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Essential sufficiency of zinc, ω-3 polyunsaturated 
fatty acids, vitamin D and magnesium for 

prevention and treatment of COVID-19, diabetes, 
cardiovascular diseases, lung diseases and 
cancer 
 

Abstract 

Despite the development of a number of vaccines for COVID-19, there remains a 
need for prevention and treatment of the virus SARS-CoV-2 and the ensuing 

disease COVID-19. This report discusses the key elements of SARS-CoV-2 and 
COVID-19 that can be readily treated: viral entry, the immune system and 
inflammation, and the cytokine storm. It is shown that the essential nutrients 

zinc, ω-3 polyunsaturated fatty acids (PUFAs), vitamin D and magnesium 
provide the ideal combination for prevention and treatment of COVID-19: 

prevention of SARS-CoV-2 entry to host cells, prevention of proliferation of 
SARS-CoV-2, inhibition of excessive inflammation, improved control of the 
regulation of the immune system, inhibition of the cytokine storm, and reduction 

in the effects of acute respiratory distress syndrome (ARDS) and associated non-
communicable diseases. It is emphasized that the non-communicable diseases 

associated with COVID-19 are inherently more prevalent in the elderly than the 
young, and that the maintenance of sufficiency of zinc, ω-3 PUFAs, vitamin D 
and magnesium is essential for the elderly to prevent the occurrence of non-

communicable diseases such as diabetes, cardiovascular diseases, lung diseases 
and cancer. Annual checking of levels of these essential nutrients is 

recommended for those over 65 years of age, together with appropriate 
adjustments in their intake, with these services and supplies being at 
government cost. The cost:benefit ratio would be huge as the cost of the 

nutrients and the testing of their levels would be very small compared with the 
cost savings of specialists and hospitalization. 
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Abbreviations 

1α,25(OH)2D3 1α,25-dihydroxyvitamin D3, calcitriol IL-x interleukin x 
25(OH)D 25-hydroxyvitamin D3 IL-1RN IL-1 receptor antagonist protein 
ACE angiotensin converting enzyme IP-10 interferon-γ-inducible protein 
ACE2 angiotensin converting enzyme 2 M1,2 macrophage type 1, (or 2) 
ADAM17 disintegrin and metalloproteinase 

domain 17 
MMP-2,9 matrix metallopeptidase 2, (or 9) 

ALA α-linolenic acid NF-κB nuclear factor κ-light-chain-enhancer 

of activated B cells 
Ang angiotensin P38 MAPK p38 mitogen-activated protein 

kinases 
ARDS acute respiratory distress syndrome PDGF platelet-derived growth factor 
ATR1 AT1 receptor PGE2 prostaglandin E2 
CCL2 

(MCP-1) 

monocyte chemotactic protein-1 PUFA polyunsaturated fatty acid 

CCL3  
(MIP-1α) 

macrophage inflammatory protein 
1α 

RANTES regulated upon activation, normal T 
cell expressed and presumably 
secreted 

c-Kit stem cell factor receptor RAS renin-angiotensin system 
CRP C-reactive protein ROS reactive oxygen species 
CYP27B1 1α-hydroxylase SAA serum amyloid A 

DHA docosahexaenoic acid SCF stem cell factor 
EPA eicosapentaenoic acid TGF-β transforming growth factor β 
ERK1/2 extracellular signal-regulated kinase 

1/2 
Th T helper 

FGF fibroblast growth factor TLR toll-like receptor 

G-CSF granulocyte colony-stimulating 
factor 

TMPRSS2 transmembrane serine protease 2 

GM-CSF granulocyte-macrophage colony-
stimulating factor 

TNF-α tumour necrosis factor α 

HCQ hydroxychloroquine Treg regulatory T cell 
HIF-1α hypoxia-inducible factor 1-α VDR vitamin D receptor 
IFN-γ interferon-γ VEGF vascular endothelial growth factor 

 

 

1. Introduction 

SARS-CoV is the original SARS that was virulent in the early 2000s; it is the 
virus that leads to the COVID-19 disease state. There is an immediate need for a 

prophylaxis and treatment for COVID-19. Even if the vaccines that are being 
distributed and further developed are successful in their efficacy and prevention 

of transference, there will always be a need for a prophylaxis and treatment for 
like viruses and comorbidities, particularly in poorer countries. It is therefore 
timely to present the advantages of the essential combination of zinc, ω-3 

PUFAs, vitamin D and magnesium as these treatments are low in cost, extensive 
in their actions, and safe as they are naturally present in the human body. 

 
The essential sufficiency of zinc, ω-3 PUFAs and vitamin D for prevention and 
treatment of cancers has been previously presented [1]. The prevention and 

treatment of COVID-19 and associated comorbidities is currently of the highest 
concern. Furthermore, the four principal non-communicable diseases that are 
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most prevalent world-wide are diabetes, cardiovascular diseases, lung diseases 
and cancer [2]. The comorbidities discussed here in the context of COVID-19 

include these non-communicable diseases as well as ageing and obesity. Zinc, 
ω-3 PUFAs, vitamin D and magnesium, although very different in their modes of 

action, have many similar end-effects. The commonality of zinc, ω-3 PUFAs, 
vitamin D and magnesium in inhibiting inflammatory situations, as well as their 
ability to correct immune dysfunction, together with the low cost and safety of 

these nutrients, makes them ideal as front-line prevention measures and 
adjuvants in treating COVID-19 and associated comorbidities, as well as the 

principal non-communicable diseases in non-COVID situations. 
 
Extensive literature searches were made in preparation of this manuscript. 

PubMed was principally used with a wide range of search strings. Separate 
searches were made for key concepts together with each of the individual 

components: ie, zinc; (PUFAs OR DHA OR EPA); vitamin D; magnesium. A 
PubMed search was conducted using the following search string: (COVID-19 OR 
SARS-CoV-2 OR coronavirus) AND zinc AND (PUFA OR DHA OR EPA) AND 

"vitamin D" AND magnesium. This search produced zero results suggesting that 
there have been virtually no studies examining the beneficial effects of 

supplementation of all four essential components together: zinc, ω-3 PUFAs, 
vitamin D and magnesium. Nevertheless, the four components are described or 

mentioned in a number of reviews of nutritional status and immune function 
and/or inflammation [eg, 3-6]. 
 

2. Zinc 

Zinc is a vital cofactor for more than 2000 transcription factors and 300 enzymes 
in regulating cell differentiation and proliferation, as well as basic metabolic 
functions of cells [7]. Zinc deficiency is a world-wide problem with approximately 

2 billion people subjected to zinc-deficient diets [7,8]. Zinc deficiency is not 
limited to the developing countries as it also exists in the industrialized world, 

mainly in the elderly [9,10]. In normal healthy adults, the plasma concentration 
of zinc is typically 14-23 μmol/L (0.9-1.5 µg/mL) [11]. 
 

