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ABSTRACT

Osteoporosis is a metabolic bone disease characterized by low bone mass and
deterioration of bone tissue that leads to bone fragility and an increase in fracture
risk. It is a disease with a complex etiology that includes genetic and environ-
mental contributors. Environmental factors that influence bone density include
dietary factors—such as intakes of calcium, alcohol, and caffeine—and lifestyle
factors—such as exercise and smoking. Ethnic differences in the propensity to
nontraumatic bone fracture suggest that genetic factors are important. Recently,
common allelic variations in the vitamin D receptor gene have been found to be
associated with bone mineral density in racially diverse population groups, as
well as in prepubertal girls, young adult and postmenopausal women, and men.
However, many studies have not been able to find this association. Additional
approaches, such as sib-pair analysis, will probably be necessary in the future to
identify the important genetic determinants of osteoporosis.
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INTRODUCTION

In the last 30 years, attitudes about the study of diseases have undergone a
revolutionary change. As the techniques of molecular biology have become
more routine in research labs, scientists have been able to identify more genes
that may influence or cause diseases in humans. This has led to a belief in
“genetic predeterminism,” or a sense that the occurrence of all diseases can be
explained by the presence of a defective gene or genes.

Osteoporosis is a metabolic bone disease characterized by low bone mass
and deterioration of bone tissue that leads to bone fragility and an increase in
fracture risk. It has a complex etiology that includes genetic and environmental
contributors (55, 56, 94). Although these factors may exert their influence over
the course of a lifetime, the fractures associated with osteoporosis generally
occur later in life. As a result, we consider osteoporosis to be a disease of
the elderly. Thus, the aging demographics of the United States suggest that
unless drastic measures are taken to prevent the development of osteoporosis,
the incidence and the costs associated with treating osteoporosis will climb in
the coming decades (90).

Nutritionists have long known that dietary factors impact bone health (43).
However, several questions remain to be answered. For example, how does our
emerging understanding of the genetics of osteoporosis influence the role of
dietary and environmental factors on calcium metabolism and bone biology?
Moreover, will the genetic profile of an individual allow nutrition scientists and
other public health practitioners to design dietary and lifestyle recommendations
that lead to optimum bone health and lower the risk of developing osteoporosis?
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The answers to these questions will surely preoccupy the medical community in
the next century. This review presents current knowledge on the environmental
and genetic factors that contribute to a healthy skeleton. In particular, we review
recent studies on the association of vitamin D receptor gene polymorphisms
and bone mineral density and the risk of osteoporosis.

RISK FACTORS FOR DEVELOPING OSTEOPOROSIS

Aside from studying genetic contributors to osteoporotic risk, researchers have
examined skeletal and environmental factors that may contribute to it. What
follows is a brief summary of that work. Interested readers are referred to recent
reviews for more detailed discussions of these topics (43, 55, 94).

Traditionally, researchers have focused on the features of bone itself that
make it susceptible to fracture, i.e. bone mineral density (grams per squared
centimeter) or content (grams per centimeter), and to some extent bone archi-
tecture. Osteoporosis is associated with low bone density and researchers have
defined a fracture threshold, or a level of bone density below which bone is
more susceptible to either spontaneous or trauma-induced fracture (1, 7). At
what age a person reaches the fracture threshold is determined by two factors:
the peak bone mass attained by early adulthood, and the rate of adult bone
loss. Women experience a rapid drop in bone mass during menopause, and
this additional loss accounts for a large part of the gender differences in the
occurrence of osteoporosis (12). The bone found at a given skeletal site can
be composed of varying amounts of trabecular and cortical bone, which influ-
ences the density and breaking strength of the bone and the rate of bone loss.
Postmenopausal osteoporosis is characterized by a loss of trabecular bone and
fractures of trabecular-rich bones, such as the spine and ends of the long bones.
Senile osteoporosis is characterized by loss of both cortical and trabecular bone,
such as the vertebrae and femur neck.

The primary focus of much of the research on genetic factors that influence
bone density and osteoporosis has been on factors that influence the attainment
of peak bone mass and the rate of adult bone loss. Although this review also
focuses on bone-mineral density (BMD), other important features have been
identified. For example, heavier individuals have a higher BMD, although re-
cent research points to lean body mass, rather than fat mass, as the important
feature leading to this higher BMD (10). Thus, a genetic effect that exerts an
influence on the skeleton could work indirectly by influencing body composi-
tion. Recently, researchers have begun to study the role of bone architecture
on the resistance of bone to physical stress (92). Hip axis length (HAL) may
be one feature that explains some of the variability in fracture risk that is not
explained by bone density (15). Finally, since many osteoporotic fractures do
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not occur until a person with low BMD has fallen, neurologic deficits may
contribute to osteoporosis by affecting balance, causing a propensity to fall
(83). Genetic influences on BMD and the susceptibility to osteoporotic fracture
could operate through genes that influence muscle mass, skeletal architecture,
and balance-related neurological attributes.

Environmental Factors
DIET Although overall good nutrition is probably important to optimize bone
health, the most important and well-studied nutritional variable influencing
bone is dietary calcium intake (7). Along with phosphate, calcium is needed
for proper mineralization of bone. The importance of this nutrient is reflected
in recent recommendations to increase the dietary calcium across all age groups
to optimize bone health and reduce the risk of osteoporosis (84). Other dietary
practices may disrupt calcium metabolism. For example, high protein and salt
intakes increase urinary calcium loss and may lead to a negative calcium balance
and bone loss (59, 88). High dietary sodium intake is associated with low bone
density in premenopausal women (21).

