification, surfactants also presented a wide range
of bioactive properties, specifically, antimicrobial, anti-
cancer, anti-inflammatory, antiaging, and so on. Hence,
the selection of surfactants for NEs/MEs formulation
remains a critical part. The surfactant that directly af-
fects the virion or inhibits its entry into the host could
be an appropriate choice for a new antiviral emulsion
or nanodelivery system development. The nonionic
polysorbate surfactants, such as Tween 20, 40, 60, and
www.sciencedirect.com
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80, have shown moderate to strong viricidal activity
against California encephalitis virus, HSV, NDV, polio-
myelitis virus type 1, vaccinia virus, and VSV [42].
Another nonionic surfactant, nonoxynol (spermicide),
has shown moderate viricidal activity against HIV and
other sexually transmitted infections [43]. On the other
hand, the cationic surfactant chlorhexidine exhibited an
inhibitory effect against HSV-1 and HIV-1 virus [44].

Cosurfactants are the short-chain alcohols, organic acids,
and salts used to improve the emulsification of a selected
surfactant. They are weak amphiphilic molecules and do
not self-aggregate but strongly support and concentrate
the primary surfactant aggregates formed on the surfac-
tant layer. The organic acid cosurfactant, short-chain
caprylic acid, the key antiviral constituent in the ViroS-
AL preparation, showed a significant inhibitory effect
against a wide range of viral infections, especially, Ebola,
EpsteineBarr, HSV, Lassa, measles, orf (parapoxvirus),

SARS-CoV-1, pseudoviruses, VSV, and Zika virus [45].
Similarly, the organic sodium salt and sodium cholate
displayed strong anti-HIV-1 activity [46]. At present, no
guaranteed antiviral agent against the SARS-CoV-2 virus
is available that underlines the urgent need for an
effective preventive and treatment system. Exploiting
Figure 2

Schematic illustration of MEs and NEs preparation by spo

www.sciencedirect.com
the previously mentioned safe, antiviral emulsion com-
ponents for the EO-based NEs/MEs formulation could
result in a multifaceted broad-spectrum agent against the
SARS-CoV-2 virus (Figure 1).
Formulation of EO-based NEs/MEs
The NE/ME system with different physical and physi-
cochemical properties was prepared using several tech-
niques. MEs are formulated spontaneously by low-
energy emulsification or phase-inversion temperature
method exploiting the thermodynamic equilibrium be-
tween the oils, water, surfactants, and cosurfactants
(optional). Under the low-energy technique, MEs can

be prepared by stirring either the oil and surfactant
concoction (internal phase) with water or water and
surfactant concoction (external phase) with oil or all
together (Figure 2). In the second method, the phase-
inversion was achieved at a specific temperature,
namely, phase-inversion temperature, where water-in-
oil emulsion converts into the oil-in-water emulsion,
usually in the presence of nonionic surfactant [47]. On
the basis of our decade of experience, we recommend
stirring the oil and surfactant concoction with water as
the most appropriate and suitable EO-based MEs for-

mation technique for antimicrobial studies. For
ntaneous, ultrasonic, and microfluidization techniques.

Current Opinion in Colloid & Interface Science 2021, 54:101458

www.sciencedirect.com/science/journal/13590294


6 Hot Topic: COVID-19
instance, a spontaneous ME system was formulated via
dropwise addition of internal phase (cinnamon oil and
nonionic surfactantdTween 20) into a constantly stir-
red water phase [48], which prevented the bacterial
sepsis in the Wistar rat model.

