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Abstract 

Mendelian randomization (MR) is a term that applies to the use of genetic variation to address 
causal questions about how modifiable exposures influence different outcomes. The principles of 

MR are based on Mendel’s laws of inheritance and instrumental variable estimation methods, which 
enable the inference of causal effects in the presence of unobserved confounding. In this Primer, we 

outline the principles of MR, the instrumental variable conditions underlying MR estimation and 
some of the methods used for estimation. We go on to discuss how the assumptions underlying an 
MR study can be assessed and give methods of estimation that are robust to certain violations of 

these assumptions. We give examples of a range of studies in which MR has been applied, the 
limitations of current methods of analysis and the outlook for MR in the future. The difference 

between the assumptions required for MR analysis and other forms of non-interventional 
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epidemiological studies means that MR can be used as part of a triangulation across multiple sources 
of evidence for causal inference.   

 

 
[H1] Introduction  

Mendelian randomization (MR) uses      genetic variation to address causal questions about whether 
modifiable exposuresinfluence health, developmental or social outcomes.1 Exposures can be any 
factor  robustly associated with genetic variation in individuals; for example, exposures could include 
measurable characteristics of an individual such as body mass index or less directly observable traits 
such as the expression of a particular gene in a specific tissue.  

The statistical methodology for MR is generally based on instrumental variable (IV) analysis. IV 
analysis was first proposed a century ago and is an approach to causal inference that uses an IV, or 
“instrument” — which is related to the exposure but not the outcome of interest other than through 
its association with the exposure — to make causal effect estimates in the presence of unobserved 
confounding of the exposure and the outcome. IV analyses can be applied to any source of variation 
in an exposure that is unrelated to the outcome, including investigator-initiated treatment 
randomization in a randomized controlled trial (RCT) or when a natural experiment [G] provides a 
plausible source of exogenous or unconfounded variation.2-4 MR is based on the assumption that 
genetic variants provide a source of such exogenous variation in the exposure and can therefore act 
as an instrumental variable.1 MR can be applied using any genetic variation that satisfies the 
requirements of an IV,5 although it is most often implemented using single nucleotide 
polymorphisms (SNPs). Box 1 further outlines the principles of MR. 

Using genetic variants in this way, MR avoids bias from unobserved confounding of the exposure and 
outcome. However, there are important additional assumptions required for causal inference and 
effect estimation that are different to those used in other causal effect estimation methods. Causal 
effect estimates from MR can be evaluated within a triangulation of evidence framework, which 
involves interpreting findings alongside results from complementary approaches that rely on 
different assumptions. When using this approach, it is important that sources of bias in different 
study modalities are unrelated to each other and thus the magnitude and direction of the bias in one 
study will not predict the size and direction of bias in the others.6-8  

MR studies — especially two-sample studies using previously published summary-level genetic 
association data — provide a rapid and affordable approach to evaluating causal questions. There is 
an urgent need for these tools as many causal questions in health research cannot be adequately 
answered with conventional observational study designs or are not amenable to evaluation with 
RCT’s for logistical or ethical reasons. MR is especially appealing because it relies on different 
assumptions to conventional observational studies and therefore circumvents some of their 
common biases.8 The range of applications of MR and closely related methods for understanding 
causal mechanisms has increased rapidly in the last 20 years. The increasing availability of data and 
the vast expansion of IV methods have overcome some of the original barriers to MR due to lack of 
data, or the inability to assess the robustness of results obtained.1 Major investments in collecting 
genetic data within large research studies has enabled numerous applications of MR and allowed for 
increased statistical power and more precise effect estimates. Further, methodological innovation to 
enhance MR analyses is flourishing and innovations aim to allow for correct estimation with more 
plausible assumptions and estimate more complex effects, which include independent effects of 
multiple phenotypes or age-sensitive exposures. We therefore focus on the principles of MR and 
detail a few core MR estimation methods. The methods for MR listed here should not be taken as a 
definitive list of all potential methods available.  
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In this Primer, we provide guidance on the underlying principles of MR, discuss the information 
necessary to decide whether an MR approach is appropriate and feasible, and review best 
contemporary practices for MR. We outline the principles and assumptions underlying MR, along 
with the data required. Next, we detail the core methods for estimation of causal effects and explain 
how the assumptions underlying MR can be verified. We then describe a range of studies that have 
applied MR in different settings, detail the importance of triangulating MR results with findings using 
other study designs and discuss steps to improving the openness of research involving MR. Finally, 
we outline sources of bias that may affect MR studies that cannot be corrected for with current 
methods and discuss some of the challenges and opportunities for MR in the future.   

[H1] Experimentation 
 
The essence of an MR design is that the association between a genetic variant (G) and an outcome 
(Y) can be used to test whether and by how much the exposure of interest (X) influences the 
outcome, provided that the genetic variant is associated with the exposure of interest and has no 
other source of association with the outcome.1,9 Bias originating from confounding of the exposure 
and outcome should not influence the MR estimate. The rationale of MR studies parallels that of 
RCTs in which randomization influences the treatment received by participants, is not associated 
with any confounders of the treatment and outcome and has no other plausible mechanism to 
influence health outcomes other than through treatment (see Fig. 1). In RCTs, randomly assigned 
treatment therefore evaluates the effect of treatment on the outcome, whereas in MR, a genetic 
variant is treated as a naturally occurring form of randomization.  

As an example, Fig. 2a shows a directed acyclic graph (DAG) for an RCT aimed at estimating the 
causal effect of lowering levels of the inflammatory marker C-reactive protein (CRP) circulating in the 
blood on systolic blood pressure (SBP), in which participants are randomized to receive a CRP-
lowering medication or placebo. Alternatively, the effect of long-term differences in circulating CRP 
could be estimated with MR by considering a genetic variant that is known to alter CRP levels (Fig. 
2b). The DAGs for both studies are the same as long as certain assumptions are satisfied (discussed 
below).  

In our hypothetical RCT, an intention-to-treat (ITT) analysis can be conducted to determine whether 
the treatment influences the outcome by comparing SBP among individuals randomly assigned to 
the CRP-lowering medication to SBP in participants randomly assigned to placebo.10,11 ITT analysis 
estimates the effect on the outcome of being assigned to the group allocated to treatment, rather 
than receiving that treatment. A commonly used approach for analysis is comparing the mean SBP 
among individuals randomized to treatment to the mean SBP among individuals randomized to 
control: 
 
 𝛽1 = 𝐸(𝑆𝐵𝑃|𝐺 = 1) − 𝐸(𝑆𝐵𝑃|𝐺 = 0) (1) 

Where, 𝛽1 is the effect on SBP of being assigned to the treatment group, 𝐺 is an indicator of 
randomization and 𝑆𝐵𝑃 is measured systolic blood pressure. Alternatively, a linear regression can be 
used:  

  𝐸(𝑆𝐵𝑃|𝐺) = 𝛽0 + 𝛽1𝐺 (2) 

Where 𝛽0 is a constant. As there are no confounders of randomization and SBP, there is no need to 
control for any variables to derive an unconfounded estimate of the effect of randomization. 
Therefore, in a setting where 𝐺 is binary, 𝛽1 estimated in equation (1) is identical to 𝛽1 estimated in 
equation (2) and both estimate the causal effect of randomized treatment groups on SBP. Being 
randomized to CRP-lowering medication should only affect SBP if there is a causal effect of CRP on 
SBP.  
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A potential disadvantage of the ITT estimate, for many questions of substantive interest, is that it 
does not give the magnitude of the effect of the exposure on the outcome — for example, of CRP on 
SBP in the above example. It only determines whether or not there is a causal effect. To estimate the 
size of that causal effect, the degree to which the instrument affects the exposure must be taken 
into account. IV analyses are an alternative estimation method that can be used to derive an 
estimate of the causal effect of the treatment (here, CRP) on the outcome (SBP) by accounting for 
the size of the association between randomization and CRP.3,4,12-15 In this scenario, randomization 
becomes the instrument for the estimation. In its simplest form, IV analysis takes the ratio of the 
effect of randomization on SBP to the effect of randomization on CRP: 

𝛾1 =
E[SBP|G = 1]−E[SBP|G = 0]

E[CRP|G = 1]−E[CRP|G = 0]
(3) 

Where 𝛾1 is known as the Wald ratio estimator and CRP is the level of circulating C-reactive protein. 
The numerator of equation (3) is simply equation (1), but here the association is scaled by the effect 
of randomization on CRP. Under the IV conditions described in Box 2, this estimator provides a test 
of whether there is a causal effect of CRP on SBP.  

IV analyses can be applied to any potential source of randomization, including intentionally designed 
RCTs or quasi-randomization in natural experiments.15,16 The term MR is applied when the 
randomization arises from genetic variation and a phenotype influenced by the genetic variant is the 
exposure of interest.17,18 The genetic variant is referred to as the genetic instrument. For example, 
naturally-occurring genetic variants in the gene encoding CRP regulate blood levels of CRP and such 
variants have been used to estimate the effects of circulating CRP levels on SBP.19,20  

The above example highlights an important difference between RCTs and MR: RCTs estimate the 
effect of a particular intervention or treatment over the timeframe of the study, whereas MR 
estimates the lifetime effects.21 This can lead to substantial differences in the effect estimates 
obtained owing to the differences in the time period over which the effects are estimated. There are 
a number of other differences between RCTs and MR. MR was first proposed using the family data 
where the difference in alleles between siblings is random, however data limitations mean most MR 
is conducted using data on unrelated individuals.22 In MR using unrelated individuals, the similarity 
between the allele groups is not guaranteed as with a well-conducted RCT. Further, associations 
between allele distribution and traits can exist at a population level owing to population 
stratification or assortative mating. The particular genetic variants used in the MR may also have 
effects on the outcome that are not due to the exposure received by the individual.23 These issues all 
represent violations of the conditions required for IV estimation, which are described in detail 
below. How these violations may occur in MR studies and potential mechanisms to detect such 
violations are discussed in the Results and Limitations and optimizations sections of this primer.  