Another important nutrient for bone is a sufficient supply of vitamin D,
from either dietary intake or sunlight exposure, to maximize intestinal calcium
absorption and maintain calcium balance (18, 84). Animal studies show that
adequate ascorbate and copper intake is needed to ensure proper collagen matrix
formation (50, 91). More recently low vitamin K nutriture has been correlated
to low BMD in women (114). Conceivably, genetic factors influencing the
absorption, metabolism, and retention of these essential nutrients could affect
osteoporosis risk.

LIFESTYLE The most important lifestyle factor influencing bone health is ex-
ercise. Early studies clearly showed that disuse of a weight-bearing bone leads
to excessive bone loss (33). Conversely, exercise leads to greater density in the
bones undergoing the physical stress induced by the exercise (108). Moreover,
this response to exercise may be dependent on the level of calcium intake (111).
Three other lifestyle habits have been shown to have an important influence on
bone density: alcohol intake, caffeine consumption, and smoking (41, 61, 76).

Genetic Factors
RACIAL DIFFERENCES Asian women have a 40–50% and African-American
women have a 50–60% lower risk of hip fracture than do Caucasian women
(94). Paradoxically, Asian women have lower bone density (97) and African-
American women have higher bone density (94) than Caucasian women have.
Differences in body size may account in large part for the difference in bone den-
sity between Asian and Caucasian women (97), but it does not account for the
difference between African-American and Caucasian women (26). Cummings
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et al (15) showed that both Asian and African-American women have a shorter
hip axis length and that this accounts for a large portion of the osteoporotic risk
in those groups. Collectively, studies like these suggest that there is a significant
genetic component to bone characteristics and osteoporosis.

HERITABILITY STUDIES When we think of genetically predetermined diseases,
we usually mean diseases that are due to one or many mutations in a single gene
(e.g. the hemoglobin defect associated with sickle cell anemia) that follow
the rules of Mendelian inheritance. The single-gene disease approach has not
explained osteoporosis or other common, multifactorial, complex diseases of
aging (e.g. cancer and cardiovascular disease). Although some bone diseases
can be caused by mutations in single genes—e.g. vitamin D–resistant rickets and
the vitamin D receptor gene (13), osteogenesis imperfecta, and genes for type I
pro-collagen (66)—these mutations do not occur in the majority of people with
osteoporotic fractures. To determine whether low bone density or osteoporosis
risk has a genetic component, investigators have turned to family and twin
studies.

Family studies In family studies, researchers look to see whether a trait (e.g.
low bone density) runs in a family. However, because of shared family environ-
ment, one has to consider that this factor, rather than genetics, is the explanation
for a familial character. With this caveat in mind, researchers have consistently
found a familial resemblance in bone density at a number of appendicular
and axial sites (27, 52, 64, 71, 110, 119). This is true in both Caucasians and
African-Americans (63). The familial relation to bone density manifests itself
prior to achieving peak bone density (29, 78). Lutz & Tesar (72) found the
BMD relationship was stronger between premenopausal mothers and daugh-
ters than between postmenopausal mothers and daughters. This suggests that
other factors can modify the genetic influence on the skeleton. Several groups
have shown that including both parents in the assessment of genetic factors
improves the predictive value (51, 64, 69, 86, 109). Some (4, 71, 101), but not
all (22, 40), studies show that daughters whose mothers have a history of low
bone density or osteoporosis also have lower bone density. Recently, intestinal
calcium absorption was also found to be correlated in mothers and daughters,
with the relationship being strongest in pairs where the mother had high bone
density (16).

Several groups have applied segregation analysis to estimate the degree of
familial resemblance under varying genetic or environmental hypotheses. An
analysis of total body bone density in 129 nuclear families from France found
no evidence of a major gene influencing BMD (39) but supported a polygenic
effect exerting its greatest influence on peak bone mass. This is consistent with
a variance component analysis in 535 American women in 137 family sets that
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suggested that polygenic loci account for about half of the variability in maximal
femoral bone density. In contrast, segregation analysis on X-rays of hands in
213 Turkmenian pedigrees showed 50–60% of total variation in BMD could be
attributed to a single Medelian locus or to two codominant alleles (68). These
conflicting data could be due to the difference in the bone sites measured,
the relatively small sample sizes, the distinct ethnic character of the groups,
or the failure of the studies to include in their models the correct parameters
affecting bone density.

Twin studies Twin studies take advantage of the fact that monozygotic (MZ)
twins are genetically identical clones and will be the same for genetically de-
termined traits. Like any other set of siblings, dizygotic (DZ) twins share only
half of their genes, but they are age matched. Heritability of a trait can be
calculated from the interclass correlation for each zygosity using a variety of
equations. However, these calculations assume that any genetic variance is
additive and that the environmental covariance of the DZ twins is equal to that
of the MZ twins. Studies on MZ twins separated at birth can separate out the
environmental from the genetic effects on a trait. However, there are few of
these subjects to study, and no studies have been conducted on bone density or
osteoporosis in separated twins. The data from twin studies consistently demon-
strate that bone density at a number of sites has a strong genetic component
(50–90% of variability is determined by a genetic component, depending on
the site measured) (3, 20, 73, 80, 93, 102, 106). However, Slemenda et al (106)
concluded that the high heritability estimates they and others have calculated
were due to errors in the assumptions made about the twin model.