On the other hand, the NE systems (20e500 nm) are
formed under the thermodynamically nonequilibrium

state using an external energy input by ultrasonicator
or high-pressure homogenizer (called high-energy
method) or without an external energy/device (low-
energy method) [49]. In the high-energy method, the
NEs are formulated by breaking large coarse emul-
sions into mini-droplets using high-energy mechani-
cal devices. For example, in the microfluidizer or
high-pressure homogenizer, the macro/micro-
emulsions are pumped into a narrow valve at constant
high pressure that subsequently breaks down the
coarse emulsion into NEs. Here, the emulsion size

can be controlled by the number of passes and
pressure applied (Figure 2). Nabila et al. [50] pre-
pared coarse emulsion (1:8:1 ratio) of castor oil,
cremophor RH40 (surfactant), and polyethylene
glycol 400 (cosurfactant) by stirring at 200 rpm for
2 h. Then the coarse emulsion was sonicated for 1 h
for producing the NEs and diluted in deionized water
(Figure 2). In contrast, dissolving the surfactant with
an external (water) phase for coarse emulsion prep-
aration was carried out by Franklyne et al. [21].
Initially, the macroemulsion was formulated from

basil, turmeric, black seed, clove, and cinnamon oils
by stirring with an external phase containing surfac-
tant (cremophor EL or Tween 20) and water. Then
the macro emulsions were microfluidized or ultra-
sonicated to achieve NEs. NEs/MEs formation,
components properties, and stability have been
extensively reviewed elsewhere [49].
EO-based NEs/MEs antiviral and drug
delivery system
The MEs and NEs formulated using EOs have shown
potent antibacterial [51e63], antifungal [54,55,64], and
antiviral [65] activities. In addition, the EO-based
nanodrug delivery system provided solutions to major
problems, such as drugedrug interactions, short half-
life, drug resistance development, low bioavailability,
viral sequestration, viral latency, selectivity, and defi-

cient broad-spectrum activity in treating viral infection
[66]. Despite the proven antiviral activity of EOs, only a
small number of antiviral NEs/MEs systems have been
formulated [32,67].

Antiviral activity of NEs against enveloped viruses
Dengue viruses
Dengue disease is caused by four different serotypes
of dengue virus, transmitted through mosquito bites to

the human population, and now, half of the world’s
Current Opinion in Colloid & Interface Science 2021, 54:101458
population at risk. At present, there is no effective
antiviral drug available against this virus. Recently,
curcumin produced by Curcuma longa (L) has shown
significant antiviral activity against HCV, HSV-1, HSV-2,
VSV, para-influenza 3, and respiratory enteric orphan 1
viruses [50]. Padilla et al. suggested that curcumin in-
hibits dengue virus replication by inhibiting the
ubiquitineproteasome system [68]. However, the poor

aqueous solubility and cell uptake subsequently
reduced the curcumin bioavailability and applicability.
The curcumin-loaded castor oil NE system with an
average droplet size of 40.85 � 0.919 nm formulated
using the self-nano-emulsification technique showed
increased stability and delivery of curcumin. Further-
more, this NE system was found to be effective against
all the four dengue virus serotypes derived from pa-
tients. Particularly, the standard plaque assay showed
greater inhibitory profiles against serotypes 1 and 2 [50].

Hepatitis B and C viruses
Because of the extensive absorption in the lymphatic
fluid, the lipid based NEs become an excellent delivery

system for poorly soluble antiviral agents [69,70]. The
in vivo murine study revealed 11.5-fold increase in the
bioavailability of baicalin (a flavonoid used to treat viral
hepatitis) in lymph nodes when delivered with a NE
carrier [71]. This nanocarrier system could be used to
target HBV that sequesters in the lymphatic system.
Similarly, the HBV nucleoside reverse transcriptase in-
hibitor adefovir dipivoxileloaded nanostructured lipid
carrier was formulated using Capmul MCM (glycer-
olized fats and oils product), precirol ATO-5 (solid
lipid), and cremophor RH40 or Pluronic F68 (surfac-

tant) for the successful delivery of the drug into the
Swiss Albino mice liver [72]. Likewise, the improved
water solubility and pH-specific intestinal release of
silibinin, a potent anti-HCV compound, were achieved
when delivered with a polyvinylpyrrolidone NE
carrier [73].