 

[H2[ Conditions required for MR estimation 

Interpretation of results from MR studies relies on four conditions.12,24 The first three of these 
conditions are commonly referred to as the conditions for a valid instrumental variable and are 
required for any IV analysis to test whether the exposure has a causal effect on the outcome. These 
are described in Box 2. In our simplified example of CRP and SBP, we imagine only a single 
instrumental variable; however, MR is easily extended to take advantage of multiple genetic variants 
that influence the same exposure.25 When multiple genetic variants can be identified that fulfill the 
IV conditions, they can be used to improve the statistical power of MR analyses.26,27  

The three IV conditions described in Box 2 are sufficient to test the exact null hypothesis as they can 
determine the presence or lack of a causal effect of the exposure on the outcome. However, they 
are not sufficient to derive a point estimate of the size of the effect of the exposure on the 
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outcome.28,29 This requires an additional condition 28 known as a point-estimate identifying condition 
or fourth IV condition. Several alternative point-estimate identifying conditions — which permit 
subtly different interpretations of the IV estimate — have been described and researchers can adopt 
the version of the condition which seems most plausible for the setting at hand.17,29 Box 3 outlines 
the most popular of these alternative point-estimate-identifying conditions and the effect estimate 
obtained from each one. Additionally, the vast majority of MR estimation methods (with non-linear 
MR30 being the notable exception) impose the assumption that the relationship between the 
exposure and the outcome is linear across different values of the exposures.  

Biases that compromise the interpretation of an RCT can also undermine MR studies. For example, if 
random assignment in an RCT influences who participates in follow-up assessments, typical analyses 
of the RCT are biased. Similarly, if the genetic variants used in MR influence who has available 
outcome data — either owing to differential survival or study participation — the MR study will be 
biased.31  

Finally, data used in MR additionally require the assumption that changes in genetic variation are 
equivalent in their effects to changes in the exposure through environmental or pharmaceutical 
manipulation — a concept known as gene-environment equivalence.32 As genetic variants will 
influence the developing human from conception, the interpretation is applied to the influence of 
the variants from that time onwards. These particular MR-related issues are discussed in Box 4.  

[H2] Data used for MR estimation 

MR studies can be conducted using individual level data — including genetic and phenotype 
measures for each individual in the study — or summary data on the association between each 
genetic instrument and the exposure and the outcome phenotypes of interest. Summary data are 
often obtained from genome-wide association studies (GWAS), which estimate the association 
between SNPs and the exposure and SNPs and the outcome traits. 

When individual-level data are used for estimation, the statistical power of an MR analysis (or 
equivalently, the precision of the estimate that can be derived) increases in proportion to the 
sample size and the variance in the exposure explained by the genetic instruments. When summary 
data are used, the precision of the MR estimate depends on how precisely the associations between 
the genetic variants and the outcome have been estimated — in other words, how large the 
standard error of the estimated association is. Genetic variants typically only explain a small 
proportion of the variation in the relevant phenotype; as a result, low statistical power and 
imprecise effect estimates are common in MR studies and well-powered studies usually require 
large datasets. Power calculators are available for simple MR studies to determine whether a 
particular sample size is sufficient for estimation to give reasonably precise results.33-36 Simulation 
studies to determine power are also commonly used to accommodate unique data features.37  

The association of the proposed genetic instrument with the exposure can be estimated in a sample 
other than that used to estimate the effect of the proposed genetic instrument on the outcome.38 
MR conducted in this way is referred to as ‘two-sample MR’. The capacity to use two different 
samples for MR analyses has dramatically broadened the scope of MR studies because when either 
the desired exposure or outcome of a study is rare or expensive to measure, it can be difficult to 
identify a dataset with data on the genetic instrument, exposure and outcome. An important 
assumption for two-sample MR estimation is that the two samples are from the same underlying 
population, or more narrowly that the association between the genetic variants and exposure is the 
same in both samples, although that exposure may not be measured or reported in the sample 
included in the outcome dataset.39 To satisfy this assumption, two-sample approaches usually use 
data from the most similar populations possible, with respect to genetic ancestry and contextual 
factors such as the prevalence of environmental exposures and the timeframe in which the 
measurements were taken. 
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The method of estimation and applicable sensitivity analyses used in MR depend on whether 
individual participant or summary-level data are used to conduct the analyses.40 Using multiple 
genetic instruments in combination improves statistical power because the combination increases 
the total fraction of the exposure variance explained by the instruments.27,41 The availability of 
multiple genetic instruments is also valuable for detecting or avoiding bias if one or more of the IV 
conditions are not met for some or all of the instruments.  

[H2] Instrument Selection 

Genetic variants used as instruments for MR should be associated with the exposure of interest, so 
that they satisfy IV condition 1 (see Box 2). This can be through the use of variants with known 
functionality or through the selection of variants that are strongly associated with the exposure. 
GWAS can potentially identify a large number of SNPs that predict a selected phenotype and many 
MR studies use SNPs identified in credible GWAS as genome-wide significant predictors of the 
exposure of interest for estimation.42  

When using individual data, overlap between the dataset used for instrument discovery and the 
dataset used for estimation can introduce a bias known as ‘winners curse’. The goal of IV is to 
remove the effect on the exposure of variation due to confounders of the exposure and outcome. 
However, the best fitting model for the association of a SNP and the exposure will, by chance, pick 
up some variation owing to confounders. Although this bias is small and unimportant if the SNP has 
a very strong effect on the exposure, this is rarely the case. When many SNPs are used as IVs, each 
with a very small effect, this can create a non-trivial bias towards the conventional effect estimate, 
known as weak instrument bias43. This can be avoided through bias correction calculations or by 
using a two-sample approach and applying jackknife resampling to the estimation. 44-46 In a jacknife 
estimation, the data are divided into groups and each is then used for estimation, with instrument 
discovery conducted in the rest of the sample. The results for each group are then meta-analysed to 
obtain a result for the whole dataset.47  

Bias due to overfitting is a concern when summary level data are used for estimation if the effect of 
the SNP on the exposure is in a dataset that overlaps with the dataset used to estimate the SNP–
outcome association. Recent research has suggested that overlap between the samples used may 
not bias the results obtained by as much as previously thought, unless the instruments are not 
strongly associated with the exposure, and methods have been proposed to estimate the size of and 
correct for this bias.44,45,48 

[H1] Results  

This section outlines methods used for MR estimation, tests for violation of the first IV condition and 
methods of estimation that are robust to particular violations of the second and third IV conditions. 
Here, we cover the main methods used for estimation. A number of other papers are available that 
cover guidelines for reading49, conducting40 and interpreting50 results from MR studies. STROBE 
guidelines for the consistent reporting of MR studies have also been published.51,52 Additionally, the 
MR dictionary provides an extensive glossary of terms used in MR.  

[H2] Individual level data 

[H3] Estimating causal effects 

When using individual level data in MR estimation, genetic variants can either be used as separate 
instruments or combined into an allele score.26 An allele score is generated by adding up the number 
of risk-increasing alleles for all the variants selected as instruments. This score can be unweighted, in 
which each SNP makes the same contribution, or weighted, in which the number of risk-increasing 
alleles at each SNP is multiplied by the estimated effect of that SNP on the exposure.26 Weighted 
scores provide increased instrument strength and power, although there are cases in which the 

https://mr-dictionary.mrcieu.ac.uk/
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unweighted approach is preferred — for example, if the definition of the exposure in the discovery 
dataset differs from the exposure variable in the estimation data. In this case the weights will reflect 
the weight of the SNP on a different exposure to the exposure included in the estimation. The more 
similar the definition of the exposure is in each sample the more the weighted approach will be 
preferred, differences in scaling alone will not affect the preference for a weighted score. Both SNPs 
and weights should be selected from a dataset that does not overlap with the dataset used to obtain 
the MR estimates, such as those from GWAS in non-overlapping datasets.53 If many SNPs that each 
only have a small effect on the exposure are being used, combining them into a single score can 
increase the power of the analysis and reduce the risk of bias from many weak instruments.27 
However if any SNPs violate IV conditions 2 or 3 (if any of the component SNPs influence the 
outcome through a mechanism other than the exposure of interest) then the allele score will also 
violate that condition. 

Estimation of causal effects using individual level data is most commonly implemented with some 
version of two-stage least squares (2SLS) estimation (alternative methods include likelihood 
approaches common in structural equation modelling)54. 2SLS estimation for MR uses genetic 

variants to obtain a predicted value of the exposure (�̂�) that is not associated with any of the 
unmeasured confounders. The first stage can be written as;   

𝑋 =  𝜋0 + 𝑮𝝅 + 𝑣𝑥  (4) 

Where 𝑋 is the exposure of interest; 𝑮 is a 𝑛 × 𝐿 matrix of genetic variants, 𝐿 is the number of SNPs 
and 𝑛 is the number of individuals in the dataset; 𝝅 is a vector of the effect of each genetic variant 
on the exposure of length 𝐿; 𝜋0 is a constant and 𝑣𝑥 is a random error term. The outcome is then 

regressed upon the predicted value of the exposure, �̂�: 

 𝑌 = 𝛼 + 𝛽�̂�  + 𝑢 (5) 

Where 𝑌 is the outcome, 𝛼 is a constant, 𝛽 is the effect of the exposure on the outcome and 𝑢 is a 
random error term assumed to be unrelated to 𝑣𝑥. The four conditions for IV estimation imply that 

the assumption of independence of 𝑢 and 𝑣𝑥 is met and the estimated value of 𝛽, �̂�, obtained from 
estimation of equation (5) is a consistent estimator for the effect of 𝑋 on 𝑌. If the estimation is 
implemented using an allele score, equation (4) is replaced with:  

 𝑋 =  𝜋0 + 𝜋𝑆𝑐𝑜𝑟𝑒 + 𝑣𝑥 (6) 

Where 𝑆𝑐𝑜𝑟𝑒 is the allele score (weighted or unweighted) and 𝜋 is a single coefficient for the 
association of the genetic score with the exposure. The second stage of the analysis, equation (5), is 
the same whether using individual SNPs as instruments or an allele score. In both cases, the 
standard error should not be computed using the standard formula for linear models and should be 

corrected for the additional uncertainty owing to the inclusion of 𝑋 ̂in the estimation. IV estimation 
software packages implement this correction as standard.  

Additional measured covariates can be incorporated into both stages of the estimation. The use of 
additional covariates should be considered carefully because covariates can be influenced by the 
exposure or the outcome. In either of these situations, controlling for such a covariate could bias the 
MR effect estimate.55-57  

[H3] Assessment of IV conditions 

Regardless of the statistical method being used, it is important to assess the IV conditions. The first 
IV condition can be tested using a first-stage F-statistic [G], which tests the association between the 
SNPs and the exposure. If the genetic instruments are not strongly associated with the exposure, 
then weak instrument bias can be introduced into the estimation.43 The first stage F-statistic should 
be reported in all MR analyses. As a general rule, if the first-stage F-statistic is greater than 10, the 
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level of this bias is small.58,59 An F-statistic >10 should be interpreted as a minimum criterion for a 
useful instrument. Note that this should not act as convincing evidence that a proposed IV is valid, 
and conversely a F-statistic < 10 does not indicate that this instrument should not be used, rather 
that weak instrument bias should be considered as an issue in analysis. 