Risk factors associated with Zn deficiency have been well reported in the 
literature [12-14]. Zinc deficiency can cause an imbalance in both the innate and 

adaptive immune systems, with severe deficiency leading to infections, skin 
disorders, gastrointestinal disorders, weight loss, growth retardation and male 
hypogonadism, amongst other symptoms [14-17]. Low zinc levels have been 

found to affect the function of various types of immune cells, including 
macrophages, neutrophils, mast cells and dendritic cells [11,18]. Zinc is also 

essential for the development, differentiation and activation of T cells [19]. Zinc 
deficiency can therefore result in impaired production, activation and maturation 
of natural killer cells (cell-mediated innate immunity), T cells (cell-mediated 

adaptive immunity) and B cells (humoral adaptive immunity) [5]. 
 

Zinc deficiency, which is commonly reported in the elderly, lowers immune 
function, decreases resistance to invading pathogens and increases the risk of 
contracting pneumonia [20,21]. Zinc deficiency also occurs frequently in patients 

with cardiovascular disease, chronic pulmonary disease, diabetes or obesity 
[22,23]. 
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Zinc exerts its anti-inflammatory activity by inhibiting activation and signalling of 
NF-κB, and through controlling regulatory T cell (Treg) functions [12]. Zinc 

supplementation causes pro-inflammatory Th17 cells to skew towards anti-
inflammatory Treg cells [24]. Zinc supplementation inhibits NF-κB through 

expression of the A20 protein, resulting in suppression of TNF-α, IL-1β, IL-6, IL-
8, IL-12, IL-18, IFN-γ, iNOS, COX-2, GM-CSF [12,25]. 
 

Macrophages, neutrophils, and T cells are activated through elevation of 
cytokines including IL-1, IL-6, and TNF-α, often leading to acute respiratory 

distress syndrome (ARDS) [26]. IL-6, IL-8 and TNF-α levels are elevated in 
elderly people who are zinc deficient, as well as in the obese [17,27], and zinc 
supplementation has been found to reduce these levels [10]. 

 
When levels of reactive oxygen species (ROS) are elevated, as is common in zinc 

deficiency, oxidative damage results. Zinc supplementation decreases ROS 
production and this has beneficial results, especially in the aged and in diabetes 
mellitus [13]. 

 
A number of comprehensive reviews of zinc and its involvement in ageing, 

COVID-type viruses and comorbidities have been presented [eg, 27,28]. Zinc 
sufficiency is vital for reducing risk factors associated with COVID-19, such as 

obesity, diabetes, cardiovascular diseases, lung diseases and ageing [12,29]. 
Physiological supplementation of Zn in ageing and in age-related degenerative 
diseases corrects immune defects and reduces infection relapse [30]. 

 
One of the problems of zinc supplementation has been the variability of zinc 

bioavailability in cells. It has been found that increasing the intracellular levels of 
zinc using ionophores such as pyrithione can effectively decrease the replication 
of a variety of viruses, including the replication of SARS-CoV [31]. 

Unfortunately, pyrithione is not recommended for use internally, whereas it is 
efficacious and safe when used topically. Other proven zinc ionophores include 

chloroquine and hydroxychloroquine (HCQ) [12,32,33], disulfiram [33], 

quercetin and epigallocatechin‑gallate [34], and zincophorin [35]. In addition, 
Rizzo [36] presented a sound rationale for ivermectin being an ionophore for 

zinc. A number of clinical studies are planned or underway that are based on 
HCQ and zinc, and ivermectin and zinc, together in some cases with an antibiotic 

such as azithromycin or doxycycline [37]. Interestingly, the HCQ studies are 
fundamentally based on testing whether zinc complements HCQ, and not 

whether HCQ complements zinc which would be expected if HCQ was recognized 
as an ionophore for zinc. A similar comment applies to ivermectin. The latest 
summary of ongoing studies at the time of preparing this manuscript was that of 

Pal et al [38]. 
 

Zinc is also known for its capacity to modulate antiviral and antibacterial 
immunity [12]. The antibacterial properties of zinc are well demonstrated 
against S. pneumoniae [12]. Moreover, zinc has the capacity to reduce the risk 

of bacterial co-infection by improving lung function through mucociliary 
clearance and protecting lung barrier function. 

 
Zinc inhibits SARS-CoV RNA polymerase, and thus its replication capacity [17]. 
Zinc has also been postulated as a stabilizer of cell membranes which could 

assist in blocking virus entry to cells [39]. In this context, zinc decreases activity 
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of angiotensin converting enzyme 2 (ACE2) which is required for binding with 
SARS-CoV-2 for cell entry [12]. Wessels and co-workers [40] concluded that zinc 

has multiple functions in inhibiting viral entry to host cells and activity: 
prevention of fusion with the host membrane, inhibiting viral polymerase and 

ensuing replication, impairing protein translation and processing, blocking viral 
particle release, and destabilizing the viral envelope. It has been shown that zinc 
deficiency increases the leakage of the epithelium of the respiratory tract using 

an ex vivo model [41], in contrast to zinc supplementation which has been 
shown to improve lung integrity in a mouse model through decreased 

recruitment of neutrophils to the lungs [42]. 
 
According to the NIH, US National Library of Medicine, there are no formal 

studies evaluating zinc for COVID-19 management that have been completed 
and reported to date, although several trials are currently registered to test zinc 

as part of different regimens to treat COVID-19 [37] Nevertheless, zinc 
supplementation has been found to have a beneficial effect on COVID-19 
patients [43,44]. A study of 47 COVID-19 patients showed that 57% of COVID-

19 patients were zinc deficient. These zinc deficient patients developed more 
complications and had increased mortality than those with normal zinc levels 

[45]. 
 

Regarding the elderly, supplementation with 45 mg elemental zinc per day 
markedly reduced the incidence of infection in elderly subjects, ranging from 55 
years to 87 years [10]. Consuming around 25-40 mg zinc per day is affordable, 

and less likely to induce human toxicity, as more than 200 to 400 mg per day of 
zinc consumption can induce adverse events [46]. 

 

3. ω-3 Polyunsaturated fatty acids (PUFAs) 

ω-3 PUFAs have not received the attention they deserve in the prevention and 
treatment of COVID-19 and associated comorbidities. ω-3 PUFAs have properties 

that are significantly different from those of zinc, vitamin D and magnesium, 
properties that are nevertheless ideally suited to prevention and treatment of 
COVID-19, obesity and diabetes, cardiovascular diseases, chronic pulmonary 

diseases and cancer, and improving immune function and anti-inflammatory 
effects in general ageing [1,47-49]. 

 
SARS-CoV and SARS-CoV-2 are very similar and they are both enveloped viruses 
that can lead to development of ARDS. ω-3 PUFAs, in particular 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been shown 
to inactivate enveloped viruses as well as to inhibit the proliferation of a range of 

microbial organisms [50]. 
 
The efficacy of α-linolenic acid (ALA) in treating inflammation and immune 

deficiency has been shown in a number of cases to be similar to that of DAH and 
EPA, although typically the potency is in the order DHA>EPA>ALA [eg, 49,51]. It 

has been reported that oil rich in ALA caused an immune modulation in cancer 
similar to that with fish oil, which was accompanied by a decrease in 
macrophage production of pro-inflammatory cytokines (eg, TNF-α and IL-6) 

[52]. 
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ω-3 PUFAs have an important role in regulating macrophages as they modulate 
the production of cytokines and chemokines by macrophages; they change 

macrophage phagocytosis capacity and they convert macrophages from pro-
inflammatory (M1 type macrophages) to anti-inflammatory (M2) type [53]. ω-3 

PUFAs and their metabolites have a modulating effect on neutrophils as they 
affect neutrophil migration, phagocytic capacity and the production of ROS [53]. 
 