Human immunodeficiency virus
The nanoformulations of antiretroviral drugs have a
significant advantage over bulk drug formulations. The
advantages include bypassing the first-pass metabolism,
improving half-life, and improving bloodebrain barrier
permeability [74,75]. The branched pH-responsive

copolymers of oligo (ethyleneglycol) methacrylate
(OEGMA), methacrylic acid, and ethylene glycol
dimethacrylate polymerized under atom transfer radical
polymerization conditions to form NEs with castor oil,
peanut oil, and soybean oil. To the NEs, the lopinavir
(Lpv) that inhibits the protease-mediated maturation of
virions or efavirenz (Efz) that inhibits the viral RNA
reverse transcription was loaded, and both the antire-
troviral drug-loaded NEs exhibited enhanced perme-
ability and antiviral activity against HIV-1 (IIIB)-
infected MT4 cells. The apparent permeability of Lpv
www.sciencedirect.com
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Essential oil nanoemulsions for COVID-19 treatment Franklyne et al. 7
was almost an order of higher magnitude after 2 h
compared with the control aqueous-DMSO drug solu-
tion [76]. The self-nano emulsifying oil formulations of
Efz prepared with caproyl 90 and kolliphor EL showed a
low percent dissolution efficiency and a high dissolution
half-life less than 9 min for Efz under in vitro condition
compared with free Efz [77]. Similarly, low-energy
water-in-oil NEs of cold-pressed flaxseed oil containing

Efz formed using span 20 (28.5%), Tween 80 (28.5%),
and ethanol (42.8%) by D-optimized design was found
to a stable antiretroviral emulsion [78].

Apart from Lpv and Efz, other antiretroviral drugs were
also incorporated in the NE drug delivery systems and
used for HIV treatment. For example, Karami et al.
formulated lactoferrin-modifiedNEs containing indinavir
(Idv) for brain delivery, wherein the olive oil containing
Idv, oleic acid, a-tocopherol, and span 8 were homoge-
nized in a polysorbate 80 solution to form Idv-NE

followed by coupling with lactoferrin [79]. The hydro-
dynamic diameter, polydispersity index, and zeta poten-
tial of Idv-NEs were 112 � 3.5 nm, 0.20 � 0.02, and
33.2 � 2.6 mV, respectively. The in vivo brain delivery
study in the rat model presented 1.6- and 4.1-fold higher
concentrations of Idv in the Idv-NEs and lactoferrin-
treated Idv-NEs than the drug alone treated animals.
The brain uptake clearance of Idv delivered orally via
Idv-NEs, and lactoferrin-treated Idv-NEs were 393- and
420-times higher compared with the free drug [79].
Likewise, the oral delivery of Idv-loaded methoxypoly

(ethyleneglycol)-poly (e-caprolactone) nanoparticle in
the rat showed increased bioavailability of the drug in
plasma compared with the Idv solution [80]. We believe
that the assembly of multiple retroviral drugs into a single
NEs carrier system may empower the effective treat-
ment of HIV infection. In addition, a single NEs system
could accommodate the water-soluble drugs such as the
nucleoside and nucleotide analogs of the anti-HIV drug
(e.g., tenofovir) and highly water-insoluble drugs
(e.g. raltegravir or paclitaxel) and exhibit targeted and
long-acting characteristics in vivo [70].