Although the second and third IV conditions cannot be proven to be true, they can sometimes be 
disproven. Assessment of these conditions therefore focuses on disproving them and failure to do so 
(i.e. failure to disprove the conditions) is interpreted as supporting the validity of the proposed IV. 
Genetic variants are fixed at conception, so it is not possible for conventional confounders such as 
age, sex or environmental risk factors to influence them. However, confounding of the genetic 
variants with the outcome in a sample can be induced by population stratification, dynastic effects 
and assortative mating,60 violating the second IV condition. This confounding is not easily corrected 
with current MR methods and is discussed in more detail in the Limitations and optimizations 
section.  

Violations of the third IV condition can be caused by pleiotropy, where genetic variants have effects 
on multiple phenotypes.61,62 This can include situations where the phenotype of interest is not the 
phenotype the SNP is primarily associated with.63 Additionally, linkage disequilibrium (LD) [G] means 
that the effects of neighbouring genetic variants can introduce additional associations between the 
variant of interest — and thus the exposure it relates to — and the outcome, creating a bias 
analogous to that caused by pleiotropy. Pleiotropy in the context of MR is described in Fig. 3. Many 
MR methods are available that are robust to different forms of pleiotropy and analyses using these 
different methods should be carried out in any MR study to determine how sensitive the results are 
to an assumption of no pleiotropy.  

A final important source of bias in MR, and indeed all studies of observational data, is selection 
bias.64,65 This selection could occur either from differential selection into the sample or selection on a 
competing risk for the outcome. Selection bias cannot be accounted for easily with existing MR 
methods and is discussed further in the Limitations and optimizations section.  

An approach for assessing the IV assumptions that is applicable when there are more instrumental 
variables than exposures of interest is based on overidentification tests. These tests, such as the 
Sargan test,66 leverage the expectation that if all proposed IVs are valid, they should deliver identical 
IV effect estimates. If the IV effect estimates from multiple IVs differ to a greater extent than 
expected due to sampling error, at least one is not valid for the exposure-outcome effect of interest. 
If all IVs are biased in the same way, over-identification tests will not identify the bias; for example, 
overidentification tests can incorrectly suggest a lack of pleiotropy when it is present if similar 
pleiotropic pathways are likely to affect many or all proposed IVs or if there is population 
stratification biasing the association between many SNPs and the outcome in the same way.25 They 
also rely on the assumption that each IV estimates the same causal effect, which may not be true for 
complex traits where different genetic variants potentially act as genetic instruments for different 
aspects of the trait. The weaker the effect of an IV on an exposure, the more imprecise the IV effect 
estimate will be and therefore the more likely an instrument will fail to reject an overidentification 
test. 

One further method for identifying potential violations of the IV conditions when the exposure is 
binary or categorical is using IV inequality constraints.29,67,68 The IV conditions described above imply 
a set of mathematical patterns that must be true if the conditions are true; these patterns can be 
used to demonstrate that the IV conditions are not met if the equalities defined by those patterns do 
not hold. IV inequalities are rarely especially informative because they only identify extreme 
violations of the conditions. These inequalities can also be used to define non-parametric bounds for 
an IV estimate (those that would hold without the fourth, point-estimate-identifying condition 
discussed above). Although these are often very wide, they can give a sense of how much an IV 
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analysis depends on the point-estimate-identifying condition. An alternative approach for identifying 
violations of the IV conditions is to examine the association between the genetic variants and other 
measured causes of the outcome, excluding any variables that are themselves on the same pathway 
as the exposure of interest.69,70 If a proposed genetic instrument predicts other causes of the 
outcome that are not thought to be along the same causal pathway as the exposure, it indicates the 
proposed instrument is not valid.  

Recent methods such as sisVIVE71 and adaptive LASSO72 provide MR estimates that are robust to 
pleiotropy under certain assumptions. These methods assume that multiple IVs are available and 
that a majority or plurality of the proposed IVs are valid. Given this assumption, it is possible to 
estimate the magnitude of pleiotropic bias. An alternative approach is to adjust for pleiotropic 
effects of the genetic variants by accounting for the association between the genetic variants and 
potentially pleiotropic phenotypes. Methods that apply this approach include constrained 
instrumental variables73 and multivariable MR.74  

Tests to invalidate proposed IVs often draw on subject matter knowledge, such as an understanding 
of settings in which a genetic variant does not influence the exposure, where the genetic variant 
may have different effects based on the level of an environmental variable (known as gene-
environment interactions) or where the exposure should have no effect on the outcome, such as a 
negative control or zero-relevance point. The proposed genetic instrument should be unassociated 
with the outcome in the environmental setting where it is not associated with the exposure unless 
there are pleiotropic pathways from the genetic variant to the outcome. A classic example of this 
type of analysis is examining the effect of alcohol consumption in populations where subgroups of 
the population (e.g. women in some cultures)  do not drink or drink very little.75 If the IV conditions 
are satisfied, there should be no association between genetic variants for alcohol consumption and 
the outcome under consideration among women in the previous example. Two methods, MR GxE 
and MR GENIUS, have extended and formalised these concepts and enable the estimation of causal 
effects in more general settings. MR GxE uses an interaction between the genetic variant and a 
covariate to create a new IV;76,77 MR GENIUS uses variation that occurs owing to unobserved 
interactions between the genetic variants and covariates as the instrument.76,78  

[H2] Summary level data 

[H3] Estimating causal effects  

MR estimation with summary level data requires estimates of �̂�𝑙, the estimated effect of genetic 

variant 𝑙 on the exposure with variance 𝜎𝑥,𝑙 
2 , and �̂�𝑙, the estimated effect of genetic variant 𝑙 on the 

outcome with variance 𝜎𝑦,𝑙
2 . Inverse-variance weighting (IVW) estimation is a meta-analysis of the 

variant specific Wald ratios for each variant which are given as:  

�̂�𝑙 =
�̂�𝑙

�̂�𝑙
 

Where �̂�𝑙 is the effect estimated using genetic variant 𝑙. These individual ratios are weighted by their 

associated uncertainty; the IVW estimator �̂�𝐼𝑉𝑊 can therefore be computed as: 

�̂�𝐼𝑉𝑊 =  
∑ �̂�𝑙�̂�𝑙𝜎𝑦,𝑙

−2𝐿
𝑙=1

∑ �̂�𝑙
2𝜎𝑦,𝑙

−2𝐿
𝑙=1

 

Where 𝐿 is the total number of genetic variants included as potential IVs.38 The IVW estimate can 

equivalently be obtained by regressing the genetic variant-outcome association, Γ̂l, on the genetic 
variant-exposure association, �̂�𝑙 , (without an intercept) weighted by the inverse variance of the SNP-
outcome association ( 1/�̂�2

𝑦,𝑙 
): 
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Γ̂𝑙 =  𝛽𝐼𝑉𝑊�̂�𝑙 + 𝑢𝑙  weighted by 1/�̂�2
𝑦,𝑙 

 

This equation describes a linear regression with the intercept fixed to zero as 𝑢𝑙~𝑁(0,1), and is 
based on a dataset with 𝐿 observations.  

One important assumption for IVW estimation is that the genetic variants are independent of each 
other.41 This assumption is usually satisfied by removing one of each pair of genetic variants that are 
in LD. However, methods are available that can take account of LD between genetic variants in 
summary-level MR.79,80 It is also important to ensure that data are harmonized to ensure that the 

values of Γ̂𝑙  and �̂�𝑙 refer to the same effect alleles.81  

[H3] Assessment of IV conditions 

As with individual level data analysis, IV conditions need to be assessed for any summary-data MR. A 
number of different methods are available to correct for horizontal pleiotropy — a violation of the 
third IV condition — under different assumptions about the causal structure of that pleiotropy. 
Table 1 lists some of these methods, which primarily draw on three approaches: outlier removal, 
outlier adjustment and adjustment for specific forms of pleiotropy. Many methods combine more 
than one of these approaches. Outlier removal estimation involves identifying and removing 
individual genetic variants for which the causal effect estimate obtained using that variant alone lies 
outside the expected range given the estimates obtained from other variants, so they do not have an 
effect on the result obtained. Traditionally, summary-data MR is visualized as a scatter plot plotting 
associations of the variant and exposure against associations of the variant and outcome (Fig 4a, b); 
however, this can limit the identification of outliers. Radial MR is a method for visualizing the data 
that can make outlying data points easier to detect (Fig 4c).82 An additional approach is to explore 
the effect of individual SNPs on the overall IV estimate, by approaches such as leave one out 
analyses (Fig 4d). Methods of estimation that use outlier removal include weighted Median83, 
weighted Mode84 and MR LASSO85. Outlier adjustment methods identify outlying variants and then 
perform an adjustment to either the effect obtained from that genetic variant or the weight given to 
the estimate from that variant so that it has less influence on the overall estimation result. Many 
pleiotropy-robust MR methods fall into this category including MR Tryx86, MR PRESSO87, MR 
Robust85, MR RAPS88, MR GRAPPLE89 and MR CAUSE90. The final broad category of pleiotropy-robust 
methods for summary-data MR estimation are methods that allow for most or all of the genetic 
variants included in the estimation to have pleiotropic effects on the outcome and place other 
constraints on the pleiotropic effects. These methods include MR Egger91 and multivariable MR.74,92 
Each of these methods imposes strong assumptions on the nature of the pleiotropy. MR Egger 
analysis assumes that across all instruments, the magnitude of the pleiotropic effect is unrelated to 
the strength of the association between the genetic variant and the phenotype of interest (known as 
the InSIDE assumption); multivariable MR assumes pleiotropic pathways operate through known and 
well-measured phenotypes that are also included in the estimation.  