Weill and co-workers [51] described the action of PUFAs as having two phases in 
inhibiting inflammation: a promotion phase in which ω-6 PUFAs such as AA lead 

to the synthesis of pro-inflammatory leukotrienes and prostaglandins through 
the action of cyclooxygenases, lipoxygenases and cytochrome P450; and a 
resolution phase where ω-3 PUFAs are precursors to potent active mediators 

such as resolvins, maresins and protectins which inhibit the synthesis of pro-
inflammatory cytokines through downregulation of the NF-κB pathway. Resolvins 

are sourced from EPA and DHA and protectins are sourced from DHA; they have 
anti-inflammatory effects by limiting leucocyte infiltration in infected tissues 
[51,54]. Maresins are sourced from DHA and they also resolve inflammation 

[51,55]. 
 

ω-3 PUFAs are notable for their influence on the properties of lipid rafts, which in 
turn perform an important role in the functioning of the outer leaflet of cellular 

membranes. ω-3 PUFAs regulate membrane properties such as membrane 
fluidity and signal transduction [1]. SARS-CoV has been shown to rely on lipid 
raft integrity for virus entry to host cells [56,57]. The entry receptor for the 

coronavirus, ACE2, is located in lipid rafts. The ACE2 receptor-mediated 
endocytosis is followed by activation of the spike protein in the viral envelope by 

the transmembrane serine protease 2 (TMPRSS2) which is located adjacent to 
the ACE2 receptor [51]. It has been shown that ω-3 PUFAs inhibit cellular entry 
through ACE2 and the enzymatic activity of TMPRSS2 [51,58]. The disruptive 

effect of ω-3 PUFAs on the integrity of lipid rafts has been described before [1], 
where ω-3 PUFAs were described as causing disruption to lipid rafts due to the 

very poor affinity of ω-3 PUFAs for cholesterol. It is therefore clear that ω-3 
PUFAs have multiple inhibitory effects on viral entry into host cells. 
 

There have been a number of clinical studies confirming the anti-inflammatory 
and immune response effects of ω-3 PUFA supplementation [4,5,59-61]. 

According to the NIH, US National Library of Medicine, there are no formal 
studies evaluating ω-3 PUFAs for COVID-19 management that have been 
completed and reported to date, although four trials are currently registered to 

test ω-3 PUFAs as part of different regimens [37]. 
 

4. Vitamin D 

Vitamin D obtained from sunlight or dietary sources is catalysed by vitamin D-

25-hydroxylase in the liver to 25-hydroxyvitamin D3 (25(OH)D), the major 
circulating form of vitamin D. 25(OH)D is biologically inert until it is hydroxylated 

by the enzyme 1α-hydroxylase (CYP27B1) in the kidney to the active form 
1α,25-dihydroxyvitamin D3 (calcitriol, 1α,25(OH)2D3) [62]. 
 

Calcitriol has important immunoregulatory and anti-inflammatory effects that it 
exerts through interaction with the vitamin D receptor (VDR). The calcitriol/VDR 

complex can interact with different gene transcription factors that control 
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inflammatory responses [63]. VDR and CYP27B1 are expressed in many types of 
immune cells, including lymphocytes, monocytes/macrophages, dendritic cells, T 

and B cells [64,65], and on pulmonary epithelial cells. These immune cells can 
convert 25(OH)D into biologically active calcitriol [63,66]. The calcitriol/VDR 

complex causes transcription of the antimicrobial peptides cathelicidins and 
defensins. Cathelicidins disrupt bacterial cell membranes as well as enveloped 

viruses such as SARS‑CoV‑2, while defensins promote chemotaxis of 

inflammatory cells through increased capillary permeability [65,67]. 
 

Synthesis of vitamin D in the skin is controlled by the season, the time of the 
exposure during the day and the latitude [68,69]. Vitamin D is poorly 

synthesized above (to the north) and below (to the south) of 35° latitude during 
winter months [70]. Lockdowns, implemented to minimize the spread of COVID-
19, are therefore detrimental to vitamin D synthesis as people are prevented 

from going out from their homes and absorbing the sunshine, which has a 
cumulative effect in the winter months when COVID-19 is more prevalent. The 

Black and Asian populations produce less vitamin D as a result of a higher skin 
melanin content than those with white skin [71]. Excess exposure to sunlight is 
the major cause of skin cancer [72]. However, there is an increased incidence of 

skin cancer and other cancers in countries with low levels of sunlight compared 
with those countries with higher levels of sunlight throughout the year [73,74], 

supporting the proposition that sunlight is beneficial for synthesis of vitamin D 
and subsequent prevention of cancers. There have been a number of reports 
where low sun exposure has been shown to have a negative impact on a range 

of health issues [75-77]. The advantage of sun exposure in providing vitamin D 
needs to be sensibly balanced against the potential risk of skin cancer from 

excessive sun exposure [78]. 
 
In the early stages of acute inflammation, vitamin D inhibits the proliferation of 

Th1 and Th17 cells and their abnormal release of IFN-γ, TNF-α, IL-1, IL-2, IL12, 
IL-23 and IL-17, IL-21 [65]. During the resolution phase of inflammation, 

vitamin D-mediates differentiation of Th2 cells and release of their anti-
inflammatory cytokines (IL-4 and IL-10), evading the organ damage that could 
be caused by an excessive immune response [65]. Vitamin D has powerful anti-

inflammatory properties that play an important role in controlling immune 
function in pulmonary infection; eg, it inhibits the effects of TNF-α, it inhibits NF-

κB activity in immune cells, it inhibits the activation of inflammasomes and 
hence release of IL-1β, and it decreases expression of IL-6, a major contributor 

to the so-called ‘cytokine storm’ [65,79]. 
 
The immune response acts in concert with the inflammatory response. The 

innate immune system acts as the first line of defence against invading 
pathogens such as viruses. Calcitriol enhances that defence by recruiting 

neutrophils, monocytes/macrophages and dendritic cells which kill and clear the 
viral pathogens, ultimately initiating the adaptive immune response. This 
response can be overactive resulting in the cytokine storm. Calcitriol inhibits this 

chronic immune response by downregulating the toll-like receptors (TLRs) that 
identify the viral pathogens initially, and inhibits the TNF-α/NF-κB and IFN-γ 

signalling pathways. Calcitriol shifts the T cell profile from the pro-inflammatory 
Th1 and Th17 forms to the anti-inflammatory Th2 and Treg forms, respectively 
[80]. Tregs provide a major defence against inflammation, releasing anti-

inflammatory cytokines IL-10 and TGF-β. Treg levels are markedly decreased in 
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severe COVID-19 disease, in contrast to high levels of Treg correlating with 
reduced levels of viral disease [81]. 

 
Natural killer cells are innate immune cells and they are known to possess strong 

antiviral activity as well as anticancer activity [82]. The count and activity of 
natural killer cells have been shown to be reduced below normal in COVID-19 
patients, and vitamin D has been found to increase the activity of natural killer 

cells [82]. 
 

