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Abstract

By combining data across multiple studies, researchers increase sample size, statistical power, and

precision for pooled analyses of biomarker–disease associations. However, researchers must adjust

for between-study variability in biomarker measurements. Previous research often treats the

biomarker measurements from a reference laboratory as a gold standard, even though those

measurements are certainly not equal to their true values. This paper addresses measurement error

and bias arising from both the reference and study-specific laboratories. We develop two

calibration methods, the exact calibration method and approximate calibration method, for pooling

biomarker data drawn from nested or matched case–control studies, where the calibration subset is

obtained by randomly selecting controls from each contributing study. Simulation studies are

conducted to evaluate the empirical performance of the proposed methods. We apply the proposed

methods to a pooling project of nested case–control studies to evaluate the association between

circulating 25-hydroxyvitamin D (25(OH)D) and colorectal cancer risk.
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1 Introduction

Pooling biomarker data across different studies to analyze biomarker–disease associations is

a common strategy in epidemiological research since individual studies are often not large

enough for precise estimation. By including more biomarker measurements from various

studies, investigators achieve more statistical power to improve the estimates of the effect of

biomarker exposure. Examples of pooling projects examining biomarker–disease

relationships include the Endogenous Hormones, Nutritional Biomarkers, and Prostate

Cancer Collaborative Group,1,2 Cohort Consortium Vitamin D Pooling Project of Rarer

Cancers,3 COPD Biomarkers Qualification Consortium Database,4 Vitamin D Pooling

Project of Breast and Colorectal Cancer,5 and the Pooling Project of Prospective Studies of

Diet and Cancer.6

Between-laboratory variation in biomarker data may exist if not all samples are assayed at

the same laboratory at the same time, and this variability will impair estimation of the

biomarker–disease association. For example, the between-laboratory coefficient of variation,

a measure of laboratory measurement error, was generally large (>25%) for measurements

of estrone and estradiol.7 Under such circumstances, between-study/laboratory variation in

biomarker measurements should be addressed in statistical analyses for evaluating

biomarker–disease relationship. Generally, calibration is implemented to harmonize

measurements from different laboratories and assays by re-assaying a subset of non-case

biospecimens randomly from each contributing study at a designated reference laboratory.
8–10 This calibration procedure can be utilized to adjust for the between-study measurement

variability. In practice, investigators typically use only non-cases in the calibration study

subsets due to potential concerns about the availability of case biospecimens.8

The methodology in this paper is motivated by the Vitamin D Pooling Project of Breast and

Colorectal Cancer (VDPP),5 which combined information from 17 studies to investigate the

association between the circulating vitamin D (25(OH)D) and colorectal cancer. Previous

researchers observed that the measurements of 25(OH)D can vary up to 40% among

laboratories and assays.11,12 This variability motivates the development of statistical models

that can address the between-study variation in 25(OH)D measurements. From 2011 to

2013, the VDPP selected a random subset of controls in each study to serve as a calibration

subset and remeasured their 25(OH)D values at Heartland Assays, LLC (i.e., the reference

laboratory). Previous statistical methods treat the measurements from the reference

laboratory as the “gold standard” measurements.8,9 However, the reference laboratory

measurements in many pooling projects only provide a benchmark value for all study-

specific laboratories and are not necessarily closer to the underlying truth. Hence, treating

the observed or calibrated measurements from the reference laboratory as the underlying

truth may result in biased estimates of the biomarker–disease association.

In this paper, we will adjust for measurement error in both the reference and study-specific

laboratories, allowing flexible calibration and measurement error models. Specifically, this

paper develops two calibration methods, the approximate calibration method and exact

calibration method, for pooled biomarker data from nested or matched case–control studies.

The framework of this paper is as follows: Section 2 presents the models and statistical
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methods. In Section 3, we compare the methods via Monte Carlo simulation. Section 4 uses

the methods to evaluate the association between circulating 25(OH)D levels and colorectal

cancer in data pooled from VDPP, including the Nurses’ Health Study (NHS) and Health

Professionals Follow-Up Study (HPFS). Section 5 offers our conclusions.

2 Methods

2.1 Notation and models

Suppose that there are J nested case–control studies, each associated with a study-specific

local laboratory j, where j = 1, 2,…, J. Suppose the jth study consists of Kj strata. The kth

stratum consists of a total of Mjk individuals where the first M jk
(1) individuals are cases. Let

Xjkm denote the unobserved true value of the continuous biomarker for the mth individual in

the kth stratum from the jth study, Yjkm denote the binary disease outcome, and Zjkm denote

other potential confounders for the X–Y relationship. Without further specification, all

vectors are column vectors throughout the paper. We consider the following logistic

regression model for the biomarker–disease association

logit P Y jkm ∣ X jkm, Z jkm = β0 jk + βxX jkm + βz
TZ jkm (1)

where β0jk is a stratum-specific intercept and βz is a vector of covariate effects. The

parameter of interest is βx, which denotes the log odds ratio (OR) representing the

biomarker–disease association or log relative risk if the jth nested case–control study has the

incidence density sampling design.

Suppose a total of N individuals contribute to the analysis across all studies. Each study j has

Nj total individuals (
j 1
J N j = N), nj, of whom were included in the calibration subset.

Biospecimens from individuals in the calibration subset are re-assayed at a reference

laboratory. Since case biospecimens may be unavailable for re-assay at the reference

laboratory, the calibration subset consists of a random selection of control biospecimens. Let

Hjkm,d be the measurement of Xjkm from laboratory d, where d = 0 indicates the reference

laboratory and d = j > 0 indicates the local laboratory of study j. Individuals who are not

selected into the calibration subset have only the local laboratory measurement Hjkm,j

available. For brevity, we use Hjkm to denote all measurements of Xjkm; i.e., for individuals

in the calibration subset, Hjkm = [Hjkm,0, Hjkm,j]T, and for individuals out of the calibration

subset, Hjkm = Hjkm,j.

