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Abstract: Vitamin D intervention studies are designed to evaluate the impact of the micronutrient
vitamin D3 on health and disease. The appropriate design of studies is essential for their quality, suc-
cessful execution, and interpretation. Randomized controlled trials (RCTs) are considered the “gold
standard” for intervention studies. However, the most recent large-scale (up to 25,000 participants),
long-term RCTs involving vitamin D3 did not provide any statistically significant primary results.
This may be because they are designed similarly to RCTs of a therapeutic drug but not of a nutritional
compound and that only a limited set of parameters per individual were determined. We propose an
alternative concept using the segregation of study participants into different groups of responsiveness
to vitamin D3 supplementation and in parallel measuring a larger set of genome-wide parameters
over multiple time points. This is in accordance with recently developed mechanistic modeling ap-
proaches that do not require a large number of study participants, as in the case of statistical modeling
of the results of a RCT. Our experience is based on the vitamin D intervention trials VitDmet, VitDbol,
and VitDHiD, which allowed us to distinguish the study participants into high, mid, and low vitamin
D responders. In particular, investigating the vulnerable group of low vitamin D responders will
provide future studies with more conclusive results both on the clinical and molecular benefits of
vitamin D3 supplementation. In conclusion, our approach suggests a paradigm shift towards detailed
investigations of transcriptome and epigenome-wide parameters of a limited set of individuals, who,
due to a longitudinal design, can act as their own controls.

Keywords: vitamin D; vitamin D intervention trials; vitamin D response index; transcriptome
analysis; epigenome analysis; modeling; N = 1

1. Introduction

Vitamin D3 was identified more than 100 years ago as the essential molecule preventing
the bone malformation disorder rickets and was therefore termed a vitamin [1]. Since
vitamin D3 can be synthesized endogenously in UV-B exposed skin [2,3], the need for
this vitamin classification is in part due to human migration from Africa to Northern
latitudes in Europe, Asia and America over the past 50,000 years [4]. Above a latitude of
38◦ N during winter, there is a period of 1–5 months in which no or insufficient amounts
of UV-B reach the surface for vitamin D3 synthesis. However, over many thousands of
years hunter–gatherer populations adapted genetically to reduced UV-B exposure, such
as a less active DHCR7 (7-dehydrocholesterol reductase) enzyme [5]. Reduced activity of
DHCR7 results in higher concentrations of 7-dehydrocholesterol in the skin so that even
less intense UV-B exposure can lead to sufficient conversion of the cholesterol precursor
into vitamin D3 [6,7]. In parallel, genetic polymorphisms causing reduced activity of
enzymes and transporters such as those encoded by the genes SLC24A5 (solute carrier
family 24 member 5) and SLC45A2 of the solute carrier family [7,8] involved in melanin
synthesis resulted in lighter skin of Siberian and European populations [9]. In addition,
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some populations living close to the coast benefitted from adding vitamin D3-rich food like
fatty fish to their diet [10,11]. Although vitamin D deficiency caused bone malformations
already in developed ancient societies, such as in the Roman Empire [12,13], just since
the times of the Industrial Revolution, which was characterized by working and living
conditions with very reduced sun exposure, vitamin D3 became a real vitamin. For example,
in England in the 19th century, rickets was a very common disorder in children [14,15]. This
became even more severe with the worldwide preference for indoor activity and coverage
with textile outdoors. Thus, vitamin D deficiency is nowadays a global problem [16].