Although there is inconsistency in the data, it is apparent that vitamin D 
deficiency is influential in increasing risk of acute respiratory tract infections 
[83], particularly when considering the decrease in natural synthesis of vitamin 

D in winter-time when acute respiratory infections are most prevalent. Ali [84] 
conducted a study of COVID-19 cases and mortality in 20 European countries, 

finding that vitamin D status correlated negatively with COVID-19 cases but not 
with mortality. The effectiveness of vitamin D sufficiency in reducing risk of 
acute viral respiratory tract infections and pneumonia was also shown. Similar 

results were reported by Kara and co-workers [85], who also discussed the link 
between latitude, temperature and humidity and season on viral respiratory tract 

infections. 
 

Allegra and co-workers [86] reported on the deficiency and supplementation of a 
range of vitamins including vitamin D, in particular in correlating 
hypovitaminosis with risk of contracting COVID-19 and associated mortality. 

They reported that there were positive and indeterminate results in their 
analysis of multiple studies. Vitamin D levels were particularly reduced in the 

ageing populations of Italy, Spain, and Switzerland, which were the most 
susceptible populations in relation to SARS-CoV-2 infection [87]. Additionally, 
Annweiler and co-workers [88] analysed a range of reports with the conclusion 

that inverse correlations were found between 25(OH)D levels in patients and 
COVID-19 incidence and mortality. Other reports have also covered the influence 

of vitamin D on outcomes of COVID-19 patients with the typical finding that 
vitamin D supplementation leads to an improved outcome for these patients and 
that vitamin D deficiency increases the risk and susceptibility for severe COVID-

19 disease and mortality [69,84,87,89-99]. 
 

In another review, Lau and co-workers [100] found that vitamin D deficiency 
was highly prevalent in patients with severe COVID-19, which correlated in turn 
with obesity, male sex, advanced age, population concentration in northern 

climates, coagulopathy and immune dysfunction. A further meta-analysis found 
that vitamin D deficiency increased risk of severe infections and mortality of the 

critically ill [101]. Deficiency of vitamin D has been further claimed to increase 
the risk of contracting osteoporosis, cancer, diabetes, multiple sclerosis, 
hypertension, and inflammatory and immunological diseases [102]. Although 

vitamin D and the benefits of supplementation in preventing cancer have been 
discussed previously [1], it is of note that a number of researchers have 

demonstrated that the risk of cancer incidence and fatality is reduced with 
vitamin D supplementation [eg, 103-105]. The mechanism of action of vitamin D 
in reducing cancer risk has also been addressed in a number of reviews [eg, 

106-108]. 
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It has been specified that a reasonable level of 25(OH)D in serum is at least 30 
ng/mL (75 nmol/L) [93,109], with a preference for 40–60 ng/mL (100–150 

nmol/L) to ensure good health, particularly in the elderly [69,110]. 
 

In summary, vitamin D impedes the entry and replication of SARS-CoV-2, 
reduces the levels of pro-inflammatory cytokines, increases the levels of anti-
inflammatory cytokines and increases the production of natural antimicrobial 

peptides [111]. 
 

5. Magnesium 

Magnesium is an essential element in the optimal biological functioning of the 

human body. Magnesium is the second most abundant intracellular cation in the 
human body and it is fundamental for oxidative phosphorylation, glycolysis, DNA 

transcription, and protein synthesis [112]. Magnesium levels are not routinely 
analysed in clinical practice [113] which means there has been limited reporting 
of magnesium correlations for COVID-19 patients [113,114]. Despite this, there 

have been some reports of magnesium status being lower in severe COVID-19 
cases than in less severe cases [115-117]. On the other hand, there have been 

a number of excellent reviews of magnesium and its essentiality in maintenance 
of proper immune function and control of oxidative stress and low-grade 
inflammation, particularly in the elderly [eg, 112,118-122]. 

 
Magnesium is essential for the activation of vitamin D [122,123]. Magnesium 

and vitamin D are therefore both important for immune function and cellular 
stability and sufficiency of both is required to counteract the detrimental effects 

of COVID-19 development [122]. 
 
Deficiency of magnesium is common and it has been estimated that in a given 

population up to 30% may have a magnesium deficiency [122]. Magnesium is 
principally stored in bone (>50%) with only ~1% in serum [124]. Magnesium 

homeostasis is maintained by absorption from the gastrointestinal tract, renal 
excretion and exchange from bone. Estimates of magnesium sufficiency are 
therefore dubious if reliant on serum analysis alone [118]. However, 0.75 

mmol/L has been suggested as the serum level below which magnesium 
deficiency exists [125], and 0.85 mmol/L as the required level for magnesium 

sufficiency [118]. 
 
Magnesium has anti-inflammatory and anti-oxidative effects, as well as providing 

vasodilation and neuroprotection [120]. Magnesium suppresses NF-κB, 
expression of IL-6 and TNF-α, and levels of C-reactive protein (CRP) 

[6,121,126]. Magnesium therefore regulates the cardiovascular, digestive, 
neurological and respiratory systems, contributing significantly to maintenance 
of normal human health [120]. In this context, magnesium dietary intakes 

correlate negatively with cardiovascular disease, kidney disease and diabetes 
[118,127]. 

 

6. COVID-19 

SARS-CoV-2 is an insidious virus that causes the disease COVID-19. There are 
many similarities between SARS-CoV-2 and the earlier coronavirus SARS-CoV. In 
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order to present the overall essentiality of ensuring sufficiency of zinc, ω-3 
PUFAs, vitamin D and magnesium, the key contributing stages of SARS-CoV-2 

incursion and COVID-19 development will be discussed. These are viral entry, 
the involvement of the immune system and inflammation, and the subsequent 

cytokine storm that causes the eventual morbidity and mortality that is 
associated with COVID-19. 
 

6.1 Viral entry 

SARS-CoV-2 enters the host cells via the angiotensin-converting enzyme 2 

(ACE2) receptor, in the same manner as SARS-CoV [128]. The spike protein of 
SARS-CoV-2 binds to ACE2, enabling endocytosis, which is followed by activation 

of the S protein in the viral envelope utilizing the transmembrane serine 
protease 2 (TMPRSS2), a membrane-bound enzyme located adjacent to the 
ACE2 receptor [51]. At the same time, the ADAM17 (disintegrin and 

metalloproteinase domain 17) ‘sheddase’ is activated by the SARS-CoV-2-ACE2 
complex which in turn leads to ACE2 ectodomain shedding. Activation of the 

ADAM17 sheddase may also cause cleavage of TNF-α and IL-6 as well as other 
pro-inflammatory mediators [128]. It should be noted that the ACE2-binding 
affinity of the of S protein of SARS-CoV-2 is 10- to 20-fold higher than that of 

SARS-CoV [129], suggesting that SARS-CoV-2 is significantly more infectious 
than its predecessor SARS-CoV. 