We assume that the measurement Hjkm,d and the underlying truth Xjkm follow the linear

measurement error model

H jkm, d = ξd + (1 + γd)X jkm + ϵ jkm, d (2)

where ξd and γd are the zero-mean random effects representing laboratory-specific intercept

and slope bias, respectively, and ϵjk,d is the measurement error. The ϵjkm,d terms are

independent of Xjkm and follow mean-zero normal distribution with laboratory-specific
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variances; i.e., ϵ jkm, d ∼ N(0, σd
2), d = 0, 1,…, J. Here, we also assume ξd

iidN(0, σξ
2) and

γd
iidN(0, σγ

2) for d = 0, 1,…, J, and ξd and γd are mutually independent.

2.2 Approximate conditional likelihood

Let Yjk, Xjk, Hjk, and Zjk denote their respective measurements from all individuals from

stratum k of study j (i.e., Yjk = [Yjk1,…, YjkMjk]T, Xjk = [Xjk1,…, XjkMjk]T,

H jk = [H jk1
T , …, H jkM jk

T ]T, Z jk = [Z jk1
T , …, Z jkM jk

T ]T). The observed data likelihood can be

written as L =
j 1

J

k 1

K j L jk, where

L jk = P Y jk ∣ H jk, Z jk,
m = 1

M jk
Y jkm = M jk

1

= ∫ P Y jk ∣ X jk, H jk, Z jk,
m = 1

M jk
Y jkm = M jk

1 f

X jk ∣ H jk, Z jk,
m = 1

M jk
Y jkm = M jk

1 dX jk

(3)

We make a surrogacy assumption

P(Y jk ∣ X jk, H jk, Z jk,
m 1

M jk
Y jkm M jk

(1)) = P(Y jk ∣ X jk, Z jk,
m 1

M jk
Y jkm M jk

(1)); i.e., the

biomarker measurement Hjk will not provide any information to predict the disease status if

we already know the true biomarker value Xjk, conditional on the covariates and the

matching scheme. Let Wjkm contain all the variables in Zjkm that could be associated with

Xjkm; i.e., we assume

P(X jk ∣ H jk, Z jk,
m 1

M jk
Y jkm M jk

1 ) = P(X jk ∣ H jk, W jk,
m 1

M jk
Y jkm M jk

1 ), where

W jk = [W jk1
T , …, W jkM jk

T ]T. It follows that the likelihood contribution Ljk can be written as

L jk = ∫
exp m = 1

M jk
1

βxX jkm + βz
TZ jkm

ℳ ∈ 𝒞 jk
exp m ∈ ℳ βxX jkm + βz

TZ jkm
f X jk ∣ H jk, W jk,

m = 1

M jk
Y jkm = M jk

1 dX jk,

= E
X jk ∣ H jk, W jk,

m = 1

M jk
Y jkm = M jk

1

exp m = 1
M jk

1
βxX jkm + βz

TZ jkm

ℳ ∈ 𝒞 jk
exp m ∈ ℳ βxX jkm + βz

TZ jkm

(4)
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where C jk contains all the subsets of size M jk
1  in set {1,…, Mjk}. Generally, the probability

density function (p.d.f.), f (X jk ∣ H jk, W jk,
m 1

M jk
Y jkm M jk

1 ), has a complex form which

contains complicated integrals. We use the following approximation to simplify the

calculation of above p.d.f.

f X jkm ∣ H jkm, d, W jkm, Y jkm ≈ f X jkm ∣ H jkm, d, W jkm (5)

which assumes that when Hjkm,d and Wjkm are known, the disease outcome does not add

much additional information for predicting Xjkm. The approximation performs best when (i)

the association between X and Y is not strong and/or (ii) the disease is rare. Further details

about the proof of these conditions are deferred to Supplementary Material Appendix A.

Under assumption (5), the conditional likelihood contribution (4) becomes

L jk ≈ EX jk ∣ H jk, W jk

exp m = 1
M jk

1
βxX jkm + βz

TZ jkm

ℳ ∈ 𝒞k
exp m ∈ ℳ βxX jkm + βz

TZ jkm
(6)

where the p.d.f. of Xjk|Hjk, Wjk is 
m 1

M jk
f X jkm H jkm W jkm .

Practically, there could be variables that are not included in Zjk and are also associated with

the biomarker value Xjk. We can take advantage of the availability of these variables when

constructing the model for Xjk to achieve a more accurate βx estimate. Hereafter, we use W jk*

to denote all the available variables that are informative about Xjk, possibly including

variables not in Zjk. Then the likelihood contribution can still be written as in equation (6),

with Wjk replaced by W jk* . We discuss the benefit of considering the additional variables in

Section 3 simulation studies.

Next, we derive the analytic forms of f(Xjkm|Hjkm, Wjkm).

2.3 Conditional distribution of the unknown true biomarker value

Even though Xjkm is unobservable, we can derive the conditional distribution of Xjkm given

Hjkm and Wjkm. First, we assume the following X–W relationship

X jkm = α0 j + τTW jkm + ϵx jkm (7)

where α0j terms denote the study-specific intercepts, τ represents unknown parameters

commonly for all the studies, and ϵxjkm is the error term with distribution N 0, σx
2 . If Wjkm is

null, the regression (7) degenerates to Xjkm = α0j + ϵxjkm. Under the specification of

equations (2) and (7), X jkm W jkm, H̃ jkm, 0 W jkm, H̃ jkm, j ∣ W jkm
T

 follows a multivariate

normal distribution such that
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X jkm ∣ W jkm

H̃ jkm, 0 ∣ W jkm

H̃ jkm, j ∣ W jkm

∼ MVN

μX jkm ∣ W jkm

μX jkm ∣ W jkm

μX jkm ∣ W jkm

,

σx
2 σx

2 σx
2

. σx
2 +

σ0
2

1 + γ0
2 σx

2

. . σx
2 +

σ f
2

1 + γ j
2

(8)

where H̃ jkm, d =
H jkm, d − ξd

1 + γd
 is the centralized value of Hjkm,d, for d = 0, 1,… j, and

μXjkm|Wjkm is the abbreviation of α0j + τTWjkm. Derivation of distribution (8) are deferred to

Supplementary Material Appendix B. It follows that, for individuals out of the calibration

subset

X jkm ∣ H jkm, W jkm ∼ N(ρ jH̃ jk, j + (1 − ρ j)μX jkm ∣ W jkm
, ρ jδ j

2) (9)

where ρ j =
σx

2

σx
2 + δ j

2 , δ j
2 =

σ j
2

1 + γ j
2 , and for individuals in the calibration subset

X jkm ∣ H jkm, W jkm ∼ N(ρ j*(w jH̃ jk, j + (1 − w j)H̃ jk, 0) + (1 − ρ j*)μX jkm ∣ W jkm
,

ρ j*w jδ j
2)

(10)

where ρ j* = σx
2/(σx

2 + δ j
2w j) and w j = δ0

2/(δ j
2 + δ0

2). Next, we describe the procedures for

estimating the parameters involved in the conditional mean of Xjkm|Hjkm, Wjkm.