Herpesviruses
C. citratus VO-loaded nanosuspension was prepared by

adding the VO into the poly (D, L-lactide-co-glycolide)
dissolved in aqueous saturated ethyl acetate. This
organic phase was dropwise added into the ethyl acetate
saturated distilled water containing polyvinyl alcohol in
an ice-cool bath under continuous homogenization. Pre-
pared VO-NEs showed very high inhibition potency
against HSV-1 and HSV-2 [30]. Furthermore, the
hydrogel form of the previously mentioned nanoparticles
showed significant inhibition at eightfold lesser concen-
tration. The coumestrol (found in soybeans, alfalfa, and
red clover) was efficiently combined in positively charged

NEs dispersed in hydroxyethyl cellulose gel and tested
for its topical delivery to mucosa tissues. After 8 h of
www.sciencedirect.com
permeation, the concentration of coumestrol reserved
into cut out intact porcine esophageal mucosa was
twofold higher than the formulations containing fluid
phospholipid (dioleylphosphocholine) (5.12 � 0.63 mg/
cm2) when compared with those containing rigid phos-
pholipid (di-stearoyl phosphocholine) (2.39 � 0.16 mg/
cm2). Similarly, the coumestrol retention into injured
mucosa was also twofold higher than formulations

containing dioleylphosphocholine (4.72 � 0.51 mg/cm2)
when compared with those containing di-stearoyl phos-
phocholine (2.43 � 0.60 mg/cm2). Low IC50 values
demonstrated an increased anti-HSV-1 and -HSV-2 ac-
tivity when coumestrol incorporated into NEs containing
dioleylphosphocholine [81].

Spherical chitosan nanospheres (CNS) containing
acyclovir (200 nm) with a zeta potential value
of �40.0 mV were prepared by Donalisio et al. The
loading capacity of the drug was found to be 8.5%, with

30% release under in vitro conditions after 6 h. The
in vitro skin permeation studies confirmed an improved
amount of permeated acyclovir (55%) over the com-
mercial cream (10%) at 24 h. IC50 values against HSV-1
at postinfection (48 h) were 0.012 and 0.156 mM for
acyclovir-loaded CNS and free acyclovir, whereas IC50

values against HSV-2 postinfection (24 h) were
0.100 mM and 1.608 mM for acyclovir-loaded CNS and
free acyclovir, respectively [82]. Similarly, the acyclovir
containing water-in-oil MEs was formulated with iso-
propyl myristate, span 20, Tween 20, water, and DMSO,

which showed complete inhibition of cutaneous
herpetic lesions development in female Balb/c mice
with HSV-1-induced infection compared with the
commercially marketed cream [83]. Ionic liquid (trie-
thylammonium acetate and diethylammonium acetate)
containing microemulsion formed using isopropyl
myristate, Tween 80 and span 20 demonstrated very
long-term stability (42 days) of acyclovir and metho-
trexate compared with the commercially available for-
mulations containing 1-ethyl-3-methylimidazolium
acetate [84].

Antiviral activity of NEs against nonenveloped
viruses
Human papilloma viruses
An interesting NE-based curcumin delivery system
for the photodynamic therapy against vulvar intra-
epithelial neoplasia associated with the human papil-
loma viruses (HPV) infection has been proposed by
Bonfim et al. [85]. The antiviral and antineoplastic
compound curcumin was solubilized in the oil phase and

then homogenized with a hydrophilic emulsifier for
improving its performance in therapies. The curcumin-
loaded NEs displayed an efficient internalization and
high toxicity to the HPV-16 E6 expressing cells.
Furthermore, the expression of apoptosis executioner
proteins (caspase 3/7) was high in the cells treated with
Current Opinion in Colloid & Interface Science 2021, 54:101458
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the curcumin-loaded NEs. Photoactivation of curcumin
loaded in NEs by exposing to light at 430 nm strongly
potentiated the effect of curcumin on the HPV-16 E6
expressing cells [85]. As curcumin inactivates a wide
range of viruses, such as HCV, HSV-1, HSV-2, VSV, para-
influenza 3, and respiratory enteric orphan 1 viruses
[50], similar photodynamic therapy approaches com-
bined with curcumin-loaded NEs has to be established

against these viral infections.
Role of EO-MEs and EO-NEs in viral vaccine
delivery
Apart from antiviral drug delivery, the NE system was