 
The balance of the renin-angiotensin system (RAS) is vital in controlling host-cell 
entry of viruses as well as associated comorbidities, as RAS regulates blood 

pressure. RAS is essentially a balance between ACE and ACE2, as illustrated in 
Figure 1. The ACE pathway requires conversion of angiotensin (Ang) I to Ang II 

and subsequent binding to the AT1 receptor (AT1R), which has dire 
consequences such as vasoconstriction, proliferation, inflammation, and 
apoptosis [91]. The alternative route involves conversion of Ang I and Ang II to 

angiotensin 1-9 and angiotensin 1-7, respectively, through the enzymatic action 
of ACE2. Angiotensin 1-9 is also converted to angiotensin 1-7 by ACE. 

 
ACE2 is required for viral entry to host cells, but it is also desirable for 

conversion of Ang I and Ang II to angiotensins 1-9 and 1-7, respectively, leading 
to activation of the Mas receptor. Figure 1 shows that this in turn will cause 
positive pathology in terms of vasodilation, and anti-inflammatory, anti-oxidative 

and anti-fibrosis effects [130]. 
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Figure 1. RAS pathways showing the balance between ACE and ACE2. 
 
There has been fairly extensive discussion about the contradictory actions of 

ACE2 in viral entry to host cells and its regulation of the RAS where modulation 
of RAS has a positive pathological effect. The ACE2 receptor is expressed in lung 

tissues, and a range of other tissues such as nose, heart, endothelium, kidney 
and intestine [131,132]. It has now been resolved that once the virus binds to 

ACE2, it effectively removes it from further action, promoting ACE activity which 
in turn leads to production of more Ang II. The removal of ACE2 from action 
therefore causes the virus to have a free run allowing it to proliferate, leading to 

enhanced morbidity. 
 

The expression of ACE2 has been found to be lower in males than in females and 
lower in older adults than in young people, which could explain the higher 
incidence of deaths in elderly males with COVID-19 [130,133]. This category of 

patients has a worse prognosis when they are also implicated with comorbidities 
such as cardiovascular diseases, diabetes, hypertension, and obesity, all of 

which are stimulated by RAS [130]. It is therefore important to enhance the 
expression of ACE2 and its activity, and at the same time ensure that the entry 
of the virus to host cells is inhibited. This can be achieved by ensuring that 

sufficient levels of zinc, ω-3 PUFAs, vitamin D and magnesium are maintained at 
all times during prevention and treatment of COVID-19.  

 
It should be noted that although there are no reported studies of the effect of 
zinc on ACE2 for host-cell entry, zinc does protect the human body from virus 

entry by improved mucociliary clearance of viruses as well as preserving tissue 
barriers [42]. It has been recognized that enhanced expression of ACE2 by 

calcitriol alleviates acute lung injury induced by SARS-CoV-2 [134-136]. 
Calcitriol also supresses renin activity and therefore reduces the generation of 
angiotensin II which causes pulmonary vasoconstriction [134]. As stated above, 

binding of ACE2 and cellular entry are inhibited by ω-3 PUFAs [51,58]. 
 

6.2 The immune system 

The immune system provides two lines of defence: innate and adaptive 

immunity. Innate immunity is the first line of defence, reliant on mucosal 
barriers, monocytes, macrophages, neutrophils, eosinophils, and dendritic cells. 
Adaptive immunity is the process by which immunological memory to a specific 
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antigen is created but more slowly than innate immunity. Dendritic cells also 
function as antigen-presenting cells, activating B and T lymphocytes of the 

adaptive immune response [53]. 
 

Mast cells are present in the submucosa of the nasal cavity and respiratory tract 
where they provide a protective barrier against microorganisms and they can be 
virus-activated [29]. When activated, mast cells initially release preformed 

inflammatory molecules such as histamine and proteases, while late activation 
activates the synthesis and release of pro-inflammatory IL-1 family members, 

including IL-1, IL-6, and IL-33 [137]. Mast cells therefore normally release a 
wide range of pro-inflammatory mediators. Vitamin D diverts the release 
characteristics of mast cells to produce and excrete IL-10 without inducing 

degranulation of pro-inflammatory mediators [138]. IL-10 is an important anti-
inflammatory cytokine that inhibits the production of pro-inflammatory 

cytokines, such as IFN-γ, IL-2, IL-3, TNF-α, and GM-CSF [139]. 
 
Macrophages are fundamental to the innate immune system as they scavenge 

invading pathogens: they recognize invading pathogens through use of 
pathogen-associated molecular patterns which are in turn recognized by TLRs 

present on their surface. Macrophages then phagocytose the invading pathogen 
and at the same time secrete ROS and a large range of cytokines and 

chemokines to recruit and activate other types of immune cells from both the 
innate and the adaptive immune systems [53]. The most damaging cytokines 
released by macrophages when over-activated are IL-1β, IL-6 and TNF-α [140]. 

 
Eosinophils release pro-inflammatory mediators, including degranulated cationic 

proteins, synthesized eicosanoids, and cytokines [141]. Neutrophils are recruited 
to the initial site of inflammation where they also have a role in removing 
pathogens. Neutrophils can also interact with the adaptive immune system by 

promoting naïve T cells to transition into T helper 1 (Th1) cells [53]. 
 

T cells are thymus-derived lymphocytes. T cells can be classified into helper (Th) 
cells that regulate the function of other immune cells, and cytotoxic T cells that 
destroy virus-infected cells. Th cells differentiate into Th1, Th2, Th17 and Th22 

cells. Th1 cells secrete IFN-γ; Th2 cells secrete IL-4; Th17 cells secrete IL-17A, 
IL17-F, IL-21, and IL-22; and Th22 cells secrete IL-22. Th1 and Th17 cells are 

pro-inflammatory, whereas Th2 cells are essentially anti-inflammatory [53]. 
Regulatory T cells (Tregs) suppress the activation of other immune cells such as 
Th1 cells, Th17 cells, B cells, macrophages or dendritic cells, through secretion 

of IL-10 and TGF-β [53]. 
 

The impact provided by the various contributing immune system cells on the 
SARS-CoV and SARS-CoV-2 viruses is given in Table 1. It can be seen that the 
release of cytokines and chemokines is potentially huge, leading to the potential 

for production of the cytokine storm. 
 

Table 1. Mediators released/activated in cells in SARS and COVID-19 
Cell Type Mediators released/activated References 
Mast cells Histamine, tryptase, NF-κB, IL-1α/β, 

IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-9, 
IL-10, IL-11, IL-12, IL-13, IL-15, IL-16, 
IL-17, IL-18, IL-25, IL-33, TNF-α, IFN-γ, 
TGF-β, CCL2, CCL3, GM-CSF, VEGF, 

29,142-146 
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PDGF, SCF, PGE2, ROS, TLR2, c-Kit 

Monocytes/macrophages NF-κB, TNFα, IL-1α/β, IL-1RA, IL-6, 

IL-8, IL-10, IL-12, IFN-γ, TGF-β, ROS, 
TLR2, TLR4 

6,110,147-150 

Eosinophils IL-1α, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, 
IL-10, IL-11, IL-12, IL-13, IL-16, IL-18, 
IL-25, TNF-α, IFN-γ, TGF-α/β, VEGF, 

GM-CSF 

145,151-154 

Neutrophils IL-1α/β, IL-1RA, IL-3, IL-4, IL-6, IL-7, 
IL-8, IL-9, IL-10, IL-12, IL-16, IL-17, 
IL-18, IL-23, Th1/Th2, TGF-α/β, IFN-α, 
IFN-γ, TNF-α, G-CSG, GM-CSF, SCF, 
FGF, VEGF, CCL2, ROS, TLR2, TLR4 

155-158 

Dendritic cells IL-6, IL-10, IL-12, TNF-α, CCL3, 
RANTES, IP-10, CCL2 

110,142,159 

Th1 IFN-γ, IL-1β, IL-2, IL-12, TNF-α 110,148 

Th2 TGF-β, IL-4, IL-5, IL-9, IL-10, IL-13 110,148 

Th17 IL-17A, IL-17F, IL-21, IL-22 110,160 

Treg IL-10, TGF-β 53,110 
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Table 2 shows the key immune cells and regulators that contribute to immune 

function and inflammation together with the correcting effects of zinc, ω-3 
PUFAs, vitamin D and magnesium on each of these immune cells and regulators 

when immune function and inflammation are over-activated. 
 