Bone from appendicular skeletal sites (femur neck, trochanter, and forearm)
is comprised primarily of cortical bone and may be less influenced by genetic
factors than trabecular bone–rich axial skeletal sites (Wards triangle, lumbar
spine) (3, 20, 93). Similarly, the rate of bone loss over time appears to be genet-
ically controlled only at axial sites (58), whereas at skeletal sites rich in cortical
bone, genetic factors have a nonsignificant effect (11, 58, 105). The effect of
genetic influences on bone loss is reflected in the strong genetic effect on serum
markers for bone formation (osteocalcin, bone specific alkaline phosphatase,
propeptide of collagen type I) and to a lesser extent on urinary bone resorp-
tion markers (34, 57). Bivariate analysis showed that the same genetic factors
influence all bone sites (93), whereas more recent computer modeling of bone
density data suggests there are additional factors unique to cortical bone and
trabecular bone within each site (73).

As with bone density, there is a strong genetic contribution to bone geometry,
e.g. the center of femur neck mass (70% genetic), resistance of the femur neck to
fall forces (92%) (107), and hip axis length (51% after height and environmental
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adjustments) (31). The association between bone density and lean or fat mass
is likely determined either by the genes regulating body size (102) or via shared
environmental influences (46). Finally, a recent study using twins discordant
for exercise suggests that genetic influences may also determine the capacity
of bone to respond to exercise (25).

Linkage analysis studiesFamily and twin studies can identify the portion of a
disease or trait that is accounted for by genetic factors, but they do not identify
which genes are responsible for the effect. This is traditionally done by linkage
analysis and positional cloning (24). The disadvantage of this approach is that it
requires a large number of families in order to identify genes that have a modest
effect on a trait or disease (96). Linkage analysis has not been commonly used to
identify genes associated with bone density. However, for the interested reader,
some examples of linkage analysis approaches to BMD include the following
studies. Using 22 members of a kindred that have a phenotype of high spinal
bone density, Johnson et al (49) found evidence for linkage of this trait to chro-
mosome 11, near chromosomal marker D11S987. As discussed below, polymor-
phisms in the vitamin D receptor (VDR) and collagen type I alpha I genes have
been associated with low bone density; however, neither of these genes resides
on this chromosome. Spotila et al (113) examined 37 members of 22 families
with familial osteopenia. Their data suggest a monogenic mode of inheritance
of the low bone density trait. However, they have not been able to attribute this
trait to a chromosomal location. Further work is clearly needed on this front.

ASSOCIATION STUDIES OF GENETIC MARKERS
WITH BONE MINERAL DENSITY AND
OSTEOPOROSIS

An alternative to genetic linkage studies aimed at identifying genes that cause
osteoporosis are studies that look for polymorphisms or mutations in genes
whose protein products are already known to influence bone metabolism. These
candidate genes are then investigated in association studies that attempt to statis-
tically link these polymorphisms to the occurrence of disease or a physiological
trait.

Genetic markers are often based on restriction fragment length polymor-
phisms (RFLPs) caused by random mutations in DNA that lead to variations
in specific endonuclease cut sites. However, these mutations occur throughout
the genome and do not necessarily occur within the coding region of a gene.
Thus, RFLPs do not necessarily have a functional consequence to the gene in
which they are detected. Some examples of genetic markers that have been
investigated in association studies of BMD or osteoporosis are the RFLPs in
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the VDR gene (usingBsmI, TaqI, ApaI, andFokI restriction enzymes) and the
estrogen receptor gene (usingXbaI and PvuI restriction enzymes), and nu-
cleotide repeat polymorphisms in the Sp1 binding site in the collagen type I
alpha I gene promotor. In addition, associations between BMD and various
phenotypes based on circulating isoforms of apolipoprotein E4 have also been
reported. In the case of theBsm, Taq, andApaRFLPs, there are no associated
changes in the amino acid composition of the VDR protein. However, theFokI
RFLP is associated with the expression of a shortened form of the VDR lacking
the three N-terminal amino acids. Mutations in the Sp1 binding site of the
collagen gene promotor could influence the regulation of collagen expression.
Use of several genetic typing approaches, e.g. direct haplotyping for several
different VDR RFLPs (118), may result in greater genetic resolution.

Classification of individuals based on a given RFLP is done by Southern
analysis of the DNA. In polymerase chain reaction (PCR)-based methods, the
gene of interest is first amplified, then the PCR product is digested with a
specific endonuclease to yield a distinctive genotypic pattern. For example,
digestion of a VDR gene PCR product withBsmI results in three possible
band patterns based on the two possible variations (absence or presence of
the cut site) that occur in the inherited alleles, i.e.BB, Bb, and bb, where
accepted nomenclature usesB to represent the absence of theBsmI restriction
site andbrepresents the presence of the cut site.BsmI treatment of PCR products
results in a characteristic pattern consisting of one large band in the case of a
BB homozygote, two bands for thebb homozygote, and three bands for aBb
heterozygote.

Although an association study with candidate genetic markers has the out-
ward characteristics of a shotgun approach, it has certain statistical advantages
over linkage analysis (96). A critical discussion of the pitfalls of these different
methods used to study the genetic contributions to complex diseases is given
by Econs & Speer (24). The following is a brief summary of some of the issues
that arise in interpreting association studies (24).

