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Abstract
Major depressive disorder (MDD) is associated with premature mortality and is an independent risk factor for a broad
range of diseases, especially those associated with aging, such as cardiovascular disease, diabetes, and Alzheimer’s
disease. However, the pathophysiology underlying increased rates of somatic disease in MDD remains unknown. It has
been proposed that MDD represents a state of accelerated cellular aging, and several measures of cellular aging have
been developed in recent years. Among such metrics, estimators of biological age based on predictable age-related
patterns of DNA methylation (DNAm), so-called ‘epigenetic clocks’, have shown particular promise for their ability to
capture accelerated aging in psychiatric disease. The recently developed DNAm metric known as ‘GrimAge’ is unique
in that it was trained on time-to-death data and has outperformed its predecessors in predicting both morbidity and
mortality. Yet, GrimAge has not been investigated in MDD. Here we measured GrimAge in 49 somatically healthy
unmedicated individuals with MDD and 60 age-matched healthy controls. We found that individuals with MDD
exhibited significantly greater GrimAge relative to their chronological age (‘AgeAccelGrim’) compared to healthy
controls (p= 0.001), with a median of 2 years of excess cellular aging. This difference remained significant after
controlling for sex, current smoking status, and body-mass index (p= 0.015). These findings are consistent with prior
suggestions of accelerated cellular aging in MDD, but are the first to demonstrate this with an epigenetic metric
predictive of premature mortality.

Introduction
Major depressive disorder (MDD), the leading cause of

disability worldwide1, is associated with early mortality2

and is an independent risk factor for a variety of diseases
associated with the aging process3, such as cardiovascular
disease4–7, dementia8, osteoporosis9, and diabetes10,
among others. Even after accounting for lifestyle factors,
MDD remains an independent risk factor, raising the
possibility of an underlying mechanism of accelerated
biological or cellular aging3,11.

Recently, epigenetic age has emerged as an especially
promising measure of cellular aging that may show
stronger associations with mortality than earlier metrics of
biological age, such as leukocyte telomere length12. It is
based on the finding that chronological age has predictable
effects on DNA methylation patterns at subsets of the
28 million 5′-C-phosphate-G-3′ (CpG) sites scattered
throughout the genome13. ‘Epigenetic clocks’ consist of
small sets of these CpGs whose methylation patterns yield
an estimate of biological or cellular age (‘DNAm Age’), as
opposed to strictly chronological age. The specific selec-
tions of CpGs vary between the available ‘clocks,’ and are a
function of what data the machine learning-derived metric
was trained on. When an individual’s ‘DNAm Age’ exceeds
their chronological age, they are said to experience ‘Epi-
genetic Age Acceleration.’ However, most measures of
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‘DNAm Age’ and ‘DNAm Age Acceleration’ are only
modest predictors of mortality, likely because their deri-
vation was based on chronological age, which by its defi-
nition excluded those CpG sites that would signal a
departure from normal aging14.
In an effort to improve upon mortality prediction, the

‘GrimAge’ clock used a two-stage approach to derive its
algorithm15. In the first stage, CpG sites were identified
whose methylation states closely correlated with either
serum protein levels that predicted mortality, or with self-
reported smoking history. In the second stage, these
‘DNAm surrogates’ for serum proteins and smoking his-
tory were further trained on large-scale time-to-death
data. Not surprisingly, GrimAge outperformed its pre-
decessors in its ability to predict mortality in five inde-
pendent cohorts15. It was also able to predict time to
onset of coronary heart disease, and has shown associa-
tions with congestive health failure, hypertension, type-2
diabetes, physical functioning, comorbidity, and early
menopause15. In all, because GrimAge’s component CpG
sites are surrogates for health-related and disease-related
proteins, as well as smoking history, it demonstrates
superior associations with all-cause mortality and age-
related health status16, and is therefore likely to be more
sensitive for accelerated cellular aging in psychiatric
conditions than its predecessors.
Despite the consensus that depression is associated with

premature morbidity and mortality, there have been very
few published investigations into potential changes in
epigenetic aging in MDD17, and none using the GrimAge
metric. In light of the relative dearth of evidence on epi-
genetic aging in MDD, we investigated GrimAge Accel-
eration (‘AgeAccelGrim’) in a cohort of somatically
healthy, unmedicated individuals with moderate-to-severe
MDD, compared to a group of medically and psychia-
trically healthy controls. We hypothesized, based on evi-
dence of early mortality among depressed individuals, that
GrimAge Acceleration would be greater in MDD than in
similarly aged healthy controls.