2.4 Estimation of parameters in the conditional mean

Let θ = [α01, α02,…, α0J, τT]T, r = [ξ0,…, ξJ, γ0,…, γJ] and σ2 = σξ
2, σγ

2, σx
2, σ0

2, σ1
2, …, σJ

2 T

denote the unknown parameters in the means and variances of equations (9) and (10). We

rewrite μXjkm|Wjkm as W̃ jkm
T θ, where W̃ jkm = [E j, J

T , W jkm
T ]T and Ej,J is a J × 1 vector with one

on jth element and zeros elsewhere. Combining equations (2) and (7) yields the following

mixed-effects model

H jkm, d = W̃ jkm
T θ

fixed effect

+ ξd + ϵx jkm
+ ϵ jkm, d

random effects

+ γd W̃ jkm
T θ + ϵx jkm

γd

interaction terms
(11)

where W̃ jkm
T θ is the fixed-effect term, ξd, ϵxjkm and ϵjkm,d are the random-effect terms,

γd W̃ jkm
T θ  is an interaction term between the fixed-effect term W̃ jkm

T θ and the random-effect

term γd, and ϵxjkmγd is another interaction term between two random-effect terms, γd and

ϵxjkm. It follows that Hjkm, which contains all the measurements of Xjkm, can be written in

the matrix form
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H jkm = U jkm
T θ + D jkm

T r + P jkm
T ϵ jkm (12)

where if Xjkm is in the calibration subset

U jkm = W̃ jkm, W̃ jkm , D jkm =
E1, J + 1 E j + 1, J + 1
Q jkm, 0 Q jkm, j

, P jkm =
1 + γ0
1
0

1 + γ j
0
1

, ϵ jkm =

ϵx jkm
ϵ jkm, 0
ϵ jkm, j

and if Xjkm is outside of the calibration subset, we have

U jkm = W̃ jkm, D jkm =
E j + 1, J + 1
Q jkm, j

, P jkm =
1 + γ j
1

, ϵ jkm =
ϵx jkm
ϵ jkm, j

Here, Qjkm,d is a (J + 1) × 1 vector with W̃ jkm
T θ on the (d + 1)th element and zeros elsewhere.

Since Djkm and Pjkm contain unknown parameters θ and r respectively, they are not

covariate matrices and we may name them pseudo-covariate matrices. The variance-

covariance matrix of r is R: = var r = diag(σξ
2, …, σξ

2, σγ
2, …, σγ

2).

Now, aggregating all the measurements from all the individuals in all the studies together,

model (12) can be summarized as

H = Uθ + Dr + Pϵ (13)

where the matrices are defined in Appendix A.1. Since D and P depend on unknown

parameters θ and r, respectively, we use 𝒟(θ) and 𝒫(r) in replacement of D and P hereafter.

Also, note that 𝒟(θ)r and 𝒫(r)ϵ are not independent as both depend on the random effects r.

This poses computational difficulties because it is hard to explicitly express the covariance

structure of model (13), i.e., var 𝒟 θ r + 𝒫 r ϵ . Instead of the standard maximum likelihood

estimation algorithm for a linear mixed-effects model, we propose an “iteratively

reweighted” algorithm13 to obtain the estimators of θ, r, and σ2. This algorithm is described

as follows.

Let θ 0  and r (0) be preliminary estimators for θ and r. Here, θ 0  can be the ordinary least

squares (OLS) estimator of the regression E(H|U) = Uθ, i.e., θ 0 = UTU
−1

UTH. The

elements in r (0), namely, γd
(0) and ξd

(0), can be set as the OLS estimators of

E H jkm, d = ξd + 1 + γd X jkm
0  for all measurements drawn from laboratory d, where

X jkm
0 = W̃ jkm

T θ 0  is a preliminary estimated true biomarker value.

In the tth iteration, we replace the unknown parameters, θ and r, in 𝒟(θ) and 𝒫(r), with their

estimators in the (t − 1)th iteration, θ(t − 1) and r (t − 1). Since 𝒟(θ t − 1 ) and 𝒫(r t − 1 ) are
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fixed values and r is assumed to be independent of ϵ, 𝒟(θ t − 1 )r is independent of

𝒫(r t − 1 )ϵ. As a result, model (13) can be approximated by the following extended marginal

model

H = Uθ + ϵ * t (14)

where ϵ * t ∼ N(0, V(σ2, θ t−1 , r t−1 )) and

V(σ2, θ t − 1 , r t − 1 ) = 𝒟(θ t − 1 )R𝒟(θ t − 1 )
T

+ 𝒫(r t − 1 )Σ𝒫(r t − 1 )T. The matrix Σ is the

variance-covariance matrix of ϵ, which is defined in Appendix A.1. Note that

V(σ2, θ l − 1 , r t − 1 ) only depends on σ2. The log-likelihood function for model (14) is

l(θ, σ2 ∣ θ t − 1 , r t − 1 ) = − 1
2 log|V(σ2, θ t − 1 , r t − 1 )|

+ (H − Uθ)TV(σ2, θ t − 1 , r t − 1 )
−1

(H − Uθ) + constant
(15)

One can then obtain θ(t) and σ2(t)
 as the maximum likelihood estimators based on equation

(15). See Appendix B.1 for technical details.