Factors in Genetic Association Studies That May Lead
to False Associations
Although a given allele (e.g. a RFLP) may be associated with a given trait, it
does not mean the allele is necessary to the manifestation of the given phenotype.
On the other hand, finding a significant statistical association between a genetic
marker and a given trait implies that individuals who carry the associated allele
are at an increased risk for the disease or condition. However, complications
that arise from association studies may result in false associations and may lead
to discrepancies in the findings of various studies. Some of the factors that may
influence these false associations are discussed below.
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(a) The control group (nonaffected population) needs to be appropriate to
the study population and must be matched for age, sex, ethnic background, and
relevant environmental variables. (b) The generalizability of a study’s findings
may be limited. If investigators cannot replicate the original study observations
using populations of individuals of different races or ethnicity, different envi-
ronmental exposure, etc, the generalizability of the study is questionable. Such
failures in replication may be due to errors in study design, implementation, or
analysis. Or it is possible the findings of the original study are true but cannot
be applied widely outside of the original population. The lack of replicability
could prove useful, however, in that it could unearth other variables that are
modifying the genotype effect. (c) Population stratification can lead to spurious
results in association studies. In such cases, population admixture results in
a combination of different populations with varying allelic or genotypic fre-
quencies. For example, if population A has a high frequency of genotype “A”
and for unrelated reasons a high BMD and populationB has a high population
frequency of allele “a” and again for unrelated reasons a high prevalence of low
BMD, the unwitting combination of these two populations in one study group
will indicate a strong association between allele A and high BMD, even though
within each individual population there is no association. Population stratifica-
tion can also lead to deviations from the Hardy-Weinberg theory, which predicts
the behavior of alleles and genotypic frequencies in populations. (d ) Compet-
ing risks are another concern. An association between a genotype and other
disorders or life situations may affect whether an affected individual is recruited
into a study. For example, if the genotype is a risk factor for a common ailment
that is an exclusion criteria in the study, e.g. hypertension, then the preferential
exclusion of these subjects may bias the results of the study. (e) Another con-
cern is population characteristics. Different nutrient intake levels and/or levels
of physical activity could cause different outcomes between studies. Finally,
( f ) the putative marker allele may not influence the phenotype directly but may
be in linkage disequilibrium with another gene that does directly influence it.
In this situation, depending on the degree of recombination that has occurred
in a given population, some studies may find an association of the trait with
one allele, while other studies find associations with a different allele. Keeping
these issues in mind, we consider some of the published association studies on
BMD or osteoporosis with candidate marker genes.

Estrogen Receptor Gene Polymorphisms
Estrogen deficiency in postmenopausal women is associated with increased
bone turnover and acceleration of bone loss, leading to an increased suscepti-
bility to bone fractures (87). Estrogen receptors have been found in human os-
teoblasts and osteoclasts, which suggests a possible direct effect from estrogen
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on bone. Estrogen receptor mutations are associated with bone loss in humans
and mice (122). Thus, polymorphisms in the estrogen receptor may prove to be
markers of increased risk for low BMD and osteoporosis (99). Yanagi et al (122)
investigated the association betweenPvuI and XbaI restriction fragment length
polymorphisms of the estrogen receptor gene and BMD in 238 postmenopausal
Japanese women. ThePPxxgenotype, observed in 8% of the subjects, was found
to be associated with a significantly lower BMD in the lumbar spine and whole
body. Additional investigations of the relationship between thePx haplotype
and BMD in other populations are needed before the usefulness of this genetic
marker can be properly evaluated.

Collagen Gene Polymorphisms
Type I collagen is the major protein of bone encoded by the COLIA1 and
COLIA2 genes. Grant et al (37) reported that a G-to-T polymorphism in the
promotor region of COLIA1 at a recognition site for the transcription factor
Spl is related to bone mass and osteoporotic fracture. G/T heterozygotes at
the polymorphic Spl site (Ss) had significantly lower BMD than did G/G ho-
mozygotes (SS) in two populations of British women, and BMD was lower
still in T/T homozygotes (ss). Importantly, the unfavorableSsandssgenotypes
were over-represented in patients with severe osteoporosis and vertebral frac-
tures (54%), as compared with controls (27%), which suggests that this marker
may be useful in predicting the risk of developing osteoporosis. Unfortunately,
several discordant studies investigating associations between the collagen gene
polymorphism and BMD or osteoporosis have recently been reported in abstract
form at scientific meetings. This suggests that this marker of osteoporosis risk
may have limited generalizability.

Apolipoprotein E Phenotype
Apolipoprotein E (apo E) is a major constituent of high-density and low-density
lipoproteins. The principal isoforms of apo E are apo E3 and apo E4. A less
common isoform, apo E2, is also found. Previous studies have shown that the
apo E phenotypes are associated with the risk of developing diseases such as
Alzheimer’s dementia and cardiovascular disease (53, 81). Shiraki et al (104)
investigated the relationship between phenotypes of apolipoprotein E and BMD
in 284 postmenopausal Japanese women. Subjects were categorized by three
phenotypic groups based on the isoforms (E2, E3, and E4) of apo E4 found in
the blood: apo E4−/− (E3/2 and E3/3; 76% of the population), apo E4+/−
(E4/3 and E4/2; 22% of the population), and apo E4+/+ (E4/4; 2% of the
population). This study found a significant gene-dose effect from the apo E4
allele on BMD of the lumbar spine and total body. The group representing the
negative homozygotes for apo E allele (apo E4−/−) had the highest BMD. The
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reason for the observed relationship between the apo E genotype and BMD is
obscure, but it may be related to vitamin K status because apo E phenotype has
been associated with circulating levels of phylloquinone (100) and vitamin K
status has been linked to BMD (114). Additional investigation of the association
between apo E phenotypes and BMD or osteoporosis appears warranted.