The vitamin D status of an individual is defined as the serum concentration of the
most stable and abundant vitamin D metabolite, 25-hydroxyvitamin D3 (25(OH)D3) [17].
There is an ongoing debate about the recommended vitamin D status, but most researchers
agree that it should be in the range of 75–100 nM (30–40 ng/mL) 25(OH)D3 [18]. As a
reference, the vitamin D status of a population having a lifestyle rather close to ancient
hunter–gatherers, the Hadza tribe in Tanzania, is on average 110 nM [19]. This suggests that
nowadays we should aim for a comparable level. Accordingly, a vitamin D status of less
than 50 nM (20 ng/mL) 25(OH)D3 is considered insufficient [20], because it significantly
increases the risk for musculoskeletal disorders [21], and a level below 30 nM (12 ng/mL)
is defined as vitamin D deficiency [22,23]. While the musculoskeletal benefits of a sufficient
vitamin D status are well established, the role of vitamin D in non-skeletal tissues such as the
immune system and related diseases, such as type I diabetes [24], multiple sclerosis [25,26]
and inflammatory bowel disease [27] as well as the prevention of severe consequences from
infections with SARS-CoV2, influenza [28,29] or the intracellular bacterium Mycobacterium
tuberculosis [30,31], still needs to be further evaluated. Furthermore, there are indications
that vitamin D has also a protective role against the development of several cancers,
such as colon, breast, and prostate [32], as well as type 2 diabetes and cardiovascular
diseases [33]. However, these protective effects are likely an indirect consequence of the
immune regulatory function of vitamin D [34]. To evaluate the possible pleiotropic clinical
benefit of vitamin D, some 10 years ago, several large-scale vitamin D intervention studies
have been initiated.

The physiological effects of vitamin D are mediated by the biologically most active
form of vitamin D3, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), which acts as a high-affinity
ligand to the transcription factor VDR (vitamin D receptor) [35]. In this way, vitamin
D controls the transcription of hundreds of target genes in VDR-expressing tissues and
cell types [36]. Thus, a part of the human transcriptome is responsive to vitamin D. A
prerequisite to the modulation of the transcriptome is changes in the epigenome of vitamin
D target cell types. These comprise the ligand-triggered (i) binding of VDR to genomic
DNA [37], (ii) association of VDR with helping proteins such as pioneer factors [38],
(iii) modulation of post-translational histone modifications [39], and (iv) changes in chro-
matin accessibility [40]. In this perspective, vitamin D3 intervention studies can be consid-
ered as nutrigenomic experiments, in which the action of vitamin D3 and its endogenously
produced metabolites are investigated under human in vivo conditions. This had already
been demonstrated by studying vitamin D-triggered changes in chromatin accessibility [41]
and target gene regulation [42].

In this review, we first discuss why the primary analysis of the results of RCTs could
not show statistically significant effects on most of the expected endpoints. Furthermore, we
propose an alternative approach, the core of which is the segregation of study participants
into high, mid, and low vitamin D responders. Proper vitamin D3 supplementation of
low vitamin D responders and longitudinally measuring their molecular response on the
level of the epigenome and transcriptome may provide more conclusive results concerning
the benefits of vitamin D3 than large-scale RCTs and, in addition, allow a molecular
understanding of the actions of vitamin D in a human in vivo setting.



Nutrients 2023, 15, 3382 3 of 13

2. Large-Scale Vitamin D Intervention Studies

RCTs aim to measure the effectiveness of interventions or treatments, such as whether
vitamin D3 supplementation improves a disease condition or its onset. The studies are
randomized, i.e., the participants are randomly assigned to a group that is receiving
treatment or not. RCTs are often blinded so that neither researchers nor participants know
who is receiving a treatment and who is not. This reduces the bias from conclusions about
the study results concerning the relation of an intervention and its outcome, i.e., possible
confounding effects (known as well as unknown) are balanced. This clearly distinguishes
RCTs from observational studies. However, the design of RCTs requires a larger number of
participants. Finally, when the RCTs are finished, they are unblinded and mostly analyzed
in comparison of the groups to which the individuals had been assigned, i.e., treatment
versus placebo.