Finally, the empirical best linear unbiased predictor (EBLUP) of r in the tth iteration is

r t = R t 𝒟̃(θ t )
T

V(σ2 t
, θ t , r t − 1 )

−1
(H − Uθ t )

where R t = diag(σξ
2 t

, …, σξ
2 t

, σγ
2 t

, …, σγ
2 t

). The iteration continues until convergence. The

convergence criteria can depend on the relative difference ∥ π t + 1 − π t ∥
∥ π t ∥

 where

π t = [σ2 t T
, θ(t)T, r (t)T]

T
, and ∥•∥ denotes the Euclidean norm.

2.5 Exact calibration method

In this section, we propose a likelihood-based method for the estimation of exposure effects.

Using distributions (9) and (10), we evaluate the mean and variance of Xjkm|Hjkm, Wjkm,

denoted as μjkm and s jkm
2  at θ, r , and σ2 from Section 2.4, leading to μ jkm and s jkm

2 . Denote

the likelihood contribution in equation (6) with this substitution as L̃ jk. Estimates of β can be

obtained by maximizing the pseudo-likelihood L̃ = Π j, kL̃ jk. Although this likelihood cannot

be written as an explicit function, we can use a Monte Carlo approach or Gauss–Hermite

Quadrature (GHQ) approach14,15 to calculate it numerically. The GHQ approach was

developed to integrate some functions with respect to the multivariate normal distribution. It

approximates the integral as a weighted sum of the function values at selected knots, and can

be less computationally intensive for lower-dimension integrals. Therefore, we propose an

integration dimension reduction strategy before applying the GHQ approach to calculate L̃.
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More details about the Monte Carlo and GHQ approaches were deferred to Supplementary

Material Appendix C.

We name this method Exact Calibration Method (ECM), as it aims to exactly calculate the

likelihood contribution (6). And we denote the β-estimator from the Monte Carlo and GHQ

approaches as β(E1) and β(E2), respectively. We abbreviated the Monte Carlo and GHQ Exact

Calibration Methods as ECM1 and ECM2 hereafter. Each approach has merits and

shortcomings. The GHQ method can provide accurate approximations for lower-

dimensional integrations compared to the Monte Carlo approach, but it bears “curse of

dimensionality” when Mjk is large since the number of knots grows exponentially with Mjk.

Conversely, the accuracy of a Monte Carlo approach is typically lower than the GHQ

approach, but it is robust with the dimension of integration. In fact, any numerical

integration approach can be employed to calculate likelihood contribution (6) if it favors

accuracy and computational efficiency. For example, one may try the quasi-Monte Carlo

integration16 to achieve a higher rate of convergence to the true integral value compared to

the standard Monte Carlo integration approach when the integral is high-dimensional.

2.6 Approximate calibration method

Alternatively, we can use a second-order Taylor expansion with respect to Xjk about E(Xjk|

Hjk, Wjk) to approximate the likelihood contribution in equation (6). This yields the

following approximate likelihood contribution

L̃ jk
A =

j = 1

J

k = 1

K j exp m = 1
M jk

1
(βxX jkm + βz

TZ jkm)

ℳ ∈ 𝒞 jk
exp m ∈ ℳ (βxX jkm + βz

TZ jkm)
(16)

where X jkm = μ jkm is the estimated value for Xjkm. We name it Approximate Calibration

Method (ACM) since it uses a Taylor expansion to approximate the likelihood contribution

(6) rather than numerically calculating it as in the ECM. We denote the estimates from the

ACM as β(A). The ACM performs best when σd
2, d = 0, 1,…, M are small and/or the

association between Yjk and Xjk is not strong. Further details on the derivation of these

conditions are available in Supplementary Material Appendix D.

2.7 Variance estimation of β

We utilize a resampling approach to obtain Var β  in the ECMs and ACM via the following

steps:

•
Generate new variance estimates for pseudo-data set i via σ̃2 i

∼ N(σ2, Var σ2 ),

where Var(σ2) = [−
d2lp(ϑ(σ2 ∣ θ , r), σ2)

d(σ2)2
|
σ2 = σ2

]
−1

.
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• Generate new fixed and random effects for pseudo-data set i via

θ̃(i) ∼ N(θ , Var(θ)) and r̃(i) ∼ N(r , Var(r)). (Specific forms of Var(θ) and Var(r) are

deferred to Supplementary Material Appendix E.)

• Compute new conditional distributions X jkm
(i) | H jkm, W jkm in equations (9) and

(10) for each individual based on the new pseudo-calibration parameters σ̃2(i),

θ̃(i), and r̃(i). Replace μ jk and s jk in L̃ jk in Section 2.5 and equation (16) with

μ̃ jk
(i) = [μ̃ jk1

(i) , …, μ̃ jkM jk
(i) ]T and s̃ jk

(i) = diag(s̃ jk1
(i) , …, s̃ jkM jk

(i) ), leading to L̃ jk
(i) and L̃ jk

(A), (i),

where μ̃ jkm
(i)  and s̃ jkm

2(i)
 are the mean and variance of X jkm

(i) | H jkm, W jkm.

• Obtain point estimator β(B), (i) and the corresponding naive estimated variance

Var(β(B), (i)) = [− d2lnL̃(B), (i)

dβ2 |
β = β(B), (i)

]
−1

, where B could be E1, E2, and A

representing ECM1, ECM2, and ACM, respectively.

• Repeat Steps 1 to 4 I times to obtain I estimates of β(B), (i) and Var(β(B), (i)). In the

following simulation studies and real data example, we choose I = 20.

• Var(β) can be estimated as

Var(β) =
i = 1

I Var(β B , i )
I +

i = 1

I (β B , i − β)
T

(β B , i − β)
I − 1 ,

where β =
i 1

I
β(B) (i)

I .