effectively used as an immunization vehicle to deliver/
present the inactivated viral proteins to the host
immune system. NE was prepared by emulsification of
soybean oil, Tween 80, cetylpyridinium chloride,
ethanol, and water and used to develop intranasal vac-
cine containing HSV-2 surface glycoproteins gD2 and
gB2 (NE01-gD2/gB2) [86]. The guinea pigs were
immunized either intranasally or intramuscularly with
NE01-gD2/gB2 at 63, 42, and 21 days before viral
treatment. The intranasal delivery of NE01-gD2/gB2 in
animals induced increased levels of neutralizing anti-

body than the monovalent NE01-gD2 vaccine but lesser
than the intramuscular Alum/MPL-gD2 vaccine.
Following the HSV-2 intravaginal exposure, the animal
immunized intranasally with NE01-gD2/gB2 vaccine
displayed significantly reduced scores for acute and
recurrent disease. Furthermore, only 1 in 12 NE01-gD2/
gB2 intranasally vaccinated animals was detected with
the latent virus at dorsal root ganglia. In the therapeutic
study, a significant reduction in the recurrent lesions in
the guinea pigs immunized with NE01-gD2/gB2
(intranasal) was observed [86]. In the same NE01
system, a plant-derived recombinant influenza H5

(rH5) antigen was incorporated to produce a novel
intranasal influenza vaccine. The mice and ferrets were
immunized intranasally thrice at 4-week intervals using
the rH5-NE01 vaccine, which significantly increased
the rH5-specific IgA and IgG antibodies in both animals.
In addition, the rH5-NE01 intranasal vaccine increased
the antigen-specific interferon -g and interleukin (IL)-
17 production in the CD-1 mice model. In ferrets, the
vaccination prevented the infection of the intranasally
challenged H5N1 virus [87].

Similarly, intranasal immunization of mice using inacti-
vated A/Puerto Rico/8/1934 (H1N1) (PR/8) adjunct
with NE/Sendai viral defective interfering RNAs or NE/
influenza viral defective interfering RNAs (3php)
showed a synergetic rise of systemic PR/8-specific IgG
antibody with significantly high avidity and virus
neutralization efficacy than the individual adjuvants.
The results revealed that the enhanced immunogenicity
of the adjuvant combinations was synergistic and not
simply additive [88]. Isopropyl myristate containing
Current Opinion in Colloid & Interface Science 2021, 54:101458
NEs was used as an adjuvant for the inactivated influ-
enza H3N2 vaccine. The NEs with 80% or 85.6% water
concentration presented higher hemagglutination inhi-
bition titer than aluminum hydroxide or complete
Freund’s adjuvant and showed higher antigen delivery
efficiency in female ICR mice [89]. Minz and Pandey
described a recombinant HBV surface antigeneloaded
solid fat NE as an adjuvant-carrier system preparation

for deep pulmonary vaccination in rats [90]. The vaccine
system showed significant (***P < 0.001) humoral
(sIgA and IgG) and cellular (IL-2 and IF-g) immune
responses compared with naive antigen solution (a re-
combinant surface antigen without carrier) [90]. The
truncated ORF2 proteins (54 kDa and 26 kDa) of the
hepatitis E virus were loaded in a chitosan NE system
using ultrasonic waves and used as a vaccine candidate.
The NE system showed an entrapment efficiency of
70% and 59% for 26 kDa and 54 kDa proteins, respec-
tively. The prepared NE system was nontoxic to HeLa

and THP1 cells up to 100 mg/mL concentration. This
highly immunogenic ORF2 protein-loaded chitosan NE
system can be used as a vaccine candidate against hep-
atitis E virus [91]. The role of nanotechnology in vaccine
development and advanced clinical trials against
COVID-19 are reviewed elsewhere [54,92].