Within the past 6 years, the results of a few large-scale RCTs involving vitamin
D3 supplementation have been published (Table 1). The largest study with more than
25,000 participants is VITAL (VITamin D and OmegA-3 TriaL), which investigated, over
a period of more than 5 years, the effect of daily supplementation with 50 µg (2000 IU)
vitamin D3 and/or 1 g ω-3 fatty acids concerning the prevention of cardiovascular disease
and cancer [43]. The ViDA (Vitamin D Assessment) study tested monthly vitamin D3 bolus
supplementations (100,000 IU) with more than 5000 adults over 3.3 years concerning the
prevention of cardiovascular events and mortality [44]. In the FIND (FINnish Vitamin D)
trial, 2500 older individuals were treated with 40 or 80 µg vitamin D3 (1600 or 3200 IU)
per day over 5 years for investigation of the primary outcomes of cardiovascular disease
and invasive cancer [45]. The study D2d (vitamin D and type 2 diabetes) included nearly
2500 subjects, which received daily 100 µg vitamin D3 (4000 IU) over 2.5 years, for a pos-
sible conversion of prediabetes to type 2 diabetes (T2D) [46]. Finally, the DO-HEALTH
trial investigated, with more than 2000 participants, whether a daily vitamin D3 dose of
50 µg (2000 IU) alone or in combination withω-3 (1 g/d) and a strength-training exercise
program over 3 years improves the health conditions of elderly, such as the likelihood
of falls [47].

Table 1. Major RCTs on vitamin D published within the past 6 years.

Study Number of
Participants

Age
(Mean)

25(OH)D3 Level
Baseline Final Duration Intervention

(Vitamin D3 Dose)

VITAL (USA) 25,871 67 y 77 nM 105 nM 5.3 y 50 µg/day

ViDA
(New Zealand) 5108 66 y 66 nM 135 nM 3.3 y 5000 µg once + 2500 µg/month

FIND (Finland) 2495 68 y 75 nM 110 nM 5 y 40 and 80 µg/day

D2d (USA) 2423 60 y 70 nM 135 nM 2.5 y 100 µg/day

DO-HEALTH
(Europe) 2157 75 y 56 nM 94 nM 3 y 50 µg /day

The average vitamin D status of a total of 38,054 individuals in these five studies was,
at baseline, more than 50 nM 25(OH)D3 in serum, i.e., hardly any study participants were
vitamin D deficient. This is not representative of the world population, of which some
7% are severely vitamin D deficient and 33% have an insufficient vitamin D status [48].
Moreover, the average age of the subjects was between 60 and 75 years, i.e., the focus was
on the elderly (Table 1). In all five studies, vitamin D3 supplementation clearly increased the
vitamin D status of the participants to sufficiency. However, primary analysis of the data
showed a trend in the expected direction, but did not provide any statistically significant
indication that vitamin D3 supplementation, either daily or monthly, was beneficial for the
expected clinical outcome of the respective trials, i.e., the studies had null results [23].
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There are several explanations for this unexpected result. The main point may be that
the study participants were recruited an excessively high basal vitamin D status, i.e., many
of them were already vitamin D sufficient and further vitamin D3 supplementation did not
improve their clinical status (only 12.7% of participants in VITAL and 9.1% in FIND were
vitamin D deficient). In the classical RCT, the entrance criterion into a study should be low
vitamin D3 status to observe a stronger effect of supplementation, but for ethical reasons,
long-term RCTs with vitamin-D3-deficient individuals as a placebo group (control) cannot
be performed. Additionally, for some of the individuals, daily supplementation with only
40 µg (FIND) or 50 µg (VITAL and DO-HEALTH) vitamin D3 may have been insufficient.
Furthermore, the RCTs were designed for outcomes such as cancer, cardiovascular disease,
and T2D that do not reflect the primary physiological role of vitamin D, which is the control
of calcium homeostasis and the modulation of immunity [49]. For example, secondary
analysis of VITAL results indicated that vitamin D3 supplementation reduced the risk of
autoimmune diseases by 22%, i.e., for a directly immune-related outcome a significant effect
could be observed [50]. An additional option is the use of specific subgroups, such as the
exclusive recruitment of normal-weight persons (body mass index < 25). Secondary analysis
of the results of the five large trials indicated significant results for normal-weight persons
and/or individuals with vitamin D deficiency at baseline. Moreover, VITAL indicated
there were long-term benefits of vitamin D3 supplementation on cancer mortality [51],
while ViDA was too short-term to confirming this result, i.e., the duration of RCTs is
an important parameter. Thus, there are several options to improve the design of RCTs
involving vitamin D3.