Comparing with the variance estimation of β using the Hessian matrix of log-likelihood L̃ in

Section 2.5 or equation (16), this resampling estimator considers additional variations of the

calibration parameter estimators, i.e., σ2, θ and r . The 95% confidence interval for the

parameter of interest, βx, can be estimated based on normal approximation as

βx − 1.96 × Var(βx), βx + 1.96 × Var(βx) , where Var(βx) is the variance estimator of βx

obtained from Step 6. Our simulation studies in Section 3 show that the proposed resampling

method provides satisfactory confidence interval coverage rates.

3 Simulation studies

3.1 Simulation setup and results

We first describe the data generating mechanism for the unobserved biomarker Xjkm, local

and reference laboratory measurements Hjkm,0 and Hjkm,k, and the binary disease outcome

Yjkm.

To mimic a large pooling project with multiple contributing studies, we assume J = 10

matched case–control studies such that each includes 250 individuals (125 cases and 125
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matched controls). For the jth case–control study in the pooling analysis, we first generated a

large source population (Nj = 5000) as follows. First, we generated a standardized exposure;

i.e., X has a one unit standard deviation. Specifically, we drew W~N(0, 2) and then drew

X ∼ N α0 j + τW , σx
2 , where study-specific interprets, αj, were generated from N(3, 0.52), for j

= 1,…, 10. We set τ = 0.5 and σx
2 = 0.5 such that X in each contributing study has variance of

1. Next, we generated reference and local laboratory measurements, H0 and Hj, per

measurement error model (2), where laboratory-specific intercept and slope biases, ξd and

γd, were generated from N(0, 0.52) and N(0, 0.12), respectively, for d = 0,…, 10. This

indicates that the laboratory-specific intercept and slope, ξd and 1 + γd, had the 2.5th to the

97.5th percentile (−0.98,0.98) and (0.80, 1.20), respectively. Considering that some

biomarker measurements can vary up to 40% among different laboratories (such as vitamin

D), we generated the variances of the measurement error term in each laboratory, σd
2, from

Unif(0.15, 0.35), which makes the intra-laboratory correlation coefficient (ICC), computed

as 
σx

2

σx
2 + σd

2  for laboratory d, ranges from 59% to 77%. Next, the binary outcome Y was

generated from logit(P(Y = 1|X)) = β0j + βxX, where we considered βx = (log(1.25),

log(1.5), log(1.75), log(2)) to represent weak to medium biomarker–disease relationship. At

this stage, we had N quintuples of (Y, X, H0, Hj, W)T.

To obtain the case–control data, we randomly selected 125 quintuples from the cases (Y = 1)

and 125 quintuples from the controls (Y = 0). We first assumed a sample size of 25 for each

calibration subset, where the calibration subsamples were randomly selected from the

controls in the original case–control data. Since X is unavailable and H0 (the measurement

in the reference laboratory) is only available for the individuals in the calibration subset, we

observed (Y, H0, Hj, W)T for the individuals in the calibration subset and observed (Y, Hj,
W)T for all other individuals. These quadruples and triplets constituted the case–control data

available for analysis. We did not implement any matching variables in our simulation study,

so cases were randomly matched with controls to obtain 125 pairs in each study.

At each βx and calibration design considered, we completed 1000 simulation replicates and

investigated the performance of ACM, ECM1, and ECM2. We considered a naive method as

a benchmark, which replaced Xjkm in model (3) with the average of Hjkm,0 and Hjkm,j if

Hjkm,0 was available and with Hjkm,j otherwise, and fit a conditional logistic regression

model to obtain a βx estimate, denoted by βx
(N) henceforth. For the purpose of comparison,

we also included the full calibration method from Sloan et al.17 in the simulation study. This

method utilizes ordinary least square method to fit the model Hjkm = αd + βdHjkm,j + ϵjkm,j

in each study-specific calibration subset. The estimated reference laboratory measurements,

H jkm, 0, then replace X when fitting the logistic regression model in equation (1). We denote

the estimated exposure effect by βx
(N) and apply a standard sandwich method to obtain its

standard error.

We compared the performance among the naive method, the full calibration method, and the

proposed methods with regard to the following four operating characteristics: mean percent
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bias, mean squared error (MSE), empirical standard error, and coverage rate of 95%

confidence interval. The simulation results are shown in Table 1. The naive method

performed poorly: all percent biases exceeded −19% and the coverage rates dropped to less

than 20% as exposure effect increased. All the calibration approaches improved the coverage

rates. Comparing to the full calibration method, the ACM and ECMs provided coverage

rates closer to the nominal 95%, where the coverage rates under a strong biomarker–disease

association (OR = 2.0) dropped to around 92% due to depression of point estimates. Even

applying the sandwich variance method to correct the confidence interval, the coverage rates

of the full calibration estimates were typically less than 92% under all exposure effects, and

as exposure effect increased, its coverage rate dropped significantly. The full calibration

method and ECM1 typically minimized the percent bias to less than 1% for all ORs

considered, while the ACM and ECM2 estimates were biased downwards by roughly 0.5%

to 2%. The ACM typically minimized the MSEs of βx estimates, while MSEs of the ECM1

and ECM2 estimates were slightly larger than those of the ACM estimates. Estimates from

the full calibration method had larger MSEs in comparison with other calibration methods.

For example, the MSE of the estimates from the full calibration method was approximately

twice as large as the corresponding MSE from the ACM as OR = 2.

In consideration of the fact that the variable Wjkm may be unavailable in practice, we also

conducted a simulation experiment where the model for X was misspecified as Xjkm = α0j +

ϵxjkm (j = 1,…, 10), i.e., Wjkm was not used in the analysis. The results (Table 2) are similar

to those in Table 1 except that the percent biases and MSEs of all the calibration methods

were larger, implying that including all available variables associated with the biomarker

data into the model for X can improve the estimation accuracy. Several additional simulation

studies were conducted to check the performance of the proposed calibration methods, and

the results are summarized in Supplementary Material Appendix F.

In summary, the proposed calibration methods demonstrated significant advantages over the

naive method in terms of the percent bias, MSE, and confidence interval coverage rates. The

ACM performed best with regard to MSE and percent bias under most parameter settings.