On the basis of the studies reviewed herein, above we
recommend that the EO-NEs encapsulated with two or
more antiviral drugs or with antiviral phytochemicals
may synergistically prevent and cure the COVID-19

infection (Figures 1 and 3). On the other hand, the
inactivated virus proteins may immunize the suscepti-
ble populations against the SARS-CoV-2 virus.
Recent patents on emulsion-based antiviral
drugs
Our systematic search showed a limited number of
granted patents on the EO emulsionebased antiviral
therapy, especially in the past 4 years. For instance, the
EO emulsion with a droplet size of <25 microns was
prepared from the mixture of thyme oil, oregano oil, and/
or cinnamon oil, in combination with natural emulsifiers
arabinogalactan and/or tannin compounds. The EO
composition was found to be effective against bovine
rotavirus and epizootic hemorrhagic disease virus,
equine herpesvirus-1, enterovirus 71, H5N1 virus,
bovine viral diarrhea virus, HBV, HIV, NDV, MS-2

bacteriophage virus, parvovirus, porcine respiratory and
reproductive syndrome virus, porcine epidemic diarrhea
virus, and transmissible gastroenteritis virus [34]. A
novel submicron oil-in-water dispersion antiviral drug
delivery system with 100e1000 nm particle size was
prepared in a vegetable oil matrix. In this, ailanthone, an
Ailanthus altissima (Mill.) plant derivative with significant
antiviral activity against adenovirus, astrovirus, entero-
virus, HBV, rotavirus, and Norwalk virus, was encapsu-
lated in the oil using phospholipid emulsifier and water
www.sciencedirect.com
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Figure 3

Schematic illustration of multidrug-loaded double emulsion system (~20 nm) targeting multiple sites in SARS-CoV-2 virus, an alternative antiviral agent to
treat and cure COVID-19 infection.
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phase. The nanoformulation showed a target selectivity,
prolonged half-life, stability, significant curation at low
drug concentration, reduced adverse reactions, and
reduced nontarget tissue delivery compared with posi-
tive test drugs [93].

The phytochemical chloroquine has a broad-spectrum
anti-HIV activity against HIV-1 A and E and inhibits

the glycosylation of the gp120 viral envelope protein
leading to reduced viral particle formation with severely
reduced infectivity. The chloroquine-loaded water-in-
oil emulsion system was developed to prepare chitosan
nanosphere gel. Initially, chloroquine chitosan nano-
spheres (100e800 nm) were prepared by W/O emulsion
system, wherein the aqueous phase comprising water-
soluble chitosan and chloroquine phosphate was added
in corn oil/olive oil matrix using Tween-20 emulsifier.
Then the nanosphere was precipitated using sodium
hydroxide-n-propanol mixed solution for the final gel

formulation for antiviral of external genitalia [94].
Similarly, the water-insoluble anti-HIV drugs Efz, rito-
navir (Rtv), and Lpv were dissolved in water-
immiscible, oily/organic solvent to procedure an oil
phase for NE (200e400 nm) preparation in an aqueous
phase containing water-soluble polymer/cellulose and
suitable surfactants to treat viral infections [95].

Studies have shown that the efficacy and effectiveness of
Lpv/Rtv association and chloroquine and hydroxy-
chloroquine against COVID-19 are poor [96,97]. Hence,

the previously mentioned formulations with these drugs
can be tested against SARS-CoV-2. Besides, the prepared
EO compositions with broad-spectrum antiviral activity
can be effectively screened against COVID-19.