3. Genome-Wide Analyses

“Big biology” projects such as 1000 Genomes (www.internationalgenome.org, accessed
on 5 July 2023) have described the variability of the human genome [52]. On average,
two individuals will differ by 4–5 million SNVs (single nucleotide variants) and some
1000 CNVs (copy number variants). Since some 20 years ago, a huge number of genome-
wide association studies (GWAS) have been performed to find statistically significant
associations between SNVs and various traits [53]. These traits can be anthropomorphic
properties such as height or skin color but also the susceptibility to diseases. For basically
all common diseases, dozens to hundreds of SNVs were identified, but nearly all showed
only a minor contribution, expressed by an odds ratio (OR) in the order of 5–20% increased
or decreased disease risk, while monogenetic diseases are based on one dominant variation
with very high ORs (Figure 1A). The genetic composition of all cells within a body is
determined at the moment of conception and will stay the same assuming the person
does not develop cancer (Figure 1B). Thus, the genetic contribution to our lives cannot be
influenced. In this context, it is important that, despite large efforts, GWAS results can
predict only some 20% of traits on the basis of genetic variations. Although there is still the
possibility that some of the missing heritability may be explained by rare, yet unidentified
SNVs with medium ORs, most of the remaining 80% are related to environmental exposure
and epigenetics (Figure 1B). This finding implies that a large part of our individual disease
risk is modulated by environmental triggers, which are majorly influenced by our lifestyle
decisions. Thus, environmental exposures, including those that we experience as fetuses,
affect the epigenome and may explain large parts of the missing heritability. This insight
can be summarized by the formula “phenotype = genetics + epigenetics + environment”
(Figure 1B) and implies that we are, to a large extent, individually responsible for staying
healthy and avoiding major common diseases.

www.internationalgenome.org
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(rs12785878, rs7940244, and rs7944926), CYP2R1 (cytochrome P450 family 2 subfamily R 
member 1, rs10741657), CYP24A1 (rs17216707), and GC (GC vitamin D-binding protein, 
rs3755967) contribute to basal serum levels of 25(OH)D3, but each of them only with a 
small OR [54,55]. Moreover, the derived allele rs12785878 reduces the expression of the 
DHCR7 gene, increases the 7-dehydrocholesterol concentrations in the skin, and leads to 
a more efficient synthesis of vitamin D3 [56]. Today’s Europeans have a 2.4-to 3.1-fold 
higher frequency of the derived allele of rs12785878 than African and Asian populations, 
i.e., they can better manage low UV-B exposure and still synthesize sufficient vitamin D3. 
Similarly, the frequency of other SNVs related to genes mediating vitamin D signaling, 
such as VDR (rs2228570 (known as FokI polymorphism), rs1544410 (Bsm1), rs731236 

Figure 1. Genome, epigenome, and environment. A graph of the strength of a genetic effect (OR) over
risk allele frequency indicates different groups of SNVs (A). Genetic and epigenetic effects throughout
life from “womb to tomb” (B). More details are provided in the text.