Vitamin D Receptor Gene Polymorphisms
The majority of association studies of BMD and candidate gene markers have
investigated markers for the VDR gene. The seco-steroid 1,25(OH)2D is an
important hormonal regulator of bone and mineral metabolism (89). The VDR
mediates the biological actions of 1,25(OH)2D. The prominent role of the VDR
in calcium metabolism suggests that this gene is a likely candidate gene for
causing low BMD and osteoporosis. It is clear that mutations in functionally
critical areas of this gene can have profound effects on mineral metabolism and
BMD. For example, various point mutations of the VDR gene have been identi-
fied and shown to be responsible for functional defects in the ligand-binding or
DNA-binding domains of the VDR receptor (67, 74). However, because these
VDR mutations that cause hereditary rickets are rare in the general popula-
tion, they would not serve to explain the majority of cases of osteoporosis.
On the other hand, restriction fragment length polymorphisms of the VDR are
common (14). If these polymorphisms influence the level or function of the
VDR, then they could have an important impact on mineral metabolism and
BMD.

FOKI VDR POLYMORPHISMS A common polymorphism has been described
in the coding region of the VDR gene. The polymorphism results from a C-to-T
transition and creates an initiation codon (ATG) three codons proximal to a
downstream start site. The polymorphism can be defined by a restriction frag-
ment length polymorphism (RFLP) using the restriction endonucleaseFokI.
The presence of aFokI site, designatedf, allows protein translation to initiate
from the first ATG. The allele lacking the site (designatedF ) initiates from
a second ATG site downstream from the first site. Thus, translation products
from these alleles differ by three amino acids, with thef variant elongated (38).
TheFokI polymorphism in the VDR gene has been associated with a 13% lower
lumbar spine BMD and a greater rate of bone loss in the femoral neck (4.7%
vs 0.5%;f f vs FF ) in postmenopausal Mexican-American women (38). Like-
wise, in Caucasian premenopausal women (42), thef f genotype is associated
with a 4% lower total body and 12% lower femoral neck BMD. However, an
influence of theFokI genotype has not been found in all studies (23). More-
over, the functional significance of a shortened VDR is uncertain, although a
recent study in Japanese women suggests that the different start site allele may
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be produced with different frequencies (2). Additional investigations of the
FokI VDR polymorphism in various populations appears warranted, however,
because the number of reported association studies is small.

BSMI-, TAQI-, AND APAI-VDR POLYMORPHISMS The vast majority of studies of
VDR genotype have studied the influence of theBsmI VDR polymorphism on
BMD (14). In 1994, a cardinal study reported a significant association between
theBsmI VDR genotype and BMD in 250 Caucasian twins, aged 17–70 years,
from Australia (82). The study consisted of 70 monozygotic (MZ) and 55 di-
zygotic (DZ) adult twin pairs; most subjects were female. In addition, a further
311 elderly women (207 postmenopausal) were also studied. From their study
of twins, these investigators concluded that much of the genetic variation in
BMD could be explained on the basis of theBsmI VDR genotype alone. They
also reported that postmenopausal women with theBB genotype would reach
the BMD “fracture threshold” (defined as two standard deviations below the
mean of young adults) 10 years sooner than theirbbgenotype counterparts. This
greater decline in BMD in theBB group could significantly increase their risk
of bone fracture. The potential usefulness of theBsmI VDR in predicting BMD
was given additional support by Spector et al (112), who found an association
between vitamin D receptor genotype and BMD in a study of postmenopausal
twins (95 DZ pairs of twins and 87 MZ pairs of twins, aged 50–69 years) in
Britain. Adjusted BMD was significantly lower in theBBgroup at the hip, at the
lumbar spine, and for the whole body. In contrast, however, a twin study con-
ducted in the United States found no relationship between VDR genotype and
BMD (47). In the latter study, polymorphisms at the vitamin D receptor gene
were examined in relation to BMD at the spine, femur, and forearm in 86 MZ and
39 DZ adult female twins. Subsequently, many studies in various populations
have investigated the association between theBsmI VDR genotype and BMD
and found discordant results. The findings of some of these studies were the sub-
ject of a meta-analysis by Cooper & Umbach (14), who concluded that overall
theBsmI VDR polymorphism had a significant, but small, effect on BMD.

POSSIBLE MODIFYING FACTORS
IN ASSOCIATION STUDIES

Given the variety of genes and environmental factors that could influence BMD
over a lifetime, it is not surprising that not a single gene marker has been
identified that can explain differences in BMD in all populations. The lack of
agreement between studies investigating the association of VDR polymorphism
with BMD may be due to several reasons (see above). Specific environmental
factors that need to be considered as potentially important modifiers of genetic
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effects on BMD include racial differences, age, hormonal status, body composi-
tion, nutritional modulation of the phenotype, and important lifestyle variables
such as smoking and caffeine and alcohol use and the level of physical activity.
Unfortunately, several of these important variables affecting BMD have not
been reported in many studies. Some possible influences of these modifying
factors on the associations between theBsmI VDR genotypes and BMD are
discussed below.