  None of the methods described above are truly robust to all types of pleiotropy and each 
imposes different assumptions on the nature of the pleiotropy and how the pleiotropic effects are 
accounted for. Furthermore, many methods have less statistical power than conventional MR, 
leading to very wide confidence intervals. Therefore, a few methods should be selected based on the 
most plausible assumptions for the application in question and used alongside an IVW MR 
estimation to perform a sensitivity analysis; this can determine how robust MR results are to the 
assumption that genetic variants have no pleiotropic effects on the outcome under different 
alternative specifications. As a minimum, any summary data MR estimation usually include weighted 
median and weighted mode approaches, although these can be replaced with appropriate 
alternatives for the application in question. Additionally, these estimation methods will not 
necessarily identify violations of any IV conditions that are not due to pleiotropy of the nature 
interrogated by the method. Consequently, consistent results across a range of methods is not a 
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guarantee that results are free from bias. Potential violations of the IV assumptions not due to 
pleiotropy are discussed in the Limitations and optimizations section.  

Another form of pleiotropy arises when the exposure for the MR estimation is misspecified 
and genetic variants associated with a confounder are used as instruments for the exposure under 
investigation (see Fig. 3f). For example, body mass index (BMI) influences circulating CRP and if a 
genetic variant primarily associated with BMI is included as a genetic variant for CRP, misleading 
effect estimates of the causal effect of CRP on other phenotypes — including BMI — can be 
generated.62,93 These issues are increasingly important to consider as the sample sizes used in GWAS 
are increasing, making it more likely that a primary phenotype has been misspecified (in the context 
of GWAS, this could refer to the detection of genetic variants for an upstream phenotype of the 
exposure which potentially confounds the exposure and outcome, or genetic variants for the 
outcome if the direction of effect has been misspecified). Steiger filtering attempts to correct for this 
misspecification by removing SNPs that explain more variation in the outcome than the exposure.94 
Any genetic variant should explain more variation in phenotypes it is more proximal to; however, 
differing measurement error, substantially different sample sizes for each phenotype, or the 
presence of binary or categorical phenotypes can lead to phenotypes that are less proximal to the 
genetic variant appearing to have more variation explained by the variant than more proximal 
phenotypes in the observed data. Additional methods are now being developed that attempt to 
resolve misspecification and confounding.90,95,96 

[H2] Software Packages 

Any statistical package can be used for simple MR estimates as the core IV estimate is derived from a 
two-step regression model. Deriving correct standard errors requires special calculations and 
variations on the standard model have been implemented as packages in common statistics 
packages such as Stata and R. A range of software packages are available in both Stata and R to 
conduct MR estimation, many of which include a range of assumption tests and options to conduct 
robust methods. The TwosampleMR R package links to the OpenGWAS project database97, a large 
database of GWAS results that can be used in the estimation. Table 2 gives details of the most 
popular software packages currently available; an extended list is given in Supplementary Table 1.  

 
[H2] Further extensions of MR methods   
 
[H3] Bidirectional MR 
 
In bidirectional MR, two MR analyses are conducted on the same pair of phenotypes by reversing 
the exposure and the outcome. This method can be used to establish the direction of effect between 
two variables. For example, extensive observational evidence indicates that hearing loss predicts 
dementia and it is hypothesized to be an important causal determinant of dementia;98 however, it is 
possible that the neurodegenerative disease that leads to dementia also causes hearing loss and 
thus the causal direction between hearing loss and dementia is unclear. There are known genotypes 
for both hearing loss and Alzheimer’s disease — the most common cause of dementia99-101 — and a 
bidirectional MR would first conduct an MR analysis of the effect of liability to dementia on hearing 
and then for the effect of hearing on dementia. If genetic variants known to associate with dementia 
influence hearing loss and genetic variants known to associate with hearing loss do not influence 
dementia risk, this suggests that hearing loss is a causal determinant of dementia.  
 
Results from bidirectional MR studies should be interpreted with caution. Evidence of an effect in 
both directions could indicate a true bidirectional relationship between the exposures or be a 
product of bias from horizontal pleiotropic effects in the variants, misspecification of the primary 

https://github.com/MRCIEU/TwoSampleMR
https://gwas.mrcieu.ac.uk/
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phenotype, or a violation of the second IV condition owing to confounding of genetic variants and 
outcome caused by factors such as population stratification and dynastic effects.  
 
[H3] Multivariable MR 
 
Multivariable MR is an extension of standard MR that includes multiple exposures, predicted by a set 
of genetic variants used as instruments. Fig. 5 illustrates a multivariable MR with two exposures.  
Although multiple exposures can be included in a multivariable MR, there must be at least as many 
genetic variants or scores included as instruments as there are exposures. Multivariable MR can be 
estimated with either individual level or summary level data using extensions of the 2SLS or IVW 
approach, respectively.74,102. Conditions required for estimation are adapted from the standard IV 
conditions and are defined as follows: each exposure must be robustly predicted by the instruments, 
conditional on the other exposures included in the estimation (Multivariable instrumental variable 
condition 1, or MVIV1); there must be no confounders of the outcome and any of instruments 
(MVIV2) and none of the instruments can have an effect on the outcome that doesn’t act through at 
least one of the exposures (MVIV3). If the above conditions are met, the estimates obtained from 
multivariable MR will be a direct effect of each exposure included on the outcome, given the other 
exposures included in the estimation.74  

Multivariable MR can be used as an approach to address pleiotropic violations of the IV conditions. 
In a univariable MR where IV3 is violated and the genetic variants used as instruments for an 
exposure of interest are also thought to be associated with another trait on the path to the 
outcome, that trait can be included as an additional exposure in the multivariable MR estimation. 
Multiple, correlated exposures can be included in a multivariable MR; however, including multiple 
exposures can reduce power and potentially instrument strength and thus the benefit of adding 
extra exposures must be considered carefully. Bayesian approaches have been proposed for 
selecting a set of exposures where multiple highly correlated exposures are potentially relevant for 
an outcome.103 In addition, multivariable MR can be used for mediation analysis, as described below. 

 
[H3] MR mediation analysis  
 
MR can be used to estimate the proportion of the effect of an exposure on an outcome that is 
mediated by an intermediate phenotype.104,105 Network MR and two-step MR use two univariable 
MR estimates to do this, estimating the effect of the primary exposure on the intermediate 
phenotype and the effect of the intermediate phenotype on the outcome.106,107 Alternatively, 
multivariable MR can estimate the direct effect of each exposure on the outcome that is not 
mediated by the other exposures included in the estimation. If all of the IV conditions are satisfied, 
this estimate will differ from a univariable MR estimate where all or part of the effect of the 
exposure on the outcome acts through a mediating phenotype included in the multivariable MR 
estimation.104 Both two-step and multivariable MR can therefore be used as part of a mediation 
analysis to estimate how much of the effect of an exposure on an outcome acts through an 
intermediate phenotype.104,105 When multiple intermediate phenotypes are thought to be potential 
mediators, two-step MR can estimate the proportion of the outcome mediated through each of 
these, whereas multivariable MR including all of the mediators considered will estimate the total 
proportion of the effect of the exposure on the outcome that is mediated by the set. If the 
intermediate phenotype mediators are correlated, or one also mediates the effect of another on the 
outcome, the total proportion of the outcome mediated by all of the intermediate phenotypes may 
be less than sum of the proportion mediated by each one individually; therefore, each of the above 
approaches will estimate different properties. A detailed description of the use of MR for mediation 
analysis is given elsewhere.105 
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[H3] Non-linear MR 

Standard MR only provides a single effect estimate, which may not be informative if the effect of the 
exposure varies in a non-linear way — for example, a dose-response curve. With individual level data 
and a continuous exposure, non-linear MR can be applied to estimate whether the causal effect of 
the exposure on the outcome varies across different levels of the exposure.30,108 For example, 
although mortality risk generally increases with BMI, an increase is also seen at very low BMIs; this J-
shaped relationship may reflect weight loss in individuals who are unwell, potentially before their 
illness is diagnosed. Non-linear MR has supported this, although it has also suggested that the J-
shape could be caused by the relationship between BMI and mortality risk differing for ever-smokers 
[G] and never-smokers.109  

[H3] Testing for interactions between exposures 

With individual-level data, it is possible to test for interactions between two exposures using MR. 
When individual-level data are available to conduct a multivariable MR, interactions between the 
exposures can be included as additional exposures in the estimation110,111 This requires a 
multivariable MR estimation including the exposure, the potential effect modifier and the 
interactions between them included as exposures. The inclusion of these additional terms decreases 
the statistical power for detecting an effect and should be limited to a single interaction. An 
alternative approach is to split the allele scores for each exposure into high and low values and 
compare outcomes across the resulting four groups by dividing participants up based on their score 
for each exposure, mimicking a 2x2 factorial randomised trial. It should be noted that this approach 
can have low power compared to the inclusion of an interaction term in a 2SLS regression.111  

 
[H2] Colocalization and MR 
 
Ever larger GWAS have now provided evidence that hundreds of genetic variants may be associated 
with many human phenotypes. This, together with the tendency for neighbouring genetic variants to 
be correlated owing to LD, could lead to the violation of IV condition 2 where different neighbouring 
variants happen to be causally associated to the exposure and outcome through different pathways 
(Fig 6a). The bias in this situation is equivalent to that caused by pleiotropy (see Fig. 3) and although 
it is unlikely that this pattern will arise at many independent genetic locations in MR studies with 
multiple IVs, it should be a consideration in single-IV studies.   
 
Colocalization analysis can be used to determine whether two traits share causal variants in a single 
genetic region, without prior knowledge of which variant is causal for either trait. It was originally 
used to identify potential molecular causes of single GWAS associations and considers the patterns 
of association across multiple neighbouring genetic variants for the GWAS and exposure traits 
(including molecular traits). Although this involves an implicit assumption of directionality in its 
interpretation, the test is not dependent on this assumption and indeed a single pleiotropic variant 
would satisfy the statistical definition of a shared causal variants (Fig 6b). Unlike in MR with multiple 
IVs, the majority of multiple neighbouring genetic variants considered in this analysis are expected 
to be associated with either trait solely through LD with one or a small number of causal variants in 
the region. This explicit use of LD means colocalization can be used to check for the violation of IV 
condition 2 in the form shown in Fig 6a (and Box 2).  
 