Methods
Ethics statement
The University of California, San Francisco (UCSF)

Institutional Review Board (IRB) approved the study
protocol. All study participants gave written informed
consent to participate in this study and were compensated
for participating.

Recruitment procedures and study participants
MDD (n= 50) outpatients and healthy controls (n= 63)

were recruited by flyers, Craigslist postings, newspaper
ads and, in the case of MDD subjects, clinical referrals. All
diagnoses, including MDD, were made according to
DSM-IV guidelines18, which were in use at the start of this

study. Diagnoses were established using the Structured
Clinical Interview for DSM-IV TR19 and verified in a
separate unstructured diagnostic evaluation by a Board-
certified psychiatrist. Depression symptom severity was
assessed in MDD subjects using the Hamilton Depression
Rating Scale (HDRS)20, while depression severity across
MDD and control participants was assessed with the self-
rated Inventory of Depressive Symptoms (IDS-SR)21. All
MDD subjects had a minimum 17-item HDRS score of 17.
MDD subjects were excluded if they met DSM-IV criteria
for any of the following: (i) bipolar disorder, (ii) alcohol or
substance abuse within the preceding 6 months, (iii)
PTSD or an eating disorder within 1 month of entering
the study, and (iv) for any history of psychosis outside of a
major depressive episode, or the presence of any psychotic
symptoms during the current major depressive episode.
Potential healthy controls were excluded for any history of
DSM-IV Axis-I diagnoses. All study participants were
free of chronic illnesses or acute illnesses or infections,
inflammatory disorders, neurological disorders, or any
other medical conditions considered to be potentially
confounding, as assessed by history, physical examina-
tions, and routine blood screening. All subjects were free
of psychotropic medications (including antidepressants),
hormone supplements, steroid-containing birth control
or other potentially interfering medications, including
vitamin supplements above the U.S. recommended daily
allowances (e.g. >90 mg/day for Vitamin C) and had not
had any vaccinations for at least 6 weeks prior to enroll-
ment. For MDD subjects, short-acting sedative-hypnotics
were allowed as needed up to a maximum of three times
per week, but none within 1 week prior to blood draws in
the study. All subjects had to pass a urine toxicology
screen for drugs of abuse and a urine test for pregnancy in
women of child-bearing age on the day of blood draw.

DNA preparation and analysis of methylation
Blood samples were drawn in the morning following an

overnight fast. Whole blood was collected in acid citrate
dextrose (ACD) tubes for preparation of DNA. Aliquotted
samples were stored frozen at −80 °C until use. DNA was
extracted from whole blood using QIAmp DNA purifica-
tion kits (Qiagen, Redwood City, CA), followed by quality
check using a Tapestation (Agilent). Identification and
analysis of methylated CpGs used protocols used by our
group previously22. Genomic DNA (500 ng) was treated
with sodium bisulfite using the Zymo EZ96 DNA
Methylation Kit (Zymo Research, Orange, CA, USA), and
genome-wide DNA methylation patterns were profiled
using the Infinium HumanMethylation450 BeadChip array
(Illumina, Inc., San Diego, CA, USA). BeadChips were
washed, single-base extension labeled and stained with
multiple layers of fluorescence followed by scanning using
the Illumina iScan system (Illumina Inc, CA). The samples
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were randomized on plates. No visual batch effects were
found between the plates. IDAT files containing the raw
intensity signals were generated using Illumina’s iControl
software. Noob background correction23 was used to pre-
process the data prior to submitting it to the DNAm age
website https://dnamage.genetics.ucla.edu for analysis.
A principal component analysis (PCA) was conducted
on Noob-corrected data to identify outliers with DNA
methylation assay anomalies. Three healthy controls and
one MDD were excluded for the quality control. All the
samples were processed and assayed together, and PCA
analysis confirmed no significant batch effect existed on
experimental blood collection batches. All samples passed
quality control, and mean absolute difference between
samples and the “gold standard” (which is the mean of a
large whole-blood DNAm cohort) were all lower than 0.08.