In silico screening of EOs components for
repurposing against SARS-CoV-2
The SARS-CoV-2 virus has recently emerged as a global
pandemic and induced disease (COVID-19) in more
than 143 million people and more than 3 million deaths
around the globe (according to World Health Organiza-
tion report as of 6:02pm CEST, April 22, 2021 ([https://
covid19.who.int/]). Great efforts being devoted across
the globe to find new drugs to control/prevent the dis-
ease. Parallelly, the repurposing of known drugs and
natural compounds against COVID-19 are also being
explored to manage the disease. The garlic EO principal
active organosulfur compounds, such as allyl disulfide,

allyl methyl trisulfide, allyl(E)-1-propenyl disulfide,
allyl (Z)-1-propenyl disulfide, diallyl tetrasulfide, allyl
trisulfide, 1,2-dithiole, 2-vinyl-4H-1,3-dithiine, 3-vinyl-
1,2-dithiacyclohex-4-ene, carvone, trisulfide, 2-propenyl
propyl, methyl allyl disulfide, diacetone alcohol,
trisulfide (1E)-1-propenyl 2-propenyl, allyl sulfide,
1-propenyl methyl disulfide, and trisulfide (1Z)-1-
propenyl 2-propeny have shown a wide range of thera-
peutic activity [98]. Molecular docking of these
Current Opinion in Colloid & Interface Science 2021, 54:101458
organosulfur compounds against the angiotensin-
converting enzyme 2 (ACE2; a host receptor for SARS-
CoV-2) and the PDB6LU7 protein (main protease of
SARS-CoV-2) exhibited strong synergistic inhibition
[98]. ACE2 is the cellular receptor for SARS-CoV-1 and
SARS-CoV-2. Blocking this receptor could be the basic
choice for preventing the virus infection [39]. Likewise,
the S1 unit of SARS-CoV-2 spike glycoprotein respon-

sible for binding to the host ACE2 protein could be
putatively inhibited by the anethole (phenylmethyl
ether), a major constituent of star anise (Illicium verum
Hook. f.) EO and fennel (Foeniculum vulgare) EO, osel-
tamivir intermediate shikimic acid of star anise EO,
monoterpenoids (thymol and carvacrol) and acyclic
monoterpene alcohol (geraniol) of Lamiaceae and
Geraniaceae plants EOs, phenylpropanoids (cinna-
maldehyde and cinnamyl acetate) of cinnamon EO, L-4-
terpineol in tea tree and lavender EOs, and other ter-
penes, namely, pulegone, camphene, menthol, and

ocimene. These components may form a stable complex
with SARS-CoV-2 spike glycoprotein because of high
affinity and strong hydrophobic interactions, thereby
inhibit virus attachment and replication in the host
(Figure 3) [99]. Except for shikimic acid, other spike
glycoprotein inhibitors have also shown synergistic
interaction with other SARS-CoV-2 main proteases,
SARS-CoV2 ADP-ribose-100-phosphatase, SARS-CoV-2
endoribonuclease, SARS-CoV2 RNA-dependent RNA
polymerase, and human ACE [100]. Apart from plant
oils, the parenteral fish oil lipid emulsion rich in eico-

sapentaenoic acid and docosahexaenoic acid from
Omega-3 polyunsaturated fatty acid (n-3 PUFAs) also
been proposed as adjuvant immune pharmacotherapy
for hospitalized COVID-19 patients [101]. The molec-
ular docking analysis of w200 EO components against
SARS-CoV-2 proteins identified that the nano/micro/
bulk EO could be used effectively for the prevention
and inhibition of SARS-CoV-2 infection [98,100].
Advantages of EO NE as an antiviral agent
The nanoplatforms could be a dedicated antiviral ther-
apy system over the conventional chemotherapeutic
agents. Nanoplatforms can be categorized into two
groups: organic and inorganic nanoplatforms. The
organic nanomaterials are carbon-based materials,
especially NE (20e200 nm), liposomes (50e900 nm),
polymers (100e900 nm), and dendrimers (3e20 nm).