Table 2. Inhibition()/activation() of immune cells cells/regulators 
Cell/regulator Zinc ω-3 PUFAs Vitamin D Magnesium 

Mast cells  
[161,162] 

 
[144,163,164] 

 
[138,165-167] 

 
[168,169] 

Monocytes  
[170,171] 

 
[172,173] 

 
[147] 

 
[174,175] 

Macrophages  
[176] 

 
[177,178] 

 
[179,180] 

 
[175,181,182] 

Neutrophils  
[171,183,184] 

 
[185,186] 

 
[187,188] 

 
[181,189] 

Dendritic Cells  
[190,191] 

 
[192,193] 

 
[63,194,195] 

 
[196] 

Eosinophils  
[171,197,198] 

 
[172,185,199] 

 
[200,201] 

 
[202] 

Th1/Th2 ratio  
[203,204] 

 
[205,206] 

 
[207] 

 
[208] 

Th17  
[24,209-211] 

 
[212-214] 

 
[215,216] 

— 

Treg  
[24,211,217,218] 

 
[213,219-221] 

 
[222-224] 

— 

Inflammasome/ 

caspase-1 

 
[225,226] 

 
[227-229] 

 
[79,230-232] 

 
[233,234] 

NF-κB  
[12,17,25,235] 

 
[132,236,237] 

 
[79,238-240] 

 
[121,174,241] 

— indicates no literature reference found 

 

6.3 Cytokine storm 

The uncontrolled release of immune cells and excessive release of pro-
inflammatory cytokines has been termed the ‘cytokine storm’. The cytokine 
storm normally presents as systemic inflammation, excessive oxidative stress 

and multiple organ failure [29,51], predominantly resulting in ARDS. The key to 
counteracting the cytokine storm lies in counteracting excessive inflammation. 

This can be largely addressed through maintenance of sufficiency of the essential 
nutrients zinc, ω-3 PUFAs, vitamin D and magnesium. Table 3 gives the key pro-
inflammatory cytokines and other mediators involved in a cytokine storm, 

together with the inhibitory effects of zinc, ω-3 PUFAs, vitamin D and 
magnesium. It can be seen that these four nutrients are widely effective in 

inhibiting the key pro-inflammatory mediators of the cytokine storm. 
  

Jo
urn

al 
Pre-

pro
of



 
Table 3. Key pro-inflammatory mediators in a cytokine storm. 

 inhibits the mediator. 
Mechanisms Effect of  

Zinc  
on mediator 

[Refs] 

Effect of  

ω-3 PUFAs  
on mediator 

[Refs] 

Effect of  

Vitamin D  
on mediator 

[Refs] 

Effect of 

Magnesium  
on mediator 

[Refs] 

TNF-α  
[9,235] 

 
[177,242-244] 

 
[245-248] 

 
[126,174,249] 

IFN-γ  
[217,218,250] 

 

[193,212,244] 

 
[247,248,251-253] 

 
[208,249] 

IL-1β  
[9,210,254] 

 
[177,227,244,255, 

256] 

 
[79,231,232,248, 

257] 

 
[182,233,249,258, 

259] 

IL-6  
[17,260] 

 
[177,212,243,244, 

256] 

 
[65,248,261,262] 

 
[121,126,174,182, 

263] 

IL-12  
[264] 

 
[172,265] 

 
[111,195,266,267] 

— 

IL-17  
[209,210,268] 

 
[185,193,212,244] 

 
[216,248,269,270] 

— 

IL-18  
[271] 

 
[228] 

 
[272] 

— 

IL-33  
[273] 

 
[274] 

 
[275] 

— 

CCL2  

(MCP-1) 

 
[9,171] 

 
[276-279] 

 
[280-282] 

 
[263,283] 

CCL3  

(MIP-1α) 

 
[284] 

 

[276,285] 

 
[216,286] 

— 

C-reactive 

protein (CRP) 

 
[287-289] 

 

[290-292] 

 
[93,293,294] 

 
[121,126,295] 

GM-CSF  
[296] 

 

[297,298] 

 
[299-302] 

— 

NF-κB  
[12,25,226,235] 

 
[132,236,237] 

 
[79,238-240] 

 
[121,174,241] 

— indicates no literature reference found 

 

7. Ageing, obesity and non-communicable diseases 

Deficiencies in zinc, ω-3 PUFAs, vitamin D and magnesium have been shown 
above to provide significant risk factors for severe COVID-19 disease as well as 

for pre-existing conditions such as ageing, obesity/diabetes, cardiovascular 
diseases, chronic respiratory diseases and cancer. All of these comorbidities are 
accompanied by systemic inflammation which likely impacts on the COVID-19 

outcome [29]. 
 

Table 4 lists the immune cells and mediators that are released in COVID-19, the 
cytokine storm, ageing, obesity/diabetes and the principal non-communicable 
diseases. It can be seen that many of the mediators, particularly those that are 

key pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α and IFN-γ, are 
common to COVID-19, the cytokine storm (which in turn is part of COVID-19) 

and the listed comorbidities. The entry in Table 4 for chronic respiratory diseases 
has been taken to be the same as the cytokine storm, which is the principal 
force behind creation of ARDS. 
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Table 4 Key cells and mediators associated with COVID-19, cytokine storm, 

ageing and comorbidities 
Comorbidity/Activity Cells/Mediators/Transcription factors References 

COVID-19 Mast cells, neutrophils, eosinophils, 
monocytes, macrophages, dendritic cells, 
NF-κB, IL-1β, IL-1RA, IL-2, IL-6, IL-7, 
IL-8, IL-9, IL-10, IL-12, IL-13, IL-17, 
IL-18, IL-21, IL-22, IL-33, TNF-α, IFN-γ, 
GM-CSF, G-CSF, CCL2, CCL3, IP-10, 

Th1/Th2, PDGF, VEGF, FGF, CRP 

29,133,142,148,160,303 

Cytokine storm IL-1β, IL-6, IL-7, IL-8, IL-9, IL-12, IL-17, 
IL-18, IL-33, TNF-α, IFN-γ, CCL2, CCL3, 
FGF, G-CSF, GM-CSF, IP-10, PDGF, VEGF, 
CRP 

29,142,155,160,304 

Ageing IL-1, IL-1RN, IL-2, IL-6, IL-8, IL-12, 
IL-13, IL-18, CRP, IFN-γ, TGF-β, TNF-α, 