The 20/80% contribution of genetics versus environment/epigenetics also applies
to vitamin D status. GWAS indicated that SNVs in the regions of the genes DHCR7
(rs12785878, rs7940244, and rs7944926), CYP2R1 (cytochrome P450 family 2 subfamily R
member 1, rs10741657), CYP24A1 (rs17216707), and GC (GC vitamin D-binding protein,
rs3755967) contribute to basal serum levels of 25(OH)D3, but each of them only with a
small OR [54,55]. Moreover, the derived allele rs12785878 reduces the expression of the
DHCR7 gene, increases the 7-dehydrocholesterol concentrations in the skin, and leads to a
more efficient synthesis of vitamin D3 [56]. Today’s Europeans have a 2.4-to 3.1-fold higher
frequency of the derived allele of rs12785878 than African and Asian populations, i.e., they
can better manage low UV-B exposure and still synthesize sufficient vitamin D3. Similarly,
the frequency of other SNVs related to genes mediating vitamin D signaling, such as VDR
(rs2228570 (known as FokI polymorphism), rs1544410 (Bsm1), rs731236 (Taq1)), and the VDR
target genes CD14 (rs2569190) and CARD9 (caspase recruitment domain family member 9,
rs4077515) is increased in European populations [9]. Due to positive evolutionary selection,
Europeans appear to be more sensitive to vitamin D than populations from Asia or Africa.
The total number of SNVs influencing vitamin D status and vitamin D signaling is nearly
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150, but, in total, they predict only a smaller proportion of the trait [55]. Interestingly, a large
twin study demonstrated that skin color and sun exposure behavior are major contributors
to 25(OH)D3 serum levels [57]. This emphasizes that vitamin D status is also a trait that is
primarily modulated by epigenetics and environment.

4. Segregation of Participants of Vitamin D Intervention Studies

The small-scale vitamin D intervention studies VitDmet (NCT01479933, ClinicalTri-
als.gov, accessed on 5 July 2023) [58–61] and VitDbol (NCT02063334) [62,63] were designed
as medical experiments rather than as RCTs (Table 2). VitDmet is a three-arm trial where
71 elderly pre-diabetic subjects were supplemented daily with either 0, 40, or 80 µg vitamin
D3 over 5 months of a Finnish winter (i.e., no endogenous vitamin D3 production possible),
i.e., it follows the treatment protocol of the FIND trial. The study aimed at preventing the
onset of type 2 diabetes; blood samples were collected at the beginning and end of the
intervention. In contrast, in VitDbol 35 young healthy subjects were exposed only once
to a vitamin D3 bolus (2000 µg = 80,000 IU) and samples were taken at days 0, 1, 2, and
30. Importantly, the analysis of both VitDmet and VitDbol differed from other vitamin D
intervention studies by relating the changes of vitamin D-triggered parameters, such as
vitamin D target gene expression in PBMCs (peripheral blood mononuclear cells), which
had been isolated at the end and beginning of the study, to the ratio of the vitamin D status
at the respective time points (Figure 2A). Accordingly, the responsiveness of the respective
parameters was determined for each study participant in a way that is comparable to the
analysis of in vitro dose–response studies [64].

Table 2. Small-scale studies determining the vitamin D response index.

Study Number of
Participants

Age
(Mean)

25(OH)D3 Level
Baseline Final Duration Intervention

(Vitamin D3 Dose)

VitDmet (Finland) 71 67 y 59 nM 83 nM 5 months 0, 40 or 80 µg/day

VitDbol (Finland) 35 26 y 65 nM 80 nM 30 days 2000 µg bolus once

VitDHiD (Finland) 40 27 y 73 nM 98 nM 1 day 2000 µg bolus once
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Figure 2. Principles of vitamin D response index determination. Participants of a vitamin D inter-
vention study were classified as high (green), mid (yellow), and low responders (red) to vitamin D3

supplementation (here shown in the example of the expression of the CCR7 (C-C motif chemokine
receptor 7) gene, (A)). The vitamin D response index is determined by k-means ranking of the sum
of the scores of a larger number of vitamin D target genes (B). Determining the vitamin D response
index of an individual will allow personalized supplementation with vitamin D3 in order to obtain
optimal clinical benefits, such as prevention of osteoporosis, sarcopenia, and autoimmune diseases (C).
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The method of data analysis of these smaller-scale studies is essential for obtaining
significant effects of vitamin D3 supplementation. For example, the study BEST-D had
a similar three-arm design as VitDmet, also focused on the elderly, and measured the
expression of cytokines [65]. However, classical analysis of the data led to a null result. For
the analyses of VitDmet and VitDbol, the study participants were scored on each tested
parameter as no, weak, or strong responders (Figure 2B), i.e., the individuals showed a
personalized molecular response to vitamin D3 supplementation [66] (Figure 2C). The
segregation of the VitDmet participants into high, mid, and low vitamin D responders was
based on the accumulated score of 36 vitamin D-triggered molecular parameters, while
for VitDbol only 12 factors were used. Interestingly, both studies agreed that 25% of the
participants were low vitamin D responders [67].