The inorganic nanoplatforms are generally composed of
an inorganic core (carbon nanotubes, quantum dots,
gold, and silica) and a shell (organic polymers or metals).
Each type of these nanosystem has its own unique
identity and features suitable for specific and special-
ized applications. However, the organic nanomaterials
such as spongosome lipid nanoparticles and cubosome
lipid nanoparticles and NEs, showed a remarkable drug-
delivery potency [102,103]. In addition, a single NEs
system can solubilize and deliver both hydrophilic and
www.sciencedirect.com
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lipophilic drugs. NEs can protect the drugs from hy-
drolysis and oxidation and improves the bioavailability of
the formulation. As a result of the thermodynamic and
kinetic stability, nontoxicity, and nonirritant property,
the NEs can be formulated as foams, creams, liquids,
and sprays and administered by oral, nasal, pulmonary,
enteric, topical, transdermal, and intravenous routes for
preventing or treating the COVID-19 infection [39].
Development of virus resistance against oil
components
Theemergence of drug resistance in the virus has become
a matter of great clinical concern over the past few de-

cades. Because of the magnitude and rate of viral repli-
cation and extended exposure to antiviral substances, the
emergence of drug resistance remains inevitable.
Continuous exposure of HIV strain NL4-3 to carvacrol, a
major component of oregano oil, resulted in a slow resis-
tance development over 7 months. The NL4-3 strain
achieved resistance through mutations in the envelope
glycoprotein, particularly a single-point silentmutation in
gp120 protein residues, Ala578Thr mutation in the gp41
residue’s pocket-forming domain in the N-terminal
heptad repeat, and Ala839Thr mutation in the cyto-

plasmic tail domain of gp41.Depending on the number of
mutations in the envelope glycoproteins, the resistance
level toward carvacrol increased [31]. Similarly, chicoric
acid, a major component present in the Ocimum basilicum
andEchinacea purpurea, turns out to be ineffective against
the NL4-3 strain upon 3 months exposure at low con-
centration. The resistance strains presented serine amino
acid instead of glycine amino acid at position 140 of HIV
integrase enzyme [104]. Certainly, this resistance devel-
opment demands an antiviral agent/system with multi-
faceted target sites to overcome the resistance
development in the virus. We strongly recommend that

the multidrugeloaded NE/ME system could be an
appropriate, alternative, broad-spectrum antiviral agent
to treat viral diseases, including SARS-CoV-2 (Figure 3).
Future scope
The poor water solubility of drugs remains a common and
enduring problem causing difficulty in the administration
and bioavailability. In addition, the solid formulations of
drugs are difficult to swallow by patients with chronic
diseases, especially advanced stages of AIDS. Therefore,
formulating the aqueous insoluble drugs into soluble and
bioavailable NEs is of great interest. Although there are a
wide variety of antiviral substances reported, there is a
huge lacuna in testing these compounds against many
viral infections and implementation of EO-NEs as ther-
apeutic options. In addition, many studies have not

demonstrated the in vivo efficacy of EO substances and
nanoformulations. In light of the current COVID-19
pandemic, the plethora of studies on the disease patho-
genesis and development of therapeutic and preventive
options, there are unexplored areas, such as repurposing
www.sciencedirect.com
and reformulating currently available antivirals, especially
as nanoformulations. Many researchers have suggested
that curcumin may play a prominent role in COVID-19
therapy [105e107]. A safe NE formulation with anti-
viral oil, antiviral surfactant/cosurfactant, and antiviral
drugs/substances may provide a promising solution for
COVID-19 therapy.

Furthermore, a variety of antiviral, anticancer, and anti-
inflammatory agents such as ribavirin and interferon-b,
a combination of Lpv/Rtv with ribavirin, remdesivir,
nelfinavir, arbidol, chloroquine, and renin-angiotensin
system inhibitors are also being recognized as potential
agents that can target COVID-19. However, many of
these drugs are insoluble in water and less bioavailable.
The nanoformulations with EOs could improve their
delivery, availability, and efficacy and also deliver both
water-soluble and water-insoluble drugs that are needed
to be administered. In sum, the present review em-

phasizes that NEs prepared with antiviral components
could be a potent therapeutic agent for treating
COVID-19 and other diseases and warrants additional
research into these areas.
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