SAA 

305,306 

Obesity/diabetes M2M1, Th2Th1, TregTh17, B cells, 

IL-1β, IL-6, IL-7, IL-22, IFN-γ, TNF-β, 
CCL2, TNF-α 

305,301 

Cardiovascular 
diseases 

NF-κB, IL-1β, IL-2, IL-4, IL-6, IL-17, 
GM-CSF, MMP-2, MMP-9, CCL2, ERK1/2, 
P38 MAPK, TNF-α, IFN-γ, HIF-1α, TLR2, 
TLR4 

302,309 

Chronic respiratory 
diseases 

IL-1β, IL-6, IL-7, IL-8, IL-9, IL-12, IL-17, 
IL-18, IL-33, TNF-α, IFN-γ, CCL2, CCL3, 
FGF, G-CSF, GM-CSF, IP-10, PDGF, VEGF 

29,142,155,160,304 

Cancer NF-κB, p53, COX-2/PGE2, TNFα, IL-1β, 

IL-6, IL-8, p27, PPARα,γ, GSK-3, EGFR, 
HER2, VEGF, Cyclin D1, c-Myc, PTEN, 
MDM2, HIPK2, A20, p21, TGF-β, PARP, 
caspases-3,7,8,9, Bcl-2, Bcl-xL, Bax, 

cytochrome c, ROS, iNOS, MMP9, HIF-1α, 
TLR4,  

1 

 

7.1 Ageing 

As the human body ages, there is a gradual decline in functioning of the innate 
and adaptive immune systems, designated immunosenescence, as well as an 
increase in the levels of pro-inflammatory cytokines IL-1β, IL-2, IL-6, IL-8, TNF-

α and IFN-γ, as well as CRP [148,305,310]. There is also a decline in ACE2 
expression, similarly to COVID-19 [148]. Ageing also produces excess ROS 

production which can initiate pro-inflammatory generation through activation of 
transcription factors such as NF-κB [148]. T-cell function has been found to 
become increasingly defective in the elderly, decreasing immune function [20]. 

 
Maintenance of healthy functioning of cells is of increasing importance as ageing 

progresses. Working against this, deficiencies in one or more of zinc, ω-3 PUFAs, 
vitamin D and magnesium will lead inevitably to a diminution in immune function 
and an increase in levels of inflammatory mediators [21,27,311]. Deficiencies of 

zinc, ω-3 PUFAs, vitamin D and magnesium increase with ageing, frequently 
contributing to age-related diseases such as diabetes, cardiovascular diseases 

and chronic pulmonary diseases [27]. 
 
Diet is very important for adequate intake of zinc, ω-3 PUFAs and magnesium as 

the importance and interest in quality of food diminishes with old-age, as well as 
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the degree of absorption [312] In addition, the exposure of the aged to sunlight 
becomes severely limited, leading to diminished vitamin D levels. 

 

7.2 Obesity/diabetes 

Obesity is related to the accumulation of pro-inflammatory cells in visceral 
adipose tissue, which can lead to insulin resistance and to diabetes mellitus 

[151]. Obesity is associated with low-grade inflammation, which in turn is 
associated with diminution of the innate and adaptive immune responses. Low-
grade inflammation is linked to adipocyte hypoxia and dysfunction [307]. There 

is a significant release of pro-inflammatory cytokines (eg, IL-1β, IL-6, TNF-α) 
that activate in turn macrophages, T cells and B cells, creating an auto-

regenerating loop [307,313]. Obesity is also associated with increased oxidative 
stress [314]. 
 

Zinc deficiency has been shown in a number of studies to be associated with 
obesity and diabetes [315-317]. Zinc is essential for the normal physiological 

processing of insulin and is therefore directly associated with diabetes [318]. 
 
The ω-6/ω-3 PUFA ratio has increase dramatically over the past 50 years and it 

has contributed to the increased proportion of the population who are obese 
[319]. It has been shown that this trend can be reversed by increasing the EPA 

and DHA intakes [319]. It has been recommended that fish oil emulsion 
supplement be administered to those who are obese and at risk of contracting 
COVID-19, due to the immune modulatory properties of EPA and DHA [320]. 

 
Obesity increases the risk of vitamin D deficiency, mainly due to the higher 

adiposity of the obese individual. Vitamin D is fat-soluble and is predominantly 
stored in the adipose tissues, leading to low levels of vitamin D in the circulation 
[321]. Low vitamin D levels have been reported consistently across age groups, 

ethnicity and geography [322,323]. Meta-analyses found that vitamin D 
deficiency correlated with increased obesity [321,324]. Vitamin D 

supplementation has been shown to reduce insulin resistance [325] and diabetes 
mellitus has been found to correlate with vitamin D deficiency in older adults 

[326]. 
 
There is a positive relationship between magnesium deficiency and obesity and 

chronic inflammation [327]. In turn, obesity is a major risk factor for chronic 
diseases which depend on chronic inflammation, such as diabetes, 

cardiovascular diseases and cancer [327]. 
 

7.3 Cardiovascular diseases 

A large proportion of COVID-19 patients have risk factors associated with 
cardiovascular diseases [328]. The high levels of inflammation associated with 

COVID-19 can induce cardiovascular diseases [80,328]. Studies of COVID-19 
individuals with underlying cardiovascular disease were at increased risk of 

severe disease and mortality [329]. 
 
Choi and co-workers [330] reviewed the literature covering zinc status and 

cardiovascular diseases. They found that zinc deficiency was associated with 
atherosclerosis, hypertension, myocardial infarction, atrial fibrillation and 
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congestive heart failure. Similarly, Jurowski and co-workers [331] had reviewed 
the literature, reporting that zinc deficiency correlated with hypertension, 

atherosclerosis and heart failure. Further reports support the fact that zinc 
deficiency is associated with cardiovascular diseases [22,23]. 

 
The cardioprotective effects of n-3 PUFAs and their metabolites are ascribed 
mainly to their immunomodulatory properties. Emerging evidence demonstrates 

the ability of ω-3 PUFAs to reduce circulating levels of inflammatory chemokines, 
cytokines, and the pro-inflammatory metabolites derived from ω-6 PUFAs 

[332,333]. A number of studies have found that higher consumption of ω-3 
PUFAs lowers the number of deaths related to cardiovascular disease [334-337]. 
Darwesh and co-workers [338] presented a detailed report on the positive 

effects of ω-3 PUFAs in cardiovascular diseases, which included stabilization of 
atherosclerotic plaques, reducing the incidence of thrombus formation, enriching 

cellular membranes and altering the structure of lipid rafts and their function to 
benefit the treatment of cardiovascular diseases. 
 

There is a strong correlation between obesity and vitamin D deficiency, as well 
as between obesity and cardiovascular disease. It would therefore be anticipated 

that there would be a benefit in supplemental vitamin D for obese patients at 
risk of cardiovascular disease [339]. A study of 137 elderly Brazilian patients 

found that 65% were vitamin D deficient and there was a strong association 
between vitamin D deficiency and the risk of heart failure [340].] A number of 
literature reviews have examined the association between vitamin D deficiency 

and the incidence of cardiovascular diseases, with the conclusion that vitamin D 
decreases inflammation and pro-inflammatory cytokines causing a strong 

association with cardiovascular diseases [308,341,342]. 
 