Race
There is a wide variation in the prevalence of theBsmI VDR polymorphism in
different racial groups. For example, persons of Asian or African-American
background have a low frequency of theB allele compared with Caucasians.
In a meta-analysis of studies investigating the association of VDR genotype
and BMD published prior to July 1996, Cooper & Umbach (14) found that
the racial distributions of theBB (low bone density) genotype was 17% in
Caucasians (21 studies), 5% in African-Americans (3 studies), and 2% in Asians
(5 studies). Nevertheless, an association between theB allele and low BMD
has been reported in Caucasians (30, 65, 95), Asians (116, 121), and African-
Americans (30). Thus, although the frequency of a given VDR genotype may
vary considerably depending on race, there is no obvious racial bias in observing
an association between VDR genotype and low BMD.

Age
BMD in adults represents the net effect of the peak bone mass achieved and
the rate of adult bone loss. If the VDR polymorphism has differing degrees
of influence on peak bone mass compared with rates of bone loss, then the
association between VDR genotype and BMD may be more readily apparent
in either younger or older adults. For example, if VDR polymorphisms have
a strong influence on peak bone mass but less of an influence on the rate of
postmenopausal bone loss, then the association between BMD and VDR poly-
morphisms could be attenuated in elderly populations (95, 118). A possible
age (or estrogen) effect on the VDR genotype association with BMD may be
appreciated by comparing the effects of VDR genotype on BMD in pre- and
postmenopausal women (Figure 1). TheBB VDR genotype appears to have a
more pronounced effect on BMD in young, premenopausal women compared
with older, postmenopausal women.

Body Composition
Measurements of bone density by absorptiometry based on a two-dimensional
projection of a three-dimensional structure cannot accurately account for varia-
tions in cross-sectional areas and are influenced not only by bone mass but also
by the size of the bone (98). It has been suggested that the VDR polymorphisms
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Figure 1 Comparison of the effects of vitamin D receptor (VDR) genotype (BB vs bb) on bone-
mineral density (BMD) in premenopausal and postmenopausal women reported in various studies.
Average difference in femoral neck BMD betweenBB andbb genotype groups was−2.9% from
studies conducted in premenopausal women (n = 9 studies; total 819 subjects) and−0.14% in
postmenopausal women (n = 8 studies; total 1051 subjects).

could affect BMD measurements via an effect on body size (5). In this case, the
vitamin D receptor polymorphisms would not be related to bone mass, but rather
to variations in diaphyseal cross-sectional growth resulting from periosteal ap-
position of new bone (5, 85, 98). Barger-Lux and colleagues (5) determined
vitamin D receptor genotype, bone mass at spine and total body, and body size
in 32 healthy premenopausal females. They found that bone-mineral content
(BMC) at both spine and total body was significantly associated with VDR gene
alleles. BMC was highest for thebbgenotype, lowest forBB, and intermediate
for Bb. However, they observed a similar association between VDR genotypes
and body weight, and when BMC was adjusted for body weight, the association
with VDR polymorphism disappeared. Need et al (85) reported that bone area
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was greater in theBB genotype and concluded that although theBB genotype
appeared to be associated with lower bone density in men, this observation
could be due to larger bone size rather than reduced bone mass. Recently, this
matter was significantly illuminated by the study of Sainz et al (98), who used
quantitative computed tomography to measure bone. This technique allows
accurate assessment of both the size of the bones and the various components
that influence bone mass. In their study of the association between VDR geno-
type and skeletal development in prepubertal girls, aged 7–12 years, computed
tomography measurements of bone revealed a VDR genotype effect on femoral
and vertebral bone density. Girls with thebbgenotype had a 3% higher femoral
bone density and a 10% higher vertebral bone density than did girls with aBB
genotype. Importantly, however, no association of VDR genotype was found
for cross-sectional areas of the vertebrae or the cross-sectional or cortical areas
of the femur, which suggests that variations in bone size apparently do not bias
the VDR genotype association with BMD.

Calcium Intake
Dietary calcium intake influences both the gain and loss of bone throughout the
life cycle. Some studies have suggested that this nutritional factor may modulate
the effect of VDR genotype on the skeleton.

Krall et al (65) investigated the influence of VDR genotype on rates of bone
loss in 229 elderly postmenopausal women who had previously taken part in
a placebo-controlled calcium supplementation trial (17). BMD was measured
over the course of 2 years at the femoral neck, spine, and radius. Rates of
bone loss were greater in theBB group at all sites. However, when the study
population was analyzed according to calcium intake level, it was found that
the VDR genotype influenced bone loss from the femoral neck only in those
with a low dietary calcium intake (Figure 2).

It should be noted that participants in this clinical trial were chosen on the
basis of low dietary calcium intakes and were randomized to a 500-mg/day
calcium supplement. Ferrari et al (28) investigated the relation between VDR
genotype and change in the lumbar spine BMD over the course of 18 months in
a group of elderly subjects supplemented with 800 mg of calcium/day. They ob-
served a significant effect from VDR genotype on rates of bone loss. However,
calcium intake was related only to the change in BMD in theBb heterozy-
gote group, which suggests a possible interaction between VDR genotype and
calcium utilization. Kiel et al (60) investigated the relationship between VDR
polymorphisms and BMD in 328 elderly women, aged 69–90 years, who were
participants in the Framingham Heart Study, a longitudinal study of risk factors
for heart disease. In subjects with thebb but not theBb or BB genotypes, sig-
nificant associations existed between usual calcium intake and BMD at five of
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six skeletal sites, such that BMD was 7–12% higher in those with dietary cal-
cium intakes greater than 800 mg/day compared with those with intakes<500
mg/day. The data also suggested that BMD was higher in persons with the
bb genotype only in the group with calcium intakes above 800 mg/day. These
findings suggest that optimal utilization of an adequate calcium intake may
be influenced by VDR genotype. In a study of 268 postmenopausal women,
Garnero et al (35) observed no relationship between VDR genotype, BMD,
and calcium intake. However, only 64 of these elderly subjects consumed low-
calcium diets (<600 mg/day). There currently is a paucity of data available
on the influence of VDR genotype on the rate of bone accrual in children con-
suming varying levels of dietary calcium, as well as on the genotype-dependent
response to calcium supplementation in various other populations. Additional
studies of the potential interaction between VDR genotype and bone status in
young and old subjects in the context of well-controlled calcium supplement
trials could prove instructive.