 One colocalization method originally proposed by Plagnol et al 112 frames shared causality as the null 
hypothesis and rejection of this would indicate violation of IV condition 2, i.e. that there are no 
common causes of the instrument and the outcome.112-114 However, it is hard to differentiate 
whether failure to reject the null hypothesis indicates that IV condition 2 is satisfied or a lack of 
power in the colocalization test. Alternatively, Bayesian frameworks for colocalization analysis 
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consider GWAS summary statistics for both traits across multiple SNPs in the region around the IV 
and assess either the evidence that each variant is jointly causal115 or consider shared causal variants 
as one of five competing hypotheses.116 A key difference between MR and Bayesian colocalization 
strategies is that the latter assume summary data exist for multiple variants in a region, with 
sufficient density such that any causal variant or variants for an outcome and exposure are likely to 
be included in the set of variants studied. This assumption is required because Bayesian 
colocalization approaches enumerate all possible configurations of causal variants for each trait and 
assess the relative likelihood of each combination. A further difference is that in Bayesian 
colocalization strategies the user must supply parameters describing their prior belief that the 
outcome and exposure share causal variants; these may be different in the context of the carefully 
chosen traits in MR compared to those in more typical uses of colocalization, and thus sensitivity 
analyses are recommended to confirm the robustness of inference to changes in prior parameter 
values.117  
 
Gene expression and protein are often instrumented with a single genetic variant and so 
colocalization can be particularly useful in MR studies of these exposures;42 in these settings 
colocalization can be used to attempt to falsify the second IV condition.  
 

[H1] Applications 

Below we describe five applications of MR. The studies described below have used MR to make 
important theoretical or practical contributions to understanding the causes of disease and some 
have implemented recently developed enhanced analytical approaches.. 

[H2] Estimation when trials are unfeasible  

Conventional observational epidemiological studies have long suggested a J-shaped relationship 

between alcohol and risk of cardiovascular disease (CVD), 118 119 120. It was unclear from these studies 

whether the J-shape reflected a true non-linear cause and effect relationship, was caused by 

confounding by socio-demographic factors, or was present because individuals with low alcohol 

consumption had a higher apparent risk of CVD owing to a reduction in alcohol consumption caused 

by sickness (a form of reverse causation known as ‘sick quitters’). Although efforts were made to 

assess this question using a RCT121, the trial was terminated by the US National Institutes of Health 

(NIH) following concerns regarding the study design and influence from the alcohol industry122 123,124. 

Furthermore, ethical issues exist in deliberately exposing individuals to alcohol, which is a named 

carcinogen by the International Agency for Research on Cancer (IARC)125 and is recognized to have 

multiple detrimental effects on human health including liver disease, depression, and cancers of the 

oesophagus and liver.126 

Early MR studies in individuals with European ancestry using a single genetic variant (rs122994) in 

the ADH1B gene127 128 suggested that the apparent protective effect of alcohol on the risk of CHD 

and ischemic stroke shown in epidemiological studies might not be real. However, use of a single 

genetic variant with a modest effect on the magnitude of alcohol consumption meant the 

relationship across the distribution of alcohol consumption could not be explored.129 In a recent 

study, Millwood and colleagues 130 used genetic variants in ALDH2 and ADH1B, which together 

explained considerable variation in alcohol use. Across the distribution of genetic variants, the 

average amount of alcohol consumed varied from 4g/week to 256 g/week. Applying these genetic 

variants to the China Kadoorie Biobank, they found strong evidence of a dose-response relationship 

between alcohol and risk of stroke, and no strong evidence of a protective or detrimental effect on 

risk of CHD. In the same study, they were able to show the J-shaped observational association 

between alcohol and CHD and stroke that had been observed elsewhere. Further, use of negative 
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controls (i.e. exploration of the effect of the genetic instrument in women who did not drink), 

empirically demonstrated that the genetic instrument was unlikely to have effects on disease 

independent of the exposure of interest. Thus, available evidence from MR methods that facilitate 

estimation in the presence of unobserved confounding — assuming no selection bias — do not 

support the conclusion that the consumption of a moderate amount of alcohol may lower vascular 

disease risk and identify alcohol consumption as a factor linked to increased likelihood of ischemic 

stroke  

[H2] Cholesterol and coronary heart disease  

Cholesterol circulating in the blood plays a central role in atherosclerosis, the disease process 

affecting arteries that leads to symptomatic cardiovascular disease including CHD and ischemic 

stroke.131 An inverse association between high-density lipoprotein cholesterol (HDL-C) and CHD risk 

reported over a number of observational studies, leading to the widely held belief that high levels of 

HDL-C are protective against CHD risk.132-135 This association was observed to be persistent even 

when other lipid fractions were accounted for, suggesting this association was not owing to 

confounding.134  

MR studies have provided accumulating evidence against the observational results above.136-140 Such 

MR studies used a range of genetic variants that act through different mechanisms and showed no 

protective effect of increased levels of HDL-C on CHD risk. These studies were published alongside 

the results of several large scale RCTs of pharmacological interventions that relatively specifically 

increased HDL-C and without a noticeable change in other blood lipids such as LDL-C – these trials 

also failed to show a protective effect.141,142 This indicates that the association observed in the more 

traditional observational studies was likely to have occurred owing to confounding. It is worth 

reflecting on whether the RCTs would have been embarked upon if the MR study findings were 

known at the time of their inception.135 Indeed, where data already exists, MR studies are relatively 

cheap to conduct — particularly compared to a large RCT — and can provide additional evidence 

that can be used to direct which studies are worth follow up with RCTs. However, it must be noted 

that MR studies are themselves not free from issues of bias or lack of power; evidence from MR 

studies for the presence or absence of an effect should be compared with results from studies with 

other potential sources of bias.   

[H2] Testing causation across the life course 

A key issue in preventing disease in adulthood is identifying when in the lifecourse harmful 

exposures must be minimized. For example, if the contribution of exposures in childhood is non-

reversible, this evidence would argue in favour of early intervention. This is challenging to appraise 

using conventional observational epidemiology owing to various features such as time-dependent 

confounding. 

One example of this issue is the relationship between adiposity and adult-onset diseases such as 

CHD and type 2 diabetes (T2D). An MR study143 took an innovative approach by constructing 

separate genetic instruments for early-life body size and adult body size. The authors were able to fit 

a multivariable MR model to elucidate whether childhood body size was detrimental to the risk of 

CHD or T2D after taking adult body size into account. A direct effect of childhood body size in the 

multivariable model would suggest that high adiposity in childhood has a long term effect on health 

outcomes in adulthood — suggesting that focusing on early interventions in childhood to minimize 

excess body weight would be of importance in lowering the risk of diseases that typically present in 

adulthood. As UK Biobank participants were asked for information on their body size at 10 years of 

age and BMI was measured at recruitment into the study144, these data provided an opportunity to 
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conduct GWAS on body size during childhood and adulthood for the same group of individuals and 

detected 295 and 557 independent SNPs associated with childhood and adulthood body size, 

respectively, with a high level of overlap in the SNPs associated with each time period as 

expected.143 Univariable MR analysis showed both genetically predicted body size in early life and 

adulthood were individually related to higher risks of CHD and T2D and a lower a risk of breast 

cancer. In contrast multivariable MR analysis identified that only adult body size showed an 

independent causal effect for CHD and T2D, suggesting that the relationship between early life body 

size was mediated through adult body size. In contrast, the inverse relationship between genetically 

predicted body size and breast cancer was stronger for early-life body size than adult body size in 

the multivariable MR analysis, suggesting an age-dependent relationships between adiposity and risk 

of different diseases in adults. This suggests that for children that are overweight, losing weight in 

their adulthood can still effectively lower risk of T2D and CAD and in this case a metabolically 

unhealthy childhood can potentially be offset by healthy lifestyle approaches adopted in adulthood. 

Such study designs can be applied to other exposure-outcome relationships to determine whether 

risk factors have cumulative effects or differential influences at different periods of the life course. 

This information could allow for fine-tuned, age-specific public health interventions that minimize 

the effects of deleterious, time-dependent risk factors. Although, it is very important to bear in mind 

that effects of harmful exposures become less evident with increasing age because of selection bias 

due to the almost inevitable selection only of survivors.145 

 

[H2] Estimation of healthcare costs 

A clear understanding of the healthcare costs arising from individual diseases and risk factors is 

needed to ensure that public health resources are distributed judiciously. RCTs are typically not 

designed to estimate healthcare costs as an outcome and conventional observational studies aimed 

at assessing healthcare costs can be hampered by selection bias and confounding.  

Dixon and colleagues146 described a potential application for MR in quantifying the effects of 

genetically predicted BMI on healthcare costs. Their method used data from the UK Biobank, which 

provided a rich source of data for exploring the causal relationship of lifelong exposures to certain 

traits and genetic liability to diseases and their economic impact. Using genetic variants associated 

with higher BMI as instruments in an individual-level MR study to estimate the effect of BMI on 

hospitalization costs,147 the authors found that higher BMI increased hospital costs with little 

evidence for non-linearity in this effect. In addition to physiological consequences, body weight has 

social consequences such increasing exposure to stigma and discrimination and these MR analyses 

include the consequences of all such mechanisms for hospitalization costs.  

[H2] Testing treatment response factors 

Identifying whether individuals are likely to respond to a specific therapy is an important component 

of so-called ‘precision medicine’, whereby the goal is to individualize patient care based on genetic, 

environmental and lifestyle factors. This can be done in conventional pharmacogenetic studies and 

RCTs, although the risk of bias in the former and the sample size constraints of the latter mean that 

neither provide a reliable means of assessing interactions between an individual’s genotype and 

treatment response.  

A recent study by Xu and Burgess 148 used a drug-target MR design149 150 to investigate polygenic 

determinants of the response of LDL-cholesterol levels to treatment with statins. The authors used 

SNPs in and around the HMGCR locus as a mimic of the pharmacological inhibition of HMG-CoA 
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reductase by statins, and explored genetic variants that might act as effect modifiers of the 

association between the statin genetic instrument and LDL-cholesterol levels. Polygenic scores did 

not identify any effect-modifying genetic groups; however, a single variant (rs162724) proximal to 

the glutamate receptor gene GRM7 and previously associated with major depressive disorder was 

found to potentially be of interest. The authors postulated that this variant could be related to statin 

response owing to concurrent pharmacotherapies for major depressive disorder or adherence to 

statin treatment moderating the effect of statins on LDL-cholesterol. 