Epigenetic clocks
The GrimAge clock has been previously described15.

‘GrimAge Acceleration’ is defined as the residual from
regressing epigenetic age on chronological age, and is
denoted by the prefix “AgeAccel” (e.g., “AgeAccelGrim”).
The GrimAge clock is constructed as the composite of 8
DNA methylation-based markers for plasma proteins and
self-reported smoking packyears15. The plasma protein
surrogates include: cystatin C, leptin, tissue inhibitor
metalloproteinases 1 (TIMP1), adrenomedullin (ADM),
beta-2-microglobulin (B2M), growth differentiation factor
15 (GDF15), and plasminogen activation inhibitor 1 (PAI-
1). The rationale for selection of these proteins, and their
functions and disease-associations are described in Lu
et al. (2019) (see ref. 15). The DNAm surrogates for these
proteins and smoking history are denoted by the prefix
“DNAm” (e.g., “DNAmPACKYRS” for the surrogate of
smoking history), and the residuals from regressing on
chronological age are specified as “age-adjusted.”

Statistical methods
The sample size included was based on all subjects with

available data from the parent study (“Cell Aging in Major
Depression"; R01-MH083784). The resulting sample was
sufficient to detect effect sizes for independent sample t-
tests of 0.54 or greater, with a power of 0.80 and a two-
tailed alpha= 0.05.
P values for all analyses reflect two-tailed significance

with an alpha= 0.05. Correlations between epigenetic age
and chronological age were based on Spearman correla-
tions. All measures of epigenetic age were subsequently
regressed on chronological age, and the residuals were
used for all ANCOVA analyses. The age-adjusted residual
of GrimAge is referred to as “AgeAccelGrim” to maintain
consistency with prior literature. All variables were
checked for normality by a Shapiro–Wilk test, and Blom-
transformation24 was used to achieve normality for

AgeAccelGrim. Several of the age-adjusted DNAm
surrogate marker components of GrimAge were also
Blom-transformed: DNAmCystatinC, DNAmLeptin,
DNAmPACKYRS, and DNAmTIMP1. For all sub-cohort
analyses, Blom transformation was repeated within the
sub-cohort prior to analysis. The remaining age-adjusted
DNAm components were normally distributed.
All group differences in age-adjusted epigenetic age

metrics were initially tested using independent samples
T-tests (‘Model 1’). Since one of the DNAm surrogate
markers included in the GrimAge algorithm was derived
nominally as a surrogate for lifetime pack-years of smoking
(DNAmPACKYRS)15, we covaried for current tobacco use in
a separate ANCOVA (‘Model 2’). We additionally covaried
for sex and BMI in ‘Model 3,’ as both have been repeatedly
shown to modify measures of epigenetic aging15,25–28. The
same models were applied to the individual GrimAge
surrogate marker components. DNAmPACKYRS was
analyzed in both its raw and age-adjusted forms.
To control for any lingering effects of smoking not

accounted for by covariance, we completed sensitivity
analyses within a sub-cohort of ‘current non-smokers’ (37
MDD, 55 HC; ‘Model 4 and 5’). While ‘current’ smoking
status was used in the primary analyses to maximize
sample size, additional data on lifetime smoking exposure
were available in a subset of participants (41 MDD, 51
HC). Models 2 and 3 for AgeAccelGrim and DNAm-
PACKYRS were repeated in this subset to ensure the
effect did not differ when lifetime smoking was accounted
for, defined as ‘never,’ ‘former,’ or ‘current’ smoker
(‘Model 6 and 7’). Finally, we excluded the DNAm-
PACKYRS component from AgeAccelGrim, as has been
previously described22. These analyses are detailed in the
Supplementary Materials, except Models 4 and 5 which
are detailed below.