All the proposed methods could provide satisfactory confidence interval for small effect

sizes (OR ≤ 1.75). In contrast, the naive method was heavily biased in most simulation

settings. Moreover, the performance of all the proposed methods improved when the

variance of σγ
2 decreased and when the calibration subset sample size increased.

3.2 When X does not follow a normal distribution

The previous simulation experiments assumed that ϵxjkm was normally distributed. However,

the biomarker data could be skewed or fat-tailed in reality, violating the normality

assumption. In this section, we investigated the proposed calibration methods when the error

term in the model for Xjkm (and thus Hjkm) does not follow a normal distribution. Two

specific distributions for ϵxjkm were investigated: the uniform distribution and the skew

normal distribution.18 Specifically, we first generated Xjkm based on Xjkm = α0j + τWjkm +

ϵxjkm, where ϵxjkm followed either the uniform or the skew normal distribution, and all the

parameters were adjusted to satisfy mean 0 and variance 0.5. For the skew normal

distribution scenario, we set the skew parameter, s, at 1.5 and 10, leading to a moment
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coefficient of skewness of approximately 0.5 and 1.0, respectively. The density plots of both

skew normal distributions are visualized in Figure S1 in Supplementary Material. We

generated Hjkm,d based on H jkm, d ∼ N ξd + 1 + γd X jkm, σd
2 , j = 0, 1,…, 10, where ξd terms,

γd terms, and all the other design parameters were identical to those in the previous section.

Table 3 provides the simulation results, which are similar to the results in Section 3.1. The

proposed methods exhibit robust performance when X is not normally distributed, especially

for smaller effect sizes (OR ≤ 1.5). Across all exposure effects, the ACM and ECMs

performed better in the aspects of percent bias and coverage rate, where the ACM typically

minimized the MSE and SE. The naive method was still undesirable due to large percent

biases in the effect estimate.

4 Application and case study

We conducted one real data example to illustrate the proposed methods. In this example, we

investigated the impact of 25(OH)D levels on risk of colorectal cancer based on two studies

in the VDPP. Specifically, we combined data from the NHS19 and HPFS.20 The NHS began

enrollment in 1976 and included 121,701 female nurses aged 30 to 55 years at baseline. The

HPFS began enrollment in 1986 and included 51,529 male health professionals aged 40 to

75 years at baseline. Between 1989 and 1995, both studies completed laboratory assays on

blood samples for a host of biomarkers including 25(OH)D for a subset of participants. A

total of 1876 participants, extracted from both studies, constituted the population for our

pooling analysis. Each study randomly selected 29 controls and re-assayed their blood

samples at Heartland Assays, LLC. These laboratory measurements were treated as

reference laboratory measurements in this example. Our pooled analysis consisted of 615

case–control pairs matched on age and sex (1:1 or 1:2 matching), with 348 matched sets

from the NHS and 267 matched sets from the HPFS.

For comparison, three models for 25(OH)D were considered. In the first model, we

considered all factors potential related to 25(OH)D as covariates in model (7), including age

of blood draw (continuous, ranged 43–82), week of the year at blood draw (integers, 1–52),

physical activity (continuous, ≥ 0), smoking (ever/never), and body mass index (BMI)

(greater or less than 25 kg/m2). Considering the seasonal fluctuations of 25(OH)D, a

periodic function τ1sin(2πt/52) + τ2cos(2πt/52) + τ3sin(4πt/52) + τ4cos(4πt/52) was

utilized in model (7) to fit the seasonal variation,9 where t represents week of the year at

blood draw. The second model included study-specific intercepts and the seasonal periodic

function in model (7), and the third model included the study-specific intercepts only. These

three models were named as Models I, II, and III, respectively.

Table 4 shows the pooled point estimates with standard errors for the regression coefficients

corresponding to Models I, II, and III. The HPFS-specific intercept is slightly larger than the

NHS-specific intercept in all of the three models. Moreover, the 25(OH)D measurements

exhibits strong seasonal fluctuations based on Models I and II. Estimates of the parameters

in the measurement error models from equation (2) for the study-specific and reference

laboratories are presented in Table 5. The HPFS-specific laboratory provides the smallest
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measurement error (σ2
2 < 0.01 in Models I, II, and III), followed by the NHS-specific

laboratory. However, the reference laboratory exhibits the largest measurement error, where

the variance of its measurement error (i.e., σ0
2) was greater than 30 in all three models.

Intercept and slope biases are also detected by the calibration analysis, but they are generally

less noticeable comparing to the measurement errors. Figure 1 shows the estimated

measurement error model of equation (2) with pointwise 95% confidence bands for the

reference and study-specific laboratories, when the true 25(OH)D values are in the range of

50 to 80 nmol/L. At the same true 25(OH)D value, the reference and HPFS-specific

laboratories tend to have similar 25(OH)D measurements. However, the confidence bands of

the reference laboratory measurements are significantly wider than those for the HPFS-

specific laboratory, indicating that the measurement error for the reference laboratory was

larger. Moreover, the NHS-specific laboratory measurements tend to be slightly lower than

the measurements from the other two participating laboratories. This is due to the negative

intercept and slope biases in the estimated measurement error model for the NHS-specific

laboratory.

Next, using a representative individual in the NHS calibration subset as an example, we

illustrate how the proposed calibration model combines the information in the laboratory

measurements and covariates to obtain the distribution of the underlying true 25(OH)D. As

shown in Figure 2, conditional on the covariates age of blood draw, week of the year at

blood draw, physical activity, smoking, and BMI, the distribution of 25(OH)D values (black

area) has a large variance. Combining the information from the NHS-specific laboratory

measurement, the distribution of 25(OH)D becomes more concentrated (blue area). The 95%

confidence interval for the true 25(OH)D is (61, 79) nmol/L. Finally, incorporating the

reference laboratory measurement, the distribution of 25(OH)D is further compressed into

the red area in Figure 2. Now, the 95% confidence interval for the true 25(OH)D becomes

(63, 76) nmol/L.