Although the above study did not find evidence of reliable polygenic effect modification, it 

introduces the concept of agnostic identification of pharmacogenetic interactions within the context 

of a population-based study. This approach benefits from lack of confounding by indication, 

compared to a conventional pharmacoepidemiology study design.151 However, using a genetic 

instrument for treatment as part of a drug-target MR means that the underlying magnitude of the 

effect on which potential genetic effect modifiers are investigated is very small and thus very large 

sample sizes are needed to identify effects. When using MR in this way, it is important to identify 

appropriate instruments for estimating the effect of a particular drug. Instruments that are 

associated with the target of that drug should be used, rather than those associated with the risk 

factor that the drug acts on.42,152,153 

[H1] Reproducibility and data deposition  

There has been substantial discussion of the importance of ensuring that published research findings 
are robust, replicable and reproducible in recent years.154 In the context of epidemiological research, 
one area of concern is that findings may be replicated in settings with nearly identical sources of 
bias. Data with such replication provide little independent confirmation of the initial result and thus 
even highly consistent replicated findings may not reflect true causal effects. An example is the J-
shaped association between alcohol consumption and cardiovascular disease; there is now 
consensus that this apparent protective effect of moderate levels of consumption is artefactual, as 
discussed above.130 One simple step authors can take to ensure that MR findings are robust and 
reproducible is to use the STROBE-MR guidelines,51,52 which outline how MR studies should be 
reported to make the approach used in any particular study clear for readers.  

The first aim of all studies should be to ensure that steps are taken to detect and minimise bias, such 
as selection bias or bias caused by violation of one of the IV conditions. Triangulation of evidence 
from multiple methodologies — using different methodologies that are subject to different sources 
and directions of potential bias — can help to identify bias in MR studies.6,7,155 Alignment of results 
across these different methodologies can improve confidence in an initial causal interpretation. 
Among the most promising strategies for triangulation is contrasting MR results with results using 
other IVs — such as policy-based IVs — or results from conventional analyses. For example, there is 
clear evidence from both MR and the natural experiment of an increase in the school leaving age 
that an increase in the number of years in education has a causal protective effect on health 
behaviours such as smoking.156-160 Within MR, using methods that make different assumptions (such 
as those regarding pleiotropy) and are therefore subject to different sources and directions of 
potential bias can support this approach, although the least plausible assumption may be shared by 
many methods, reducing the potential independent insight to be gained from comparing studies.  

Open research can increase the robustness of data through allowing greater scrutiny of data and 
increased error detection by researchers and the wider research community. Open research 
approaches for increasing data transparency include protocol pre-registration and sharing of data, 
code and materials. Summary data from GWAS are often a source of data for MR analysis and are 
typically publicly available, such as those listed on the OpenGWAS project. Although individual level 
data are not made publicly available owing to the sensitive nature of the data, there are a number of 

https://www.strobe-mr.org/
https://gwas.mrcieu.ac.uk/
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large datasets that are accessible to any researchers on application, such as the UK Biobank. Any MR 
estimation should clearly indicate the data sources they have used and link to the dataset used if it is 
publicly available. The source code for many software packages is openly available (for example, 
TwoSampleMR and mrrobust on GitHub, and MendelianRandomization on CRAN). However, the 
analysis code from MR studies is not routinely shared; we encourage readers to do so to enable 
errors in coding to be more readily identified. Pre-registration of study protocols has not been 
widely adopted in observational epidemiology, although it could in principle be applied and help 
protect against bias, such as publication bias against null results or findings that do not fit with the 
anticipated conclusion.161,162 

[H1] Limitations and Optimizations 

An important limitation of MR studies is potential confounding of the genetic variants and the 
outcome (violation of the second IV condition; see Box 2). As genetic variants are generally fixed at 
conception, it is not intuitively clear how confounding of the instrument and the outcome can occur 
in MR studies. However, population stratification, dynastic effects and assortative mating all induce 
bias by creating an artefactual relation at the population level between the genetic variants and the 
outcome, violating the second IV condition.65,163-166 Each of these sources of confounding are 
described in detail in Box 5. This correlation between genetic variants and the outcome can 
potentially affect most (or all) of the genetic variants used as instruments; it is therefore not easy to 
correct for with current MR methods as most assume that the majority of genetic variants satisfy all 
of the IV conditions.61 Considering the potential for biases of the sort described here is therefore 
crucial in the interpretation of any MR result.  

One solution that can account for confounding owing to dynastic effects and assortative mating is 
the use of family data to conduct the MR analyses.167,168 Within-family MR requires data from either 
pairs of siblings or mother–father–child trios and allows for estimation of causal effects using MR 
after family-level structure has been taken into account.164,167 Within-family MR using sibling pairs 
will also account for any factors acting at a population level that affect siblings equally, such as 
population stratification. A key limiting factor for within-family MR is the lack of available data and 
the low power of these studies as a result; however, a GWAS of family data for a range of 
phenotypes has recently been published, enabling further within-family MR in the future.169  

Another type of bias that can arise in MR studies that cannot be easily corrected for is selection 
bias64  In an MR study, an example of selection bias would be if an individual’s exposure and 
outcome values affected their participation.57  When these phenotypes are partially determined by 
genetic variants, this will also induce an association between those genetic variants and 
participation. Study participation has shown to be heritable and is influenced by a number of 
different traits, and large studies such as the UK Biobank have been shown to have high levels of 
selection in those who participate.31,170-172   

In addition, most studies recruit survivors of the original birth cohorts. This means all participants 
must have survived in order to observe whether they get the outcome of interest. Selection of 
participants on surviving their genetic make-up and the outcome of interest or a competing risk of 
the outcome effectively applies  covariable adjustment on survival into the estimates.173-175 This form 
of selection bias is likely to be particularly problematic for studies of harmful exposures on disease 
outcomes that occur in later life and will be least evident in studies where the exposure does not 
affect survival to recruitment.176 As such, consideration of whether the genetically instrumented 
exposures would affect survival to recruitment, age at recruitment or any competing risk of the 
outcome may help identify bias. This type of survival bias will affect observational studies of the 
same research question in similarly aged populations, so is not an obvious explanation for 
discrepancies between MR and conventional results. All forms of selection biases could bias MR 
estimates and so careful assessment of the potential for selection into the sample or samples used in 

https://www.ukbiobank.ac.uk/
https://github.com/MRCIEU/TwoSampleMR
https://github.com/remlapmot/mrrobust
https://cran.r-project.org/package=MendelianRandomization
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an MR study is important.65 Novel methods are being developed that attempt to detect and correct 
for selection bias174,177; however, this is an area in which further research is required.  

Finally, MR uses genetic variants that are fixed across the life course to estimate the lifetime effects 
of the exposure of interest. This introduces a potential limitation in the form of canalization, which 
refers to a natural tendency for the suppression of phenotypic variation among individuals despite 
contrasting genotypes. Canalization can occur when polymorphic phenotypes expressed during fetal 
development lead to the development of compensating pathways to mitigate the effects of that 
expression.1,178,179 For example, individuals with genetically elevated fibrinogen levels could become 
resistant to the effects of higher fibrinogen owing to permanent changes in tissue structure during 
fetal development. Canalization is even seen following dramatic genetic or environmental changes, 
for example in gene knockout studies.180,181 Such compensation would potentially limit the ability of 
MR to identify the causal effect of the change in the exposure as the effect of a genetically induced 
change from conception would differ to the effect of a change in later life. This is an example of a 
violation of the assumption of gene-environment equivalence (see Box 4). Further work is required 
to understand whether small changes induced by the common polymorphisms used to estimate 
causal effects in MR have the same compensatory effects.  

 
[H1] Outlook 

The rapid increase in MR publications demonstrates the strong appetite for approaches that can 
contribute to strengthening causal inference. This growth in the quantity of published MR studies 
comes with anxiety regarding their quality. Papers reporting two-sample MR have grown rapidly 
over recent years and now constitute a large majority of published studies.8,81 These are relatively 
easy to conduct — perhaps too easy — and they can contain clear errors as discussed and 
demonstrated elsewhere.81 Indeed, many such papers simply report MR estimates obtained from 
applying open-access software to open-access data and in these cases the analyses have, in essence, 
already been conducted by automated tools — an observation detailed in a recent preprint 
article.182 The situation with MR is now moving towards the one seen in the meta-analysis literature, 
with the mass production of redundant, misleading, and conflicted publications.183 The current 
explosion in predatory journals unfortunately means this situation is very unlikely to change. There 
are now a number of guidelines available for MR estimation, and those regarding the conduct40 and 
reporting of MR studies51,52 are useful for understanding and identifying whether a MR study has 
been well conducted and reported properly. For those aiming to keep up with the MR literature, the 
twitter account @MR_lit searches for papers and preprint articles and allows readers to rapidly 
review abstracts to identify papers of interest.  
 
As most contemporary MR studies rely on available GWAS data, they unfortunately suffer from 
considerable bias with respect to representativeness of populations according to geography and 
ancestry.184 This can influence the generalizability of MR findings and exacerbate existing inequity in 
medical research. It can also restrict the scope of MR studies, as some forms of genetic variation are 
restricted to particular populations. For example, a large-effect genetic variant influencing alcohol 
consumption that has been of considerable value in MR studies of the effects of alcohol75,130 is only 
prevalent in East Asian populations. Current international efforts to equalize inclusion of different 
populations in genetic studies will hopefully begin to address this important issue.  
 
A large area of medical research is aimed at identifying potentially therapeutic influences on disease 
progression once the disease is established. However, MR studies usually rely on GWAS of the initial 
development of disease for their outcome data. This means that although MR has been a powerful 
tool for confirming or discovering factors that cause disease, it does not often identify therapeutic 
targets.185 For example, although MR studies have shown that smoking causes lung cancer186, this is 
not useful therapeutically following the onset of the disease as smoking cessation is not a useful 
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treatment once lung cancer has developed. It is plausible that in many cases, factors that cause a 
disease do not relate to its progression once it is established. For example, the onset and 
progression of Crohn’s disease are associated with different genetic variants, indicating that 
different risk factors play a role in onset and development.187 It is also possible that the same risk 
factor could have opposite effects on incidence and progression, such as has been suggested for 
folate intake and colon cancer.188 MR of factors influencing disease progression is needed to identify 
useful treatments;189 however, such estimation requires appropriate datasets and as there are 
currently few of these in existence, efforts should be focused on increasing the availability of such 
data. Importantly, case-only study designs may be severely compromised by collider bias [G] 56,64, 
which must be taken into account in data analysis185. More method development is required in this 
domain. 
 