Vitamin D Supplementation
Vitamin D deficiency is common in some elderly populations. Moreover,
vitamin D intake can affect the rate of bone loss in elderly subjects (18). Thus,
knowledge of VDR genotype may prove useful in predicting the response of a
group of subjects to vitamin D supplementation. However, little information is
available on this important question. Graafmans et al (36) studied the effects
from a 2-year regimen of vitamin D supplementation (400 IU/day) on BMD in
Caucasian women over 70 years old. Although they did not find an association
between VDR genotypes and baseline femoral neck BMD, they observed that
the mean increase in BMD in the vitamin D group relative to a placebo group
was higher in subjects with theBB andBb genotype compared with thebb
group. They interpreted their findings as representing a functional involvement
of VDR gene variants in determining BMD. In contrast, Matsuyama et al (75)
reported that Japanese subjects given an active form of vitamin D had a more
positive skeletal response to supplementation in thebb VDR genotype group.
Likewise, Howard et al (45) observed in a group of Australian subjects that
thebb genotype group demonstrated a greater relative suppression of PTH in

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2 Effect of vitamin D receptor (VDR) genotype (BBvsbb) on rates of femoral neck bone
loss in postmenopausal women with and without calcium supplementation. (A) Genotype effect
on bone loss in total group.BB genotype group had greater rates of bone loss compared withbb
group. (B) Genotype effect on bone loss in placebo group that consumed a low-calcium diet and
in calcium-supplemented group. Genotype effect on rates of bone loss were only apparent in the
women who consumed low-calcium diets. [Adapted from Krall et al (65).]
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response to short-term administration of 1,25(OH)2D. These studies suggest
that VDR genotype can influence the biological response to vitamin D therapy.
The mechanism of this effect is unknown, but it is reasonable to assume that
it may reflect differences in VDR level or activity. However, as discussed be-
low, there is no evidence of altered VDR level in persons with different VDR
genotypes.

BIOCHEMICAL AND PHYSIOLOGICAL
CORRELATES OF VDR GENOTYPE

The association between VDR genotype and BMD found in some studies has
spurred the investigation of possible genotype effects on some underlying bio-
chemical or physiological processes that could influence BMD. These factors
include the vitamin D receptor level, intestinal calcium absorption, and bone
turnover.

Vitamin D Receptor Expression
Although the anonymous VDR polymorphisms, such as those determined by
theBsmI restriction site, do not occur within the coding region of the protein
whereas other polymorphic sites in the VDR gene, such as theTaqI endonu-
clease site, are not predicted to cause an amino acid substitution in the VDR
protein, these allelic variations could still influence the degree of expression
of the VDR (82). To investigate this question, Barger-Lux et al (5) measured
duodenal VDR levels in 32 premenopausal women: They found no effect of the
BsmI polymorphism. Likewise, Kinyamu et al (62) measured intestinal VDR
levels in 92 women genotyped forBsmI andTaqI polymorphism at the VDR
gene locus and found that there were no significant differences in intestinal
VDR among VDR genotype groups. Thus, both studies that have attempted
to correlate VDR polymorphisms with intestinal VDR level have not shown a
genotype effect on VDR. It could be argued, however, that VDR expression
could vary in a tissue-specific manner and that the VDR genotype could have
differing effects in different tissues. Mocharla et al (79), however, recently re-
ported that VDR mRNA was not different in lymphocytes from subjects with
different VDR genotypes. Nevertheless, no information is available on the re-
lationship between VDR genotype and the level of VDR expression in bone.
Future studies of the functional effects of various VDR polymorphisms on VDR
expression and function in bone cells in culture could prove enlightening.

Intestinal Calcium Absorption
As mentioned above, Krall et al (65) reported thatBsmI VDR polymorphisms
were associated with the rate of femoral bone loss only in postmenopausal
women who consume a low-calcium diet (Figure 2). Greater rates of bone loss
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under conditions of low dietary calcium intakes would be consistent with a
possible effect of the VDR genotype on vitamin D–dependent calcium absorp-
tion. Moreover, this absorption defect would be masked in subjects with high
calcium intakes because most of the calcium absorbed at high calcium loads is
via a vitamin D–independent pathway (103).