The vitamin D intervention study VitDHiD (NCT03537027) followed the VitDbol ap-
proach in design, but studied 25 participants on the level of their transcriptome [68] (Table 2).
Moreover, in vivo results of VitDHiD were backed up by in vitro assays using PBMCs of the
same individuals and the biologically active form of vitamin D3, 1,25-dihydroxyvitamin D3
(1,25(OH)2D3). In addition, this study included two different approaches, which were a tra-
ditional cohort analysis built on single repeats of 25 individuals and a personalized analysis
based on testing a limited number of selected participants in triplicate [68]. This led to the
discovery that a large number of vitamin D target genes responded in an individual-specific
way, i.e., in some persons, these genes were lower or not responsive compared with others.
Accordingly, interindividual differences in the vitamin D response index can be explained,
at least in part, by person-specific sets of vitamin D target genes. Interestingly, vitamin D
target genes differ in their EC50-value of 1,25(OH)2D3 stimulation [69]. In human PBMCs,
some genes already show a response at 0.1 nM, while other genes require concentrations
of 1 nM and higher. Since vitamin-D-triggered gene expression is based on epigenetics
(Section 1), the different sensitivity of target genes suggests that interindividual differences
in the vitamin D response index are also based, at least to some extent, on variations of the
epigenome.

The molecular basis of the vitamin D response index needs to be explored further.
In analogy to the anti-coagulant drug warfarin, as the interindividual difference in the
response to it is determined by SNVs in the genes VKORC1 (vitamin K epoxide reductase
complex subunit 1) and CYP2C9 [70], the vitamin D response index may be primarily
explained by genetic variants. However, as already discussed for the vitamin D status
(Section 3), genetics has limited potential in explaining this trait. Therefore, it is likely that
this also applies to the vitamin D response index, i.e., epigenetics and environment rather
than genetics are the molecular basis of this trait. Importantly, the vitamin D response index
is independent of the vitamin D status of the individual, i.e., there are high responders with
a low vitamin D status and low responders with a high vitamin D status. High responders
can handle a low vitamin D status, while low responders need to have a high vitamin D
status to benefit from vitamin D.

In general, the transcriptome-wide analysis has an advantage in that, in contrast to
the set of 24 vitamin D target genes, which had been selected in the context of the VitDmet
study [58–61], data from several hundred genes, which significantly respond to vitamin D3
supplementation, can be used [68]. This significantly increases the accuracy of the response
index calculations. Nevertheless, the ultimate goal is to identify a limited set of vitamin D
target genes as biomarkers for determining the response index.

5. Future View on Vitamin D Intervention Studies

A low vitamin D status most likely occurs in the winter season, in particular in the
about 15% of the world’s population living above a latitude of 38◦ N [71,72], i.e., when
there is low or no endogenous vitamin D3 production. High vitamin D responders better
tolerate these conditions and should suffer less frequently from autoimmune diseases [73],
infections [74], and/or cancer [75] because vitamin D contributes to the prevention of these
diseases. In contrast, low vitamin D responders represent a vulnerable part of society that
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requires higher vitamin D3 supplementation doses than suggested by population-based
recommendations and guidelines that may serve primarily mid vitamin D responders.
However, daily vitamin D3 supplementation should not be higher than 4000 IU (100 µg) in
order to prevent overdose in high vitamin D responders. The most appropriate supplemen-
tation may be 1 µg (40 IU)/kg body mass to account for obese individuals.