Results
Participant demographics and depressive symptoms
The MDD and control groups did not differ significantly

in chronological age, sex distribution, BMI, race, ethnicity,
educational attainment, lifetime history of smoking, or
estimated number of lifetime cigarettes among smokers
(Table 1). However, the groups did differ in a binary metric
of current tobacco use (Yes/No), with greater current
smoking reported in the MDD group (chi-square= 6.653,
p= 0.010) and, as expected, in scores on the Inventory of
Depressive Symptoms (IDS) (t(54.224)=−20.239, p=
0.000). Further characterization of participants with MDD is
presented in Table 1.

GrimAge acceleration in depressed patients and healthy
controls
GrimAge was significantly correlated with chronological

age in the combined cohort (Spearman Rho= 0.968,
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Table 1 Participant characterization.

MDD (N= 49) Healthy control (N= 60)

Age, years [mean (sd; range)] 40.2 (14.6; 20–68) 39.4 (13.6; 21–65) t(107)=−0.294, p= 0.769

Body mass index [mean (sd; range)] 25.8 (4.4; 19.0–36.3) 24.5 (4.8; 17.7–41.5) (n= 59) t(106)=−1.463, p= 0.146

Sex Female [n (%)] 27 (55%) 36 (60%) chi-square= 0.265,

p= 0.607

Race [n (%)]

Caucasian 29 (59%) 38 (63%) chi-square= 4.013,

p= 0.404Black or African American 4 (8%) 5 (8%)

Asian 9 (18%) 12 (20%)

Other 5 (10%) 1 (2%)

More than one 2 (4%) 4 (7%)

Ethnicity [n (%)] (n= 48) (n= 56)

Hispanic 9 (19%) 6 (11%) chi-square= 1.352,

p= 0.245Non-Hispanic 39 (81%) 50 (89%)

Education [n (%)] (n= 59)

High School 3 (6%) 1 (2%) chi-square= 8.674,

p= 0.070Some College/Tech School 14 (29%) 6 (10%)

Associate’s Degree 2 (4%) 3 (5%)

Bachelor’s Degree 17 (35%) 32 (54%)

Advanced Degree 13 (26%) 17 (29%)

Smoking history

Current smoker [n (%)] 12 (24%) (n= 49) 4 (7%) (n= 59) chi-square= 6.653,

p= 0.010

Ever smoker [n (%)] 21 (51%) (n= 41) 21 (41%) (n= 51) chi-square= 0.924,

p= 0.336

Estimated lifetime cigarettes in ever smokersa [mean (sd;

range)]

26,859 (41,251; 20–164, 250)

(n= 21)

22,304 (46,339; 5–164, 250)

(n= 21)

U= 285.5, p= 0.102

Characterization of major depressive disorder [mean (sd)]

Depressive Symptom Score (IDS) 32.5 (8.9) 4.2 (3.5) t(54.224)=−20.239b,

p= 0.000

Hamilton Depression Rating Scale (HDRS) 20.3 (3.5) – –

Duration of Current Depressive Episode (days)c 1918 (3521) – –

Chronicity of Lifetime Depression (months)d 133 (124) (n= 48) – –

Number of Depressive Episodes 4.4 (2.9) – –

Lifetime Days of Depressione 3990 (3775) – –

Lifetime Days of Untreated Depressionf 2966 (4661) – –

p-values reflect 2-tailed significance.
aEstimated Lifetime Cigarettes in Ever Smokers—The lifetime number of cigarettes was estimated from self-report by first determining the blocks of time the
participant smoked a given number of cigarettes per day, multiplying that number of days by the daily cigarette usage in that block of time, and then summing those
products. Periods of non-smoking were not included in the estimate.
bt-values reflect unequal variance between groups by Levene’s Test.
cDuration of Current Depressive Episode—self-reported days since the onset of meeting DSM criteria for an Major Depressive Episode until the date of the evaluation.
dChronicity of Lifetime Depression (months)—self-reported number of months since the onset of the first depressive episode. Includes any periods of remission of
symptoms between major depressive episodes for those with more than 1 major depressive episode.
eLifetime Days of Depression—Estimated from detailed psychiatric history of number and duration of major depressive episodes. Does not include periods of
remission of symptoms between depressive episodes for those with more than 1 major depressive episode.
fLifetime Days of Untreated Depression—Calculated as the difference between Lifetime Days of Depression and Lifetime Days of Treated Depression, both estimated
from detailed psychiatric history.
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p < 0.001), and among participants with MDD and con-
trols separately (MDD: Spearman Rho= 0.974, p < 0.001;
HC: Spearman Rho= 0.961, p < 0.001) (Fig. 1B), con-
sistent with strong correlations reported previously15 and
with the inclusion of chronological age as a component of
the GrimAge algorithm.
In our primary analysis, participants with MDD showed