The anti-inflammatory and anti-oxidative effects of magnesium provide 

cardiovascular protection [119,120]. Qu and co-workers [127] provided a meta-
analysis that showed an inverse correlation between magnesium serum 

concentrations and the risk of total cardiovascular events. 
 

7.4 Lung diseases 

Lung diseases include pneumonia, bronchitis and asthma. The most common 
lung disease associated with COVID-19 is acute respiratory distress syndrome 

(ARDS), promoted most often by the cytokine storm, and which is often lethal 
[51]. ARDS occurs in approximately 10% of COVID-19 patients [51]. 

 
Meydani and co-workers [20] found that nursing home elderly who were zinc 
deficient were more likely to contract pneumonia with its subsequent 

consequences. Further reports support the fact that zinc deficiency is associated 
with chronic pulmonary diseases [21,23]. Skalny and co-workers [12] deduced 

that zinc has the propensity to alleviate COVID-19 through its properties of 
reducing inflammation, improving mucociliary clearance and promoting antiviral 
and antibacterial immunity. 

 
Weill and co-workers [51] discussed the properties of ω-3 PUFAs, which include 

interference of viral entry and replication and inhibition of inflammation, leading 
to improvement of the outcome of critically ill patients with ARDS. It was shown 
in a study where bronchoalveolar lavage fluid was added to A549 cells that by 

Jo
urn

al 
Pre-

pro
of



increasing the ratio of ω-3:ω-6 PUFAs, there was a decrease in levels of NF-κB, 
COX-2 and PGE2, and an increase in release of IL-10 and PPARγ [343]. 

 
It has been noted that there is a strong link between seasonality of low vitamin 

D levels and occurrence and prevalence of influenza in winter [80]. It has also 
been reported that a high percentage (>80%) of chronic obstructive pulmonary 
disease patients had low vitamin D levels [344]. The association between higher 

vitamin D levels and improved lung function has also been reported [345-347]. 
Moreover, it has been reported that vitamin D deficiency is associated with 

occurrence of respiratory disease and ensuing mortality [90,347-349]. 
 
The role of magnesium in lung function was discussed by de Baaij and co-

workers [124], where magnesium was described as having three roles: a strong 
vasodilator and bronchodilator effect, regulation of the release of acetylcholine 

and histamine, and as an anti-inflammatory agent. Magnesium was therefore 
suggested as a useful treatment for asthma and chronic obstructive pulmonary 
disorder. Micke and co-workers [114] also discussed magnesium and lung 

function in some detail, with a similar analysis of the anticholinergic, 
antihistaminic and anti-inflammatory effects of magnesium. 

 

7.5 Cancer 

Cancer has been discussed in the context of essentiality of sufficiency of zinc, 
ω-3 PUFAs and vitamin D [1]. The opportunity of including magnesium as a 
further essential component in prevention and treatment of cancers is taken 

here, as magnesium is essential for the activation of vitamin D [122,123]. 
Magnesium, as discussed above, is also active in regulating the immune system 

and controlling untoward oxidative stress and inflammation [119,120] which are 
prevalent in the early development of cancers [350]. 
 

8. Discussion 

COVID-19 and its virus SARS-CoV-2 have provided an ideal opportunity to reset 
the approach to prevention and treatment of non-communicable diseases, 
particularly those that occur predominantly in the aged. COVID-19 has been 

shown to be linked to comorbidities such as senescence occurring in the aged, 
obesity/diabetes which are more severe in the aged, and cardiovascular diseases 

and chronic pulmonary diseases which are more prevalent in the aged, as well 
as cancers. It is therefore opportune to examine carefully the prevention and 

treatment of COVID-19 and those diseases, with particular attention to those 
features and characteristics that are common to these diseases. The most 
outstanding common features are inflammation and overactivity of the innate 

and adaptive immune systems. Control of inflammation and the immune system 
are fundamentally dependent on sufficiency of the essential nutrients zinc, ω-3 

PUFAs, vitamin D and magnesium. 
 
This paper has been directed towards an appreciation of the benefits of having 

sufficiency of zinc, ω-3 PUFAs, vitamin D and magnesium. These four 
components are essential as they are natural to the normal functioning of cells 

and multiple other components of the human body. They are extremely safe 
when supplemented in a controlled manner. Control in the aged (eg, 65 years 
and older) can be maintained by annual analyses of their serum levels. This can 
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be achieved with government support, as well as by government supplies of 
supplements where necessary. The cost of this service to those over 65 would be 

small compared with the potential savings in hospitalization and critical care 
costs. As an example, a German estimate of the effect of supplementing vitamin 

D alone on the cost savings of cancer alone in Germany showed a cost saving of 
approximately €254 million per year with a prevention of almost 30,000 deaths 
to cancer per year [351]. 

 
Zinc, ω-3 PUFAs, vitamin D and magnesium are pleiotropic as they allow, and in 

fact boost, the functioning of granulocytes such as mast cells, neutrophils and 
eosinophils, as well as monocytes/macrophages, dendritic cells, T cells and B 
cells in normal conditions and when there are minor invasions of pathogens such 

as minor viral and bacterial infections. In contrast, zinc, ω-3 PUFAs, vitamin D 
and magnesium all act to suppress hyperinflammation and major disruptions of 

the immune system that occur when there is a significant invasion by viral or 
bacterial pathogens such as SARS-CoV-2 or non-communicable diseases such as 
diabetes, cardiovascular disease or chronic pulmonary disease. In these 

situations, zinc, ω-3 PUFAs, vitamin D and magnesium have the ability to 
suppress excessive inflammation and dysregulation of the immune system. 

These nutrients are therefore essential in all aspects; when present in sufficiency 
they are directed towards ensuring good health for humans at all times and for 

all ages. This is not normally the case with non-natural drugs that are prescribed 
for treatment of particular pathological conditions. 
 

Vaccines are rarely 100% in their prevention of transmission and their 
prevention of humans contracting the particular disease; there are potential 

problems with mutations and diminution of their effectiveness. It is of note that 
vaccines perform their function through the adaptive immune system, whilst 
zinc, ω-3 PUFAs, vitamin D and magnesium affect both the innate and adaptive 

immune systems. Supplementation of the four nutrients in treatment of COVID-
19 is therefore desirable, especially if this supplementation is beneficial in 

preventing or treating non-communicable diseases or reducing the adverse 
effects of ageing. 
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Highlights 

 

Title: Essential sufficiency of zinc, ω-3 polyunsaturated fatty 

acids, vitamin D and magnesium for prevention and treatment of 
COVID-19, diabetes, cardiovascular diseases, lung diseases and 

cancer 

 

 Zinc, ω-3 PUFAs, vitamin D and magnesium are inexpensive, safe and 
essential, especially for the aged 

 These nutrients inhibit viral entry, viral proliferation, inflammation and 
immune dysfunction 

 These nutrients will assist in preventing and alleviating COVID-19 and 

associated comorbidities 
 Levels of these nutrients should be checked annually and supplemented 

for sufficiency in the aged 
 Costs of checking and provision of supplements should be at government 

expense for the aged 
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