Although the increasing size of GWAS datasets appears to be positive for MR studies, it can also 
introduce problems; smaller and smaller effect sizes are being identified as significant in GWAS and 
it is increasingly likely that such variants affect the trait of interest through an upstream phenotype 
that might in turn influence the outcomes under investigation. For example, as the GWAS of CRP and 
vitamin D increased in size, multiple variants that primarily influence adiposity were identified — 
with adiposity being a confounder of the observational association of these exposures with health 
outcomes. If these variants are used as instruments for CRP or vitamin D, they will produce highly 
misleading results. The resulting bias can be accounted for through multivariable MR if the upstream 
factor is known; however, in many cases it is not and thus bias will remain undetected. This issue of 
misspecification of the primary phenotype requires more research to identify the extent of the 
problem of recapitulating confounding in MR studies as GWAS size increases.  
 
When initially presented, it was concluded that “[MR] offers a more robust approach to 
understanding the effect of some modifiable exposures on health outcomes than does much 
conventional observational epidemiology”1 and that where possible, RCTs should follow to establish 
the effects of interventions. This conclusion remains unchanged, although moving towards formal 
triangulation of all pertinent evidence as we discuss above should be the goal of all research aimed 
at identifying causal influences on health and development outcomes. 
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Tables 
 
Table 1. List of MR estimation methods 

 

Category Core IV assumption 
relaxed 

Individual level 
data  

Summary data 

‘Basic’ MR method None Wald ratio 
estimation, two-
stage least 
squares 
regression 
analysis (2SLS)a 

Wald ratio estimation, 
inverse variance 
weightinga,38 

Weak instrument 
robust methods  

IV1; allows for weak 
instruments 

Limited 
information 
maximum 
likelihood 
(LIML)27, allele 
score 
approaches27 

MR RAPS88, dIVW190, MR 
GRAPPLE89, NOME 
adjustment191, two-sample 
AR192  

Outlier/variant 
selection and removal  

IV3; allows for 
balanced/sparse 
pleiotropy 

Weighted 
median193 
 

Weighted mediana,83 

Outlier/variant 
selection and removal  

IV3; allows for 
(some) directional 
pleiotropy 

sisVIVE71, adaptive 
LASSO72, weighted 
mode193 

Weighted modea,84, MR 
LASSO85 , Steiger 
filteringa,94, Welch-weighted 
Egger95, contamination 
mixture194, GSMR80, MR-
Clust195, Bayesian MIMR196, 
CIV73 

Outlier/variant 
adjustment  

IV3; allows for 
balanced pleiotropy 

Limited 
approaches 
currently available  

MR RAPS88 , MRCIP197 

Outlier/variant 
adjustment 

IV3; allows for 
(some) directional 
pleiotropy 

Limited 
approaches 
currently available 

MR TRYX86 , MR Robust85 , 
MR CAUSE90 , MR PRESSO87, 
MR GRAPPLE89, MRMix198, 
MR-LDP199, IMRP200, 
regularization201, MR-
PATH202 

Estimation adjustment  IV3; allows for 
balanced pleiotropy 

Limited 
approaches 
currently available 

dIVW190 

Estimation adjustment  IV3; allows for 
(some) directional 
pleiotropy 

Constrained 
instrumental 
variables203, 
multivariable 
MR74 

MR Egger91, multivariable 
MR74,92, MR Link204, 
hJAM205, GIV206, Bayesian 
network analysis207, 
BMRE208, BayesMR209 
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Environmental control 
adjustment  

IV3; allows for 
(some) directional 
pleiotropy 

MR GxE76,77, MR 
GENIUS78 

Limited approaches 
currently available 

aMost commonly used methods; note that each method relies on strong assumptions and may not be the 
most appropriate in any particular setting. These categories are not mutually exclusive and the 
classification of some methods may be ambiguous. Each method will impose some alternative version of 
the IV condition that is relaxed for consistent estimation with that method. Methods that are robust to 
directional pleiotropy impose (often strong) assumptions on the nature of that pleiotropy to enable 
estimation. Novel MR estimation methods are being developed continually and will generally fit into one 
or more of these categories.  

 
 
Table 2. Summary of selected software packages for performing MR analyses 
 
 

Package name  Software Description 

Individual-level data 

AER R Includes the ivreg function for two-stage least 
squares (2SLS) estimation 

OneSampleMR R Various functions for one-sample instrumental 
variable (IV) analyses, including the Sanderson-
Windmeijer F-statistic, and various estimators 
(two-stage predictor substitution, two-stage 
residual inclusion, structural mean models) 

ivmodel R Various functions for individual level IV analyses, 
includes limited information maximum likelihood 
(LIML), weak instrument tests and sensitivity 
analyses. 

ivtools R Various functions for individual level IV analyses, 
including functions to fit structural mean models 

ivonesamplemr Stata Includes various estimators (two-stage predictor 
substitution, two-stage residual inclusion, 
structural mean models) for one-sample IV 
analyses. 

ivreg2 Stata Stata module for extended instrumental 
variables/2SLS and generalized method of 
moments (GMM) [Au:Added abbreviation - 
OK?YES] estimation. 

ivregress Stata Linear IV estimators including two-stage least 
squares. 

Summary-level data 

MendelianRandomization R Implements several methods for performing 
Mendelian randomization analyses with 
summarized data and an interface with the 
PhenoScanner database. 

https://remlapmot.github.io/OneSampleMR/
https://github.com/remlapmot/ivonesamplemr
https://cran.r-project.org/package=MendelianRandomization
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TwoSampleMR and MR-Base app  R/web-app  MR-base is an analytical platform for Mendelian 
randomization. TwoSampleMR is the R package 
providing the functions to perform MR estimation. 
Both are linked to the OpenGWAS project, a large 
database of GWAS summary statistics. 

mrrobust Stata Provides various programs for two-sample MR 
analyses in Stata 

 
 
 
Figure legends 
 
Figure 1. An overview of Mendelian randomization studies 

This overview illustrates the parallels between Mendelian randomization (MR) and randomized 
controlled trials (RCTs). In MR, randomization is due to the random allocation of alleles. This 
conceptualisation was originally based on between-sibling variation, where allocation of alleles is 
totally random and not dependent on population-level variation (see also Box 1). Inference from MR 
in this way relies on the assumption of gene-environment equivalence — that a change in the 
exposure owing to genetic variation has the same effect as a change in that exposure owing to the 
phenotypic environment.  

Figure 2. Illustration of a randomized control study and instrumental variable estimation 

Figure illustrating (a) a randomized controlled trial (RCT) and (b) a Mendelian randomization (MR) 
study to estimate the effect of lowering C-reactive protein (CRP) on systolic blood pressure (SBP). 
The arrows highlighted in red show the causal effect of interest.  

Figure 3. Types of pleiotropy 
 
Figure showing different types of pleiotropy in Mendelian randomization (MR), where G is a genetic 
variant or set of genetic variants associated with the exposure, X is the exposure of interest, Y is the 
outcome of interest, U is an unmeasured confounder and C is another (potentially unmeasured) 
phenotype that is also associated with the genetic variants. (a,b) Horizontal pleiotropy. Sometimes 
referred to as biological pleiotropy, this occurs where a genetic variant is associated with multiple 
phenotypes and these phenotypes lie on different pathways. (a) Horizontal pleiotropy with bias. The 
third instrumental variable condition (IV3) is violated in this case as there is a pathway from the 
genetic variant to the outcome that is not via the exposure. B) Horizontal pleiotropy with no bias. As 
the genetic variants are not associated with other phenotypes on the pathway to the outcome, MR 
estimates are not biased by this form of pleiotropy. C) Confounding by linkage disequilibrium. When 
G2 has an effect on the outcome through a pathway that is not via the exposure, correlation 
between G1 and G2 creates a bias that is indistinguishable from that shown in (a). d) Vertical 
pleiotropy. Another phenotype lies on the genetic variant–exposure–outcome pathway. This could 
occur either before or after the exposure of interest. Sometimes referred to as mediated pleiotropy, 
this form of pleiotropy does not bias MR studies and can even be used to elucidate causal 
intermediaries.210 e) Misspecification of the primary phenotype. Vertical pleiotropy can bias MR 
estimates if the wrong phenotype is specified as the primary phenotype. Here the genetic variants 
are primarily associated with C. If X is misspecified as the primary phenotype, MR estimation of the 
effect of X on Y would be biased by the alternative pathways from C to Y. f) Correlated pleiotropy. If 
genetic variants for the exposure are also associated with a confounder of the exposure and 
outcome this creates correlated pleiotropy. In this setting, the size of the pleiotropic effect is 
correlated with the size of the association between the genetic variant and the exposure. This form 

https://github.com/MRCIEU/TwoSampleMR
https://github.com/remlapmot/mrrobust
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of pleiotropy is particularly hard to detect and correct for. Scenarios (b) and (d) give settings where 
the pleiotropy will not bias the MR estimation. All other settings violate assumption IV2 or IV3 and 
can cause meaningful bias in MR estimation.  
 
Figure 4. Data visualization 
 
Figure showing different visualisations of a summary-data MR analysis. The example shown is 
estimating the effect of body mass index (BMI) on coronary heart disease (CHD). (a) A scatter plot of 
the SNP–exposure and SNP–outcome associations for each SNP with an inverse variance weighted 
estimated line fitted. (b) The same plot with the robust approaches weighted mode, weighted 
median and MR Egger added (note that the weighted median is obscured by the weighted mode). (c) 
The same data plotted using a radial MR framework to identify outliers, the horizontal axis gives the 
weight given to each point and the vertical axis the weight multiplied by the effect estimate. The 
inverse variance weighted estimated fitted line is shown. (d) A leave-one-out analysis where the 
inverse-variance weighted (IVW) estimate has been recalculated excluding one SNP at a time to look 
for SNPs that highly influence the overall result. These graphs were created using the 
‘TwoSampleMR’ and ‘RadialMR’ R packages, using data from the OpenGWAS project.  
 
Figure 5. Illustration of the multivariable Mendelian randomization model 
 
Figure illustrating multivariable Mendelian randomization for three genetic variants (G1, G2, G3), two 
exposures (X1, X2) and an outcome Y. Confounders U1 and U2 are assumed to be unknown. 

 

Figure 6. Illustration of variants in linkage disequilibrium and shared causal variants identified by 
colocalization 
 
Figure illustrating colocalization. (a) An example of distinct causal variants that violate the 
instrumental variable assumption IV2. G1 and G2 represent two genetic variants and the link 
between them is non-directional, reflecting linkage disequilibrium (LD). (b, c) Examples of a shared 
causal variant. (b) A violation of the assumption IV2. (c) A situation that satisfies the IV assumptions.  