significantly greater AgeAccelGrim compared to age-
matched healthy controls (t(107)=−3.265, p= 0.001;
Cohen’s d= 0.63). Based on median values prior to
transformation for normality, this equates to 2.0 years of
accelerated GrimAge (MDD: median= 0.364 years,
interquartile range (IQR)= 2.180; HC: median=−1.637
years, interquartile range (IQR)= 3.946) (Fig. 1A). The
group effect remained statistically significant after
adjustment for current smoking (Model 2: FMDD(1,109)=
7.345, p= 0.008), and after full adjustment for smoking,
sex, and BMI (Model 3: FMDD(1,103)= 6.095, p= 0.015)
(Table 2).
Although AgeAccelGrim was significantly higher in

MDDs vs. controls, it was not significantly correlated with
scores of depression severity on the 17-item Hamilton
Depression Rating Scale (HDRS) (r=−0.088, p= 0.550)
within the MDD group, nor was it associated with
reported lifetime days of depression or days of untreated
depression (lifetime days: r=−0.009, p= 0.953; untreated
days: r= 0.061, p= 0.676), chronicity of lifetime depres-
sion (r=−0.014, p= 0.926), or duration of the current
depressive episode (r=−0.125, p= 0.391) (see Table 1
for variable definitions).

Individual GrimAge component markers and the role of
DNAmPACKYRS
Among the benefits of the GrimAge clock is that each of

its surrogate DNAm markers can themselves be queried
as a means to explore their contribution to accelerated
cellular aging15. Of the individual surrogates, only age-
adjusted DNAmCystatinC and raw and age-adjusted
DNAmPACKYRS significantly differed between MDD
and healthy control participants (Table 2). The group
differences in age-adjusted DNAmCystatinC survived
adjustment for smoking, but missed statistical significance
after full adjustment for smoking/sex/BMI. In contrast,
the group difference in raw and age-adjusted DNAm-
PACKYRS survived full adjustment (Table 2).
Notably, while the DNAmPACKYRS metric was devel-

oped as a surrogate for self-reported smoking history15,
the 172 CpGs of which it consists are related to a number
of other functions29,30. To explore whether the DNAm-
PACKYRS metric captures some underlying biological
aspect of aging that is not specific to smoking, we (1)
restricted our between-group analysis of AgeAccelGrim
and DNAmPACKYRS to current non-smokers in both the
MDD and control groups, and (2) covaried for trilevel
‘never,’ ‘former,’ and ‘current’ smoking status in a sub-
cohort of participants with detailed data on smoking
exposure. Among current non-smokers, we still found a
statistically significant difference between the MDD and
healthy control groups in the overall AgeAccelGrim
(Model 4: t(89.68)=−2.383, p= 0.019, Cohen’s d= 0.49)
and in both raw and age-adjusted DNAmPACKYRS