Finally, we applied the naive method, ACM, ECM1, and ECM2 to the pooling data set,

adjusting for physical activity total (continuous), family history of colorectal cancer (yes/

no), smoking (ever/never), and BMI (greater or less than 25 kg/m2). The OR estimates for

the association between 25(OH)D and colorectal cancer and their 95% confidence intervals

are displayed in Table 6. All the analytic approaches indicate that increased 25(OH)D levels

are associated with a statistically significant (based on 95% confidence level) protective

effect against colorectal cancer. In either Model I, II, or III, the OR estimates among all

approaches are quite similar, which is due to the fact that the measurement errors for all

participating laboratories were significantly smaller than the variance of the true biomarker

in our example. Specifically, the intra-laboratory correlation coefficients, defined as

ICCd =
σx

2

σd
2 + σx

2  (d = 0, 1, 2, indexing the reference, NHS-specific and HPFS-specific

laboratories, respectively), are generally large (e.g., in Model I: ICC0 = 92.8%, ICC1 =

93.9%, ICC2 = 99.9%). The difference between the proposed calibration approaches and the

naive method may have been larger if the ICCs are smaller.
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We also investigated the relative goodness-of-fit among Models I, II, and III, three models

that use different covariates for describing the measurement error process, by comparing

their Akaike information criterion (AIC) values. Under the approach of Ten Eyck and

Cavanaugh21 for pseudo likelihood statistical methods, the AIC is given by

AIC = − 2log L̃(θ , π) + 2(p + q), where L̃(θ , π) denotes the pseudo-likelihood function of the

ECM or ACM after substituting the point estimators, θ  and π, and p and q denote the number

of estimated parameters in θ and π, respectively. A lower AIC value indicates a better-fit

model. The AIC values for the ACM for Models I, II, and III are −1261.9, −1269.9, and

−1277.9, respectively, which indicates that Model III fits better than the other two

candidates. In addition, the AIC values for the ECM1 and ECM2 also favor Model III (not

shown here).

5 Discussion

In this paper, we proposed and evaluated statistical methods for pooling biomarker data from

multiple nested case–control studies. We focused on evaluating the OR describing the

association between a continuous biomarker and a binary disease outcome. In line with the

common practice, we randomly selected biospecimens from the controls in each contributing

study for the calibration subsets. We considered the measurement errors and biases of the

observed biomarker data in both the reference and study-specific laboratories. The R

software and an illustrative example for implementation of the proposed methods can be

found at “Pooling_Data_code.zip” in the Supplementary Files.

The major messages of this work are as follows: First, all the proposed calibration methods,

including ACM, ECM1 and ECM2, were able to obtain a less biased point and interval

estimates than the naive approach, which did not adjust for the measurement error or bias.

Second, across the proposed calibration methods, the ACM is preferred approach in

consideration of its minimal biased point estimates and MSEs under all simulation scenarios.

Third, we observed that the OR point estimates were slightly biased for strong biomarker–

disease association in the simulation studies, but all the proposed calibration methods

yielded satisfactory estimates under smaller exposure effects (OR ≤ 1.75).

We used the following two conditions to simplify the likelihood contribution Ljk in equation

(4): the disease is rare and/or the association between the exposure and outcome is weak.

These settings are frequently encountered in epidemiologic studies. In fact, the rare outcome

condition is commonly undertaken in epidemiologic methodologies when correcting for the

bias due to a mis-measured exposure with respect to a binary outcome.22–24 In addition,

weak exposure–outcome associations are frequently observed in cancer epidemiology. Many

studies demonstrate that associations between cancers and nutritional factors are generally of

a small magnitude.25,26 The simulation studies also establish that the proposed methods

work well for moderate effect sizes. In summary, both conditions may be plausible in many

epidemiologic settings.

This paper focused on a linear measurement error model, where the reference and study-

specific laboratory measurements, Hd, and the underlying true biomarker, X, were assumed

to satisfy the mixed-effects model Hd = ξd + (1 + γd)X + ϵd, where ξd and γd are zero-mean
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random effects representing the measurement bias in laboratory d, and ϵd is the

corresponding measurement error term. All calibration methods discussed in this work can

be applied to prospective or retrospective cohort studies with a binary disease outcome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix 1

A.1. Matrices in model (13)

H includes all Hjkm, sorting first by study number j, followed by matched set number k and

individual number m. Specifically, HT is defined as

H111
T , H112

T , …, H11M11
T , H121

T , H122
T , …, H12M12

T , …, H1K11
T , H1K12

T , …, H1K1M1K1

T ,

H211
T , H212

T , …, H21M21
T , H221

T , H222
T , …, H22M22

T , …, H2K21
T , H2K22

T , …, H2K2M2K2

T ,

⋮

HJ11
T , HJ12

T , …, HJ1MJ1
T , HJ21

T , HJ22
T , …, HJ2MJ2

T , …, HJKJ1
T , HJKJ2

T , …, HJKJMJKJ

T

Following the same indexing scheme in H, the matrices U, D, and ϵ are defined as

UT = [U111, U112, …, UJKJMJKJ
], DT = [D111, D112, …, DJKJMJKJ

],

P = Diag(P111
T , P112

T , …, PJKJMJKJ

T ), and ϵT = [ϵ111
T , ϵ112

T , …, ϵJKJMJKJ

T ]. Here, Diag(A1, A2,

…, Ap) denotes the block diagonal matrix generated by matrices A1, A2,…, Ap.