It is possible that due to the evolutionary adaptation of the European populations to
changing environmental conditions, such as the northern migration after the end of the
ice age, there are more high vitamin D responders in Northern Europe than in Southern
Europe. Since populations in Nordic countries have a higher rate of ancestry from Cau-
casian pastoralists (called Yamnaya) and Siberian hunter–gatherers than those from the
South [76,77], interbreeding within these populations may have conferred high vitamin D
sensitivity to Europe.

Evidence-based medicine aims to enable optimized medical decisions through the
integration of a clinician’s experience with personalized data from concerned patients
and background knowledge of the respective disease [78,79]. The latter information often
derives from RCTs that had been performed with large numbers of cases and controls
(Figure 3, top left). The group of low vitamin D responders is assumed to respond more
prominently to sufficiently high vitamin D3 supplementation than mid or high respon-
ders, which already may be saturated with a lower vitamin D status. Accordingly, RCTs
performed exclusively with accurately adjusted dosage on low vitamin D3 responders
would provide more conclusive results. However, ethical considerations do not allow the
use of low vitamin D responders as a control group with no or insufficient vitamin D3
supplementation. This prevents the design of classical RCTs with low vitamin D responders
as well as studies with vitamin-D-deficient persons. In this respect, a longitudinal design
of vitamin D intervention studies, such as in VitDmet, VitDbol, or VitDHiD, where each
participant is serving as his/her own control, are more appropriate. Since in these studies
each participant is investigated individually, they are also referred to as N = 1 studies
(Figure 3, bottom right).
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The results of classical RCTs are mostly analyzed via statistical models, i.e., through
the quantification of mathematical relationships of the measured variables of the study
participants. However, this approach cannot be used with a low number of cases, such
as in N = 1 approaches. In particular, when the latter approaches measure multi-omic
data, such as genome-wide DNA methylation, histone modifications, gene expression,
and mechanistic modeling can be applied. In this method, information on biochemical
and regulatory pathways, which is obtained from public databases, such as KEGG (Kyoto
Encyclopedia of Genes and Genomes) [80], Wikipathways [81], and SPOKE (Scalable
Precision Medicine Open Knowledge Engine) [82], can then be used to construct multi-level
dynamical computational models [83,84]. Thus, not only the design but also the analysis
methods differ clearly between RCTs and N = 1 approaches.

6. Conclusions

The most recent large-scale, long-term RCTs involving vitamin D did not provide any
significant primary results. This is largely because they were designed similarly to RCTs
of therapeutical compounds, i.e., drugs that do not naturally occur in the human body.
Thus, for endogenous molecules, such as vitamin D3, for which no clean zero controls exist,
long-term RCTs with vitamin-D3-deficient individuals cannot be performed for ethical
reasons and alternative study designs, such as N = 1 approaches, may be more appropriate.
Finnish studies such as VitDbol and VitDHiD were designed to use a vitamin D3 bolus
(Table 2), i.e., they obtained results faster than trials using daily supplementation. The
same design was also applied in a vitamin D3 intervention study in Saudi Arabia [85,86].
However, a vitamin D3 bolus should not be used over longer periods in order to prevent
hypercalcemia and tissue calcification [87]. Thus, daily vitamin D3 supplementation is
recommended [88].

A low responsiveness to vitamin D3 supplementation may serve as a trait that iden-
tifies members of the general population who have a significantly higher susceptibility
to multiple types of diseases, such as autoimmune diseases, cardiovascular disorders,
T2D, and cancer. In contrast, high responsiveness may reflect a high immune resilience,
i.e., an appropriate response of the immune system to various health challenges [89]. In
this way, a low vitamin D index may serve as a warning for generally increased disease
susceptibility. However, when future studies are able to validate our assumption that the
vitamin D response index is largely determined by epigenetics, concerned individuals
will have the chance to reduce their disease risk by better adapting their lifestyle to their
given environmental conditions. This may include increased outdoor physical activity
paired with exposure to sunlight from early childhood as well as optimized vitamin D3
supplementation.
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