Fig. 1 Cross-section differences in AgeAccelGrim between healthy controls and patients with major depressive disorder (MDD). A Plotted
values are raw AgeAccelGrim measures (in years), prior to Blom transformation. p-value reflects two-tailed significance between groups, based on
Blom-transformed data to achieve normality of distribution. Horizontal line indicates median AgeAccelGrim within each group. NHealthy Control= 60,
NMDD= 49. B Plotted values are participants’ chronological age plotted against GrimAge (prior to age-adjustment), demonstrating a strong
correlation between chronological age and GrimAge among both participants with MDD and healthy controls (HC) (Combined: Spearman
Rho= 0.968, p < 0.001; MDD: Spearman Rho= 0.974, p < 0.001; HC: Spearman Rho= 0.961, p < 0.001).
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(Model 4: Raw: t(90)=−2.401, p= 0.018, Cohen’s d=
0.51; Age-Adjusted: t(89.15)=−2.656, p= 0.009, Cohen’s
d= 0.55) (Table 3). However, with this smaller sample
size, the difference in AgeAccelGrim among non-smokers
missed statistical significance after full adjustment for sex
and BMI (Model 5: FMDD(1,88)= 3.417, p= 0.068), while
the differences in raw and age-adjusted DNAmPACKYRS
persisted (Model 5: Raw: FMDD(1,88)= 4.855, p= 0.030;
Age-Adjusted: FMDD(1,88)= 5.796, p= 0.018). Sub-
cohort analyses on the effect of lifetime smoking status,
as opposed to current smoking status, are further detailed
in the Supplementary Materials. In brief, differences in
both AgeAccelGrim and DNAmPACKYRS between
MDD and HC persisted when covarying for trilevel life-
time smoking status (Supplementary Table 1).
Of the 172 CpGs included in the DNAmPACKYRS

metric, the cg05575921 site, corresponding to the Aryl
Hydrocarbon Receptor Repressor (AHRR) gene, was of
particular interest in light of recent evidence suggesting a
role in post-traumatic stress disorder31,32. To explore if
the cg05575921 methylation site might be contributing to
differences in DNAmPACKYRS between MDD and HC
independent of smoking exposure, we assessed differences
in cg05575921 methylation (1) associated with smoking
and (2) between MDD and HC. These results are pre-
sented in the Supplementary Materials, but in brief we did
not find differences in cg05575921 methylation between
MDD and HC. However, we found significant

hypomethylation associated with ‘current’ smoking status,
consistent with prior reports on the cg05575921 site as a
marker for smoking exposure33–35.

Discussion
In this paper, we present evidence of epigenetic aging in

MDD using the recently developed GrimAge metric,
which is highly correlated with morbidity and mortality15,
in a unique cohort of somatically healthy participants with
severe untreated depression. We found that somatically
healthy, unmedicated individuals with MDD exhibit
greater GrimAge Acceleration than their healthy normal
control counterparts, with a median difference of 2 years
of accelerated epigenetic aging. Importantly, the differ-
ences in AgeAccelGrim between healthy participants and
those with MDD persist after adjustment for smoking,
sex, and BMI. This suggests that while these variables
contribute to the GrimAge, the association with MDD
remains above and beyond what is attributable to them.
To date, there have been very few reports on epigenetic

aging in MDD, and none specifically on GrimAge in MDD.
The most notable of the reports was from the Netherlands
Study of Depression and Anxiety17. Using an epigenetic
age estimate of their own derivation, based on 80,000
CpGs, the group found significant epigenetic age accel-
eration among depressed patients compared to healthy
controls. The effect sizes in both basic and fully adjusted
models were small, with Cohen’s d of 0.20 and 0.18,

Table 2 GrimAge Clock and its components in MDD and HC.

MDD vs. Control: MDD: N= 49 Control: N= 60 Model 1a Model 2b Model 3c

Mean ± SD Mean ± SD t (df= 107) p-value Cohen’s d FMDD
(df, df= 1, 105)

p-value FMDD
(df, df= 1,103)

p-value

Age-Adjusted GrimAge (aka "AgeAccelGrim")

AgeAccelGrimd 0.30 ± 0.84 −0.29 ± 1.01 −3.265 0.001 0.63 7.345 0.008 6.095 0.015

Age-Adjusted Epigenetic Components of GrimAge

DNAmPACKYRSd 0.30 ± 0.87 −0.30 ± 1.00 −3.306 0.001 0.64 7.042 0.009 6.668 0.011

DNAmCystatinCd 0.18± 0.84 −0.23 ± 1.04 −2.203 0.030 0.43 4.639 0.034 3.817 0.053

DNAmLeptind 0.08 ± 1.01 −0.04 ± 0.96 −0.599 0.551 0.12 0.235 0.629 1.421 0.236

DNAmTIMP1d 0.12 ± 0.92 −0.10 ± 1.04 −1.133 0.260 0.22 1.812 0.181 0.951 0.332

DNAmADM −0.11 ± 18.61 0.27 ± 15.59 0.114 0.909 0.02 0.048 0.828 0.008 0.927

DNAmB2M 1005.14 ± 51,306.85 −12,031.01 ± 69,546.19 −1.125e 0.263 0.21 1.877 0.174 1.677 0.198