Similarly, Σ, the variance-covariance matrix of ϵ, is defined as

Σ = Diag(Σ111, Σ112, …, ΣJKJMJKJ
)

where Σjkm, is the variance-covariance matrix of ϵjkm with Σ jkm = Diag(σx
2, σ0

2, σ j
2) if Xjkm is

in the calibration subset and Σ jkm = diag(σx
2, σ j

2) if Xjkm is outside of the calibration subset.
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B. 1. Expressions of θ(t) and σ2(t)

Maximizing equation (15) for fixed σ2 with respect to θ leads to

θ t = ϑ(σ2 ∣ θ t − 1 , r t − 1 ) ≔ (UTV(σ2, θ t − 1 , r t − 1 )
−1

U)
−1

UTV(σ2, θ t − 1 , r t − 1 )
−1

H

It follows that the profile log-likelihood is

lp(ϑ(σ2 ∣ θ t − 1 , r t − 1 ), σ2) = = − 1
2

log|V(σ2, θ t − 1 , r t − 1 )| + (H − Uϑ(σ2 ∣ θ t − 1 , r t − 1 ))
T

V(σ2, θ t − 1 , r t − 1 )
−1

(H − Uϑ(σ2 ∣ θ t − 1 , r t − 1 ))

+ constant

and the MLE estimators of σ2 and θ are σ2(t) = argmax
σ2lp(ϑ(σ2 ∣ θ(t − 1), r (t − 1)), σ2) and

θ(t) = ϑ(σ2(t)
∣ θ(t − 1), r (t − 1)), respectively.
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Figure 1.
Underlying true 25(OH)D values versus estimated laboratory measurements in Models I, II,

and III. The black, blue, and red lines are for the reference, NHS-specific, and HPFS-

specific laboratories, respectively. Black, blue, and red ribbons were added to represent the

95% pointwise confidence bands of the 25(OH)D measurements from the three participating

laboratories. The distribution of the estimated measurements were based on

H jkm, d ∣ X ∼ N(μH jkm, d
, σH jkm, d

2 ), where

μH jkm, d
= E(H jkm, d ∣ X) = E ξd + (1 +γd X + ϵ jkm, d ∣ X = ξd + 1 + γd X, and

σH jkm, d
2 = Var(H jkm, d ∣ X) = Var(ξd + 1 + γd X + ϵ jkm, d ∣ X) = Var(ξd) + X2Var γd + 2XCov

(ξd, γd) + σd
2

,

and d = 0, 1, 2 index the reference, NHS-specific, and HPFS-specific laboratories.
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Figure 2.
The distributions of underlying true 25(OH)D of a representative individual in the NHS

calibration subset, according to Model I. The black curve illustrates the distribution of

25(OH)D conditional on the covariates age of blood draw, week of the year at blood draw,

physical activity, smoking, and BMI. The blue curve illustrates the distribution of 25(OH)D

conditional on the covariates and the NHS-specific laboratory measurement. The red curve

illustrates the distribution of 25(OH)D conditional on the covariates, the reference and NHS-

specific laboratory measurements. Blue and black vertical lines were added to represent the

NHS-specific and reference laboratory measurements, respectively.
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Table 4.

Parameter estimates for model (7) in the calibration step based on the NHS and HPFS.

Models

(Intercept)

NHS HPFS sin2π
52 cos2π

52 sin4π
52 cos4π

52 Physical Age (blood) Smoke BMI

Model I 61.589*
(4.605)

64.586*
(6.697)

−6.040*
(0.748)

−3.801*
(0.745)

0.466
(0.699)

0.029
(0.752)

0.100*
(0.019)

0.056
(0.069)

−0.058*
(0.027)

−4.414*
(1.044)

Model II 63.897 *
(2.079)

68.178*
(4.158)

−6.089*
(0.761)

−3.757*
(0.756)

0.394
(0.709)

0.027
(0.764)

Model III 63.781*
(1.904)

70.603*
(3.821)

Note: The variance estimate, σx
2

, of Model I, II, and III is 461.194, 477.446, and 503.000, respectively. HPFS: Health Professionals Follow-Up

Study; NHS: Nurses’ Health Study; BMI: body mass index; SE: standard error.

Note: The label “*”denote that the corresponding coefficient is statistically significant under a 5% significance level (i.e., p-value < 0.05).
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Table 5.

Calibration parameter estimates for each laboratory, including the estimated intercept bias (ξd), slope bias (γd),

and measurement error variance (σd
2), based on the pooled analysis and calibration model (2).

Laboratory
Name

Laboratory
Index (d)

Model I Model II Model III

ξd(SE) γd(SE) σd
2 ξd(SE) γd(SE) σd

2 ξd(SE) γd(SE) σd
2

Reference 0 0.712(1.358) 0.014(0.023) 35.669 0.000(<0.001) 0.026(0.015) 34.133 1.657(0.951) 0.000(<0.001) 44.086

NHS 1 −0.651(1.316) −0.039
(0.021) 29.776 −0.000(<0.001) −0.051(0.010) 33.446 −2.923(0.630) −0.000(<0.001) 0.013

HPFS 2 −0.061(1.347) 0.025
(0.021) <0.001 −0.000(<0.001) 0.025(0.010) 0.002 1.266(0.703) 0.000(<0.001) 0.006

Note: Models I, II, and III refers to Table 4. The σξ
2

 corresponds to Models I, II, and III is 2.388, 1.907 × 10−7, and 7.299, respectively. The σγ
2

corresponds to Models I, II, and III is 0.002, 0.002, and 1.239 × 10−8, respectively. HPFS: Health Professionals Follow-Up Study; NHS: Nurses’
Health Study; SE: standard error.
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Table 6.

OR-estimates and 95% confidence interval for the circulating 25(OH)Ddyimated intercept bias (he coverage of

a 95% confidence intervausting for physical activity total (continuous), family history of colorectal cancer

(yes/no), smoking (ever/never) and BMI (greater or less than 25 kg/m2).

Methods

Model I Model II Model III

βx OR OR 95% CI βx OR OR 95% CI βx OR OR 95% CI

Naive −0.125 0.882 (0.800,0.972) −0.125 0.882 (0.800,0.972) −0.125 0.882 (0.800,0.972)

ACM −0.125 0.882 (0.797,0.976) −0.125 0.882 (0.796,0.978) −0.122 0.885 (0.804,0.975)

ECM1 −0.121 0.886 (0.801,0.980) −0.125 0.883 (0.796,0.978) −0.122 0.885 (0.804,0.975)

ECM2 −0.127 0.881 (0.796,0.975) −0.126 0.881 (0.795,0.977) −0.123 0.884 (0.803,0.973)

Note: Estimates correspond to a 20nmol/L increase in 25(OH)D. Models I, II, and III refers to Table 4. OR: odds ratio; CI: confidence interval;
ACM: approximate calibration method; ECM: exact calibration method.
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