Box 1. The principles of the “Mendelian randomization” approach 
 
The MR approach draws on Mendel’s first and second laws of genetic inheritance: the law of 
segregation and the law of independent assortment.211 The law of segregation indicates that at 
every point in the autosomal genome, offspring randomly inherit one allele from their mother and 
one allele from their father. The law of independent assortment states that these alleles will be 
passed to offspring independently of each other, other than in regions of the genome that are 
genetically linked in the DNA of the offspring.  

The first extended description of MR1 was in the context of family-based studies. Its analogy with 
randomized controlled trials was in the context of the random allocation of variants from parents to 
their children. At the time of this first description, adequate family-based data were not available 
and “approximate” MR in population studies was advocated for instead; indeed, family-based data 
and MR studies are still limited.1,3 The advocacy of population studies was based on the premise that 
at a population level, genetic variants can identify groups that differ, on average, with respect to a 
modifiable exposure. In these studies, genetically defined group membership should be unrelated to 
factors that may confound conventional observational associations, including behavioural, social and 
physiological exposures that occur after conception.4,212,213 Therefore, genetic associations between 
traits should be free from confounding and any difference in outcomes between groups defined by 
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genetic variation can be attributed to the exposure, assuming no selection bias owing to that genetic 
variation. 

Box 2. Instrumental variable (IV) conditions  
 
The IV conditions are required to hold for the results from any IV estimation —including a 
randomized controlled trial or Mendelian randomization estimation — to provide a valid test of the 
null hypothesis that the exposure has no effect on the outcome.12,17,24,53,214 

One way the IV conditions can be expressed formally is with directed acyclic graphs (see figure)17; 
solid red lines show effects that must exist and dashed lines representing effects that must not exist 
if an IV is to be used to assess the causal effect of X on Y. G is the instrumental variable (a genetic 
variant or set of genetic variants in MR). U represents unobserved confounders. We do not consider 
here the potential bias owing to selection.  
 

The IV conditions are: 

• IV condition 1: Relevance. The instrumental variable is associated with the exposure.  
• IV condition 2: Exchangeability. There are no causes of the instrumental variable that also 

influence the outcome through mechanisms other than the exposure of interest (no 
confounders of the IV and the outcome).  

• IV condition 3: The exclusion restriction. The instrumental variable does not affect the 
outcome other than through the exposure and does not affect any another trait which has a 
downstream effect on the outcome of interest.  

 

Only the first condition can be formally tested. The other two conditions can be disproven and 
otherwise assessed through a range of sensitivity analyses, but cannot be demonstrated to be 
true.67,215 Methods to test the first condition and to conduct analysis to assess the plausibility of the 
second and third conditions are discussed in the Results section.  
 

Box 3. Point-estimate-identifying conditions  

The instrumental variable (IV) conditions described in Box 2 are sufficient to test for the presence of 
a causal effect. However, performing estimation and interpretation of the causal effect requires at 
least one additional assumption. The effect of the exposure (X) on the outcome (Y) may differ for 
different people. These differences require additional assumptions to be placed on the relationship 
between the instruments, exposure and outcome to identify both the causal effect of the exposure 
on the outcome, and who that causal effect estimate applies to. Each assumption gives a slightly 
different interpretation for the causal effects obtained from MR analysis.  

There are two common options for point-estimate-identifying conditions. The first is homogeneity of 
the effect of the exposure on the outcome, or that either (a) the effect of the exposure on the 
outcome is the same for everyone, regardless of the starting value of X or any other individual 
characteristics, or (b) that the effect of the exposure on the outcome does not depend on the value 
of the instrument. (a) gives the interpretation that the causal effect estimate is ‘the causal effect of 
the exposure on the outcome’, whereas (b) gives the interpretation that the effect estimate 
obtained is the ‘population average of the causal effect of the exposure on the outcome’. The 
second common assumption is monotonicity in the association between the genetic variants and the 
exposure — that the direction of the effect of the genetic variant on the exposure is the same for 
everyone.2,28,216-218 This gives the interpretation that the effect estimate is the effect of the exposure 



26 

on the outcome in those people whose exposure is changed by the instrument. In MR, this is the 
average effect of differences in the exposure that are attributable to differences in the genetic 
variants.  

Which assumption is most relevant will depend on the particular estimation; however, the 
assumption of monotonicity is most commonly relevant for MR estimation. The point-estimate-
identifying condition remains an area of debate and methodologic development, with researchers 
identifying additional possible assumptions that would support a causal interpretation of the IV 
effect estimate.  

 

Box 4. Issues interpreting MR results 
 
Gene-environment equivalence 

Typically, MR considers exposures that are modifiable and so evidence of a causal effect of the 
exposure on the outcome can be used to infer that intervening on the exposure will lead to a change 
in the outcome. However, making such inference depends on the exposure of interest fulfilling the 
consistency criterion that however the intervention is applied to alter the exposure, the effect on 
the outcome is the same. This means that changes in an exposure by either a hypothetical change in 
genotype or by a change in the environment should produce the same downstream effect on an 
outcome 219-222. For example, genotypic influences on circulating cholesterol level or a similar change 
in cholesterol level induced by dietary influences should lead to the same effect on coronary heart 
disease. Although many exposures can be closely proxied by genetic variation, for others — such as 
those that reflect aspects of social deprivation and income — it is unlikely that genetic variation will 
mimic environment changes exactly223. Gene-environment equivalence is a fundamental principle in 
MR and consideration should be given to how closely it is likely to hold when interpreting the results 
from any MR study. 

Interpretation of results for time-varying exposures 

Genetic variants are fixed throughout an individual’s lifetime and MR estimates can therefore be 
interpreted as the ‘lifetime effect’ of the exposure on the outcome.1,9 If the association between the 
genetic variants and the exposure is constant across the life course, this lifetime effect can be 
interpreted as the effect of having a level of exposure that is a unit higher at every time point.224 
However, for many exposures the association between genetic variants and the exposure may vary 
across the life course; for example, genetic variants associated with body mass index (BMI) have 
been shown to have a wide range of differential effects between childhood and adulthood.143 In this 
scenario, MR estimates can be interpreted as the lifetime effect of being on a trajectory for the 
exposure associated with having a unit higher level of the exposure at the time it is measured.21 
MVMR can be used to estimate causal effects of the different time periods and potentially identify 
particularly relevant periods across the lifecourse.143 That MR estimates the lifetime effect of the 
exposure on the outcome means that MR estimates can be larger than estimates obtained from 
alternative methods of estimation such as randomized controlled trials, as the total length of time 
over which the exposure can have an effect is much longer.  

 

Box 5. Sources of instrument–outcome confounding in MR studies 

Population stratification. Population stratification is the association between genetic variants and 
phenotypes that occurs because of underlying structure within the population.53,225 This underlying 
structure reflects the fact that genetic mutations accrue and accumulate across generations, and 
that individuals differentially select partners who are geographically proximal. Within GWAS studies, 
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population stratification is often controlled for by adjusting for the top principal components from a 
principal components analysis of the genetic variants or through the use of linear mixed models. 226-

228 However, there is increasing evidence that these approaches do not fully account for the 
underlying structure for a number of phenotypes.229,230 Population stratification biases estimates 
from MR studies by creating an association between the genetic variants and the outcome as 
illustrated in panel a of the figure.164,229 In the figure, G represents genetic variants, X represents 
exposure and Y represents outcome in a MR study. P represents population level factors. 

Dynastic effects. Dynastic effects are the direct effects on an individual’s phenotypes of the 
phenotypes of their parents, and potentially to a lesser extent more distantly related relatives such 
as grandparents. As parental genotypes have a direct effect on the genotype of an individual, if a 
parent’s phenotype is influenced by their genotype and influences the individuals phenotype this will 
induce confounding between the genetic variants and phenotype of the offspring, as illustrated in 
panel b of the figure.165 If the exposure has a non-null causal effect on the outcome in a MR study, 
these dynastic effects will induce instrument–outcome confounding and bias the results of the MR 
study.164 In the figure, GA, XA and YA are the genetic variants, exposure and outcome respectively for 
ancestors (such as parents) of the individuals under consideration in the MR estimation.  

 

Assortative mating. Assortative mating occurs when individuals select partners who are more similar 
to themselves than would be expected by chance, with respect to one or multiple phenotypes.231,232 
If the genetically influenced level of the phenotype influences selection, this assortment can lead to 
spurious genetic associations with the phenotype or phenotypes that assortment is based on or that 
are causally dependent on the assortment phenotypes. This consequently biases MR estimates 
involving these phenotypes.163,164  

 

Related links 

MR dictionary: https://mr-dictionary.mrcieu.ac.uk/  

TwoSampleMR: https://github.com/MRCIEU/TwoSampleMR  

mrrobust: https://github.com/remlapmot/mrrobust  

MendelianRandomization: https://cran.r-project.org/package=MendelianRandomization  

The OpenGWAS project: https://gwas.mrcieu.ac.uk/ 

STROBE-MR guidelines: https://www.strobe-mr.org/ 

UK Biobank: https://www.ukbiobank.ac.uk/  

 

Glossary  

Instrumental variable: A variable associated with an exposure which is not associated with the 
outcome through any other pathway.  

Pleiotropy: Pleiotropy describes the phenomena of genetic variants being associated with multiple 
phenotypes. 

Horizontal pleiotropy: The phenomena of genetic variant associated with multiple phenotypes on 
different pathways. 

https://mr-dictionary.mrcieu.ac.uk/
https://github.com/MRCIEU/TwoSampleMR
https://github.com/remlapmot/mrrobust
https://cran.r-project.org/package=MendelianRandomization
https://gwas.mrcieu.ac.uk/
https://www.strobe-mr.org/
https://www.ukbiobank.ac.uk/
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Vertical pleiotropy: The phenomena of genetic variant associated with multiple phenotypes on the 
same pathway. 

Confounder: A trait that influences both the exposure and outcome of interest.  

RCT: Randomized control trial 

Bidirectional: An effect that acts in both directions between a pair of traits so that changing one will 
change the other.  

Non-linear effect: Where the effect of an exposure on an outcome depends on the level of the 
exposure. 

Interaction effects: Where the effect of an exposure on the outcome depends on the value of 
another trait.  

Natural experiment:  An epidemiological study in which there is no intervention 

First-stage F statistic: F-statistic used to test the strength of association between the instrument(s) 
and the exposure in an Instrumental variable estimation. 

Linkage disequilibrium: Correlation between genetic variants located closely together on the 
genome. 

Collider bias: Bias occurring due to conditioning on a variable that is dependent on both the 
exposure and outcome.  
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