DNAmGDF15 3.21 ± 52.28 −6.86 ± 55.64 −0.965 0.337 0.19 0.440 0.508 0.387 0.535

DNAmPAI1 −35.72 ± 1916.48 −142.78 ± 2646.10 −0.245e 0.807 0.05 0.041 0.840 0.150 0.699

Non-Age-Adjusted DNAmPACKYRS

DNAmPACKYRSd 0.29 ± 1.00 −0.23 ± 0.93 −2.816 0.006 0.54 5.717 0.019 4.988 0.028

p-values reflect 2-tailed significance.
All models used age-adjusted metrics of epigenetic age. Age-adjusted metrics were calculated as the residual from regressing GrimAge and its components on
chronological age. DNAmPACKYRS was analyzed in both its age-adjusted and raw forms.
Age-adjusted GrimAge is denoted as "AgeAccelGrim" to maintain consistency with the literature.
Bold indicates statistically significant results, and their associated Cohen’s d values where relevant.
aModel 1: Independent samples T-test.
bModel 2: ANCOVA covaried for current smoking status (binary Y/N).
cModel 3: ANCOVA covaried for current smoking status (binary Y/N), sex, and BMI.
dDenotes epigenetic age variables that were Blom-transformed to achieve normal distributions.
et-values reflect unequal variance between groups by Levene’s Test.
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respectively, and showed an average 7.68 months of excess
epigenetic aging. In our sample, we found significant dif-
ferences in GrimAge acceleration between MDD partici-
pants and healthy controls, with an effect size of Cohen’s
d= 0.63 prior to adjustment and a median excess epige-
netic aging of 2 years. The greater effect size seen here, if
replicated, could be due to the specific epigenetic aging
metric used or to differences in our sample characteristics.
In light of the significant between-group differences in

current tobacco use and in the DNAmPACKYRS com-
ponent of the AgeAccelGrim metric, it is important to
consider the role of tobacco use in explaining our find-
ings, independent of MDD. To do so, we employed two
analytic strategies. We (1) restricted our cohort to ‘current
non-smokers’, and (2) restricted our cohort to subjects
with sufficiently detailed smoking history and adjusted for
this history. These analyses were consistent with our
hypothesis that both AgeAccelGrim and age-adjusted
DNAmPACKYRS are associated with MDD independent
of smoking. Our pattern of findings is also consistent with
those of Lu et al. in their original publication on GrimAge,
where they demonstrated that DNAmPACKYRS pre-
dicted lifespan in never smokers15, suggesting that this
composite measure of methylation at 172 CpG sites
reflects changes in underlying biological processes not
specific to tobacco use. Of these sites, the cg05575921 site
and its associated gene—the aryl hydrocarbon receptor
repressor (AHRR)—stand out as potentially relevant
to the pathophysiology of psychiatric disease31,32 and
aging36,37. We compared methylation at this site between
MDD and HC and found no significant differences.
Nonetheless, in light of evidence for a role the AHRR in
atherosclerosis36,37 and PTSD31,32 in human studies, in
conjunction with evidence from animal studies implicat-
ing dysfunction of the AHRR’s target—the aryl

hydrocarbon receptor—in aging (notably, brain aging)38

and neuroinflammation39, the AHRR remains an inter-
esting and worthwhile target for further research in
depression and other psychiatric diseases.
The strengths of our study include the clinically sig-