Dawson-Hughes et al (19) compared fractional calcium absorption in healthy,
late-postmenopausal women with (bb) and without (BB) the BsmI restriction
site. Calcium absorption and plasma 1,25-(OH)2D were measured in 60 women
(26 BB and 34bb) after 2 weeks of high-calcium (1500 mg/day) and 2 weeks
of low-calcium (<300 mg/day) intake.45Ca absorption was similar in the
two groups on the high-calcium intake (19%/liter in BB and 20%/liter in
bb) but differed significantly in the groups on the low-calcium intake (21 vs
24%/liter). Calcium restriction induced similar percentage increases in plasma
1,25-(OH)2D, but theBB group had a smaller increase in the fractional45Ca
absorption index, which would be consistent with a possible intestinal resis-
tance to the action of 1,25(OH)2D. In a complementary study, Zmuda et al (123)
examined the relation between VDR genotype and fractional45Ca absorption
in 101 postmenopausal African-American women. VDR gene polymorphisms
were defined by the endonucleasesBsmI, ApaI, and TaqI. Women homozy-
gous for theB allele had 14% lower fractional45Ca absorption (not significant)
compared with women homozygous for theb allele. Wishart et al (120) in-
vestigated the relationship between calcium absorption and vitamin D receptor
genotype in 99 healthy women approaching menopause. VDR alleles were also
classified according toBsmI, TaqI, and ApaI restriction enzymes. Radiocal-
cium absorption was significantly greater in the bbaaTT haplotype and the aa
genotype. In contrast, Kinyamu et al (62) found no relationship between VDR
polymorphisms and intestinal calcium absorption in either young or elderly
women. Some 92 Caucasian women (49 young women, aged 25–35 years, and
43 elderly women, aged 65–83 years) were genotyped forBsmI andTaqI poly-
morphisms at the VDR gene locus. No significant differences were found in
intestinal calcium absorption among VDR genotype groups. Likewise, Francis
et al (32) investigated the association between vitamin D receptor genotype and
calcium absorption in 48 men (median age 64, range 27–77), half of whom
had crush fractures, and showed no significant difference in calcium absorption
among the genotypes. Thus, based on the reported relationship between VDR
genotype and intestinal calcium absorption, genotype has no or a very minor
influence on calcium absorption.

Bone Markers
Morrison et al (82) initially reported that serum osteocalcin, a biochemical
marker of bone formation, was associated with polymorphisms in the VDR
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gene. Serum osteocalcin levels were significantly higher in subjects with the
bbgenotype versus those with theBB, whereas theBbheterozygotes were inter-
mediate. However, these genotype effects on serum osteocalcin have not been
consistently observed by others, despite some studies finding positive associa-
tions between VDR genotype and BMD (30). Similarly, biochemical markers
of bone resorption have not been consistently associated with VDR genotype.

GENETIC POLYMORPHISMS AS RISK FACTORS
FOR OSTEOPOROSIS AND OTHER CHRONIC
DISEASES

Some people are clearly at increased risk for osteoporosis due to genetic fac-
tors. The identification of genetic markers highly predictive of osteoporosis
risk would be an important scientific advance. Given that some studies indicate
an association between VDR polymorphisms and BMD, an important question
is whether VDR genotype predicts the risk of developing osteoporosis. Several
reports have investigated whether patient populations with osteoporosis have a
greater prevalence of theBBgenotype (6, 44, 70). However, none of these stud-
ies has found an excess prevalence of VDR polymorphisms associated with os-
teoporosis. Interestingly, although VDR genotype does not predict osteoporosis
risk, several recent reports have suggested thatBsmI VDR genotype may be a
useful predictor of risk for other diseases, such as primary hyperparathyroidism
(8, 9), osteoarthritis (54, 117), prostate cancer (48, 115), and perhaps diabetes
(77). The underlying mechanisms responsible for the association between VDR
genetic markers and various disease processes are unknown. Moreover, given
the potential pitfalls of association studies, due caution should be exercised.

SUMMARY

A significant number of studies have found an association between theBsmI
VDR genotype and BMD in various racially diverse populations, as well as in
prepubertal girls, young adult and postmenopausal women, and men. However,
there are also many studies that have not found an association between this
VDR genotype and BMD. The reasons for the discordant findings are uncertain
but not surprising given the multifactorial influences on BMD and the possible
pitfalls of association studies with candidate genes. In addition, negative or dis-
cordant findings have been reported concerning the effects of VDR genotype on
intestinal vitamin D receptor levels, intestinal calcium absorption, and measures
of bone turnover. Novel candidate genetic markers will no doubt continue to be
investigated in the quest to understand the genetic underpinnings of osteoporo-
sis. Despite the unsettled state of affairs concerning the usefulness of particular
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genetic markers as demonstrated in association studies, the search to identify
individual genetic markers of low bone density and osteoporosis risk is impor-
tant and will surely continue. However, it is clear that additional approaches
beyond association studies need to be pursued with renewed vigor. Additional
approaches to detect linkage of genes to low bone density and osteoporosis
risk can be employed, such as sib-pair analysis, which assesses whether pairs
of affected relatives share an allele more frequently than could be expected by
chance alone. Sib-pair analysis in large cohorts has the potential to identify
those areas of the genome that harbor genes that predispose to complex traits,
such as osteopenia and osteoporosis (24). In the final analysis, a combination
of several approaches will probably be needed to identify the important genetic
influences, and their environmental modifiers, that increase an individual’s risk
of developing osteoporosis. The ongoing research efforts to map the human
genome herald exciting opportunities for research on diet-gene interactions in
the future. Moreover, the likely possibility that dietary or pharmacological
manipulation can influence the phenotypic expression of some genetic propen-
sities offers continued hope for improving the health of future populations and
can serve as an antidote to fatalistic attitudes of genetic predeterminism.
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