nificant degree of current MDD symptomatology of our
sample, the verification of MDD diagnosis by structured
and independent unstructured psychiatric interviews,
and the requirement that all participants remained
medication-free for a minimum of 6 weeks prior to
entering the study. Despite the severity of their depres-
sion, our sample was otherwise somatically healthy, as we
excluded individuals with significant current or past his-
tory of medical conditions that would likely themselves
affect epigenetic aging. As such, we aimed to evaluate the
effects of MDD per se, rather than those of comorbid
medical conditions or antidepressant use. However, by so
doing we may have selected for a sample of patients that is
not fully representative of “general community” depres-
sion, who may have biological resilience and have thus
experienced fewer somatic sequelae of depression. The
same is true of our healthy controls, who were also
selected for the absence of somatic illnesses and medi-
cation. It appears from the raw data (Fig. 1) that the
AgeAccelGrim difference between healthy controls and
MDDs is mainly accounted for by lower-than-expected
GrimAge among the HCs, rather than by higher-than-
expected GrimAge among MDDs. We interpret this to be
due to our careful exclusion of somatic illnesses in both
samples, in contrast to the naturalistic community-based
samples from which the GrimAge metric was derived.
Limitations of this study include our modest sample size.

Our findings therefore require validation in a larger and
more diverse cohort. In addition, although participants
were largely medication-free for at least 6 weeks prior to

Table 3 AgeAccelGrim and DNAmPACKYRS among current non-smokers.

MDD vs. Control: non-smokers MDD: N= 37 Control: N= 55 Model 4a Model 5b

Mean ± SD Mean ± SD t (df) p-value Cohen’s d FMDD (df, df= 1, 88) p-value

Age-Adjusted GrimAge (aka "AgeAccelGrim")

AgeAccelGrimc 0.27 ± 0.77 −0.18 ± 1.08 −2.383d (89.68) 0.019 0.49 3.417 0.068

Age-Adjusted Epigenetic Components of GrimAge

DNAmPACKYRSc 0.31 ± 0.78 −0.21 ± 1.06 −2.656d (89.15) 0.009 0.55 5.796 0.018

Non-Age-Adjusted DNAmPACKYRS

DNAmPACKYRSc 0.29 ± 0.92 −0.19 ± 0.99 −2.401 (90) 0.018 0.51 4.855 0.030

p-values reflect 2-tailed significance.
All models used age-adjusted metrics of epigenetic age. Age-adjusted metrics were calculated as the residual from regressing GrimAge and its components on
chronological age. Age-adjusted GrimAge is denoted as "AgeAccelGrim" to maintain consistency with the literature.
aModel 4: Independent samples T-test.
bModel 5: ANCOVA covaried for sex and BMI.
cDenotes epigenetic age variables that were Blom-transformed to achieve normal distributions.
dt-values reflect unequal variance between groups by Levene’s Test.
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enrollment, we cannot rule out lingering effects of prior
antidepressant or other medication use. We also had
detailed data on lifetime smoking history in only a subset
of participants, and therefore could only adjust for current
smoking status in our primary analysis. While our sub-
cohort analyses demonstrated the effect of MDD on
AgeAccelGrim to be robust against adjustment for
detailed lifetime smoking exposure, our samples of ‘never’
smokers were too small to achieve adequate power for
analysis and our results will require replication in cohorts
with extensive data on smoking exposure or within a large
cohort of ‘never’ smokers. Finally, while the GrimAge
metric was shown to predict mortality in other popula-
tions15, we cannot assert that it indeed does so among
individuals with MDD without long-term longitudinal
data, or else retrospective data with banked DNA samples.
Individuals with MDD have, on average, lesser life

expectancy and greater serious somatic illness comor-
bidity than non-psychiatrically ill individuals. The reasons
for this remain unclear, but our data raise the possibility
that the epigenetic changes associated with GrimAge are
relevant. However, many questions remain unanswered.
Our data do not inform on the stability vs. reversibility of
these changes40,41, on the actual association of these
epigenetic changes with later illness and mortality in
MDD, on whether any causal relationships exist between
MDD and GrimAge, or on whether the GrimAge differ-
ences we noted are specific to MDD among other psy-
chiatric illnesses. Furthermore, while our goal was to
assess the possibility of accelerated GrimAging in MDD
rather than identify its causes, the ultimate aim of this line
of research is to identify the biological mechanisms link-
ing MDD to diminished lifespan and “healthspan”14,15.
Advances in understanding the cellular biology under-
lying serious mental illnesses such as MDD may hold a
key to understanding the associated increased risk of ill-
ness and death.
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