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REVIEW

The future is bright: Biofortification of common foods can improve vitamin
D status

Holly R. Neilla , Chris I. R. Gilla , Emma J. McDonaldb, W. Colin McRobertsc, and L. Kirsty Pourshahidia

aNutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, UK; bDevenish
Nutrition Ltd., Lagan House, Belfast, UK; cAgri-Food and Biosciences Institute, Headquarters, Belfast, UK

ABSTRACT
Vitamin D deficiency is a global concern, linked to suboptimal musculoskeletal health and immune
function, with status inadequacies owing to variations in UV dependent cutaneous synthesis and
limited natural dietary sources. Endogenous biofortification, alongside traditional fortification and
supplement usage is urgently needed to address this deficit. Evidence reviewed in the current art-
icle clearly demonstrates that feed modification and UV radiation, either independently or used in
combination, effectively increases vitamin D content of primary produce or ingredients, albeit in
the limited range of food vehicles tested to date (beef/pork/chicken/eggs/fish/bread/mushrooms).
Fewer human trials have confirmed that consumption of these biofortified foods can increase cir-
culating 25-hydroxyvitamin D [25(OH)D] concentrations (n¼ 10), which is of particular importance
to avoid vitamin D status declining to nadir during wintertime. Meat is an unexplored yet plaus-
ible food vehicle for vitamin D biofortification, owing, at least in part, to its ubiquitous consump-
tion pattern. Consumption of PUFA-enriched meat in human trials demonstrates efficacy (n¼ 4),
lighting the way for exploration of vitamin D-biofortified meats to enhance consumer vitamin D
status. Response to vitamin D-biofortified foods varies by food matrix, with vitamin D3-enriched
animal-based foods observing the greatest effect in maintaining or elevating 25(OH)D concentra-
tions. Generally, the efficacy of biofortification appears to vary dependent upon vitamer selected
for animal feed supplementation (vitamin D2 or D3, or 25(OH)D), baseline participant status and
the bioaccessibility from the food matrix. Further research in the form of robust human clinical tri-
als are required to explore the contribution of biofortified foods to vitamin D status.

KEYWORDS
25-hydroxyvitamin D
(25(OH)D); feed
supplementation; UV
radiation; fortification; RCT;
bioavailability; meat

Introduction

Biofortification, also referred to as ‘bio-addition’ or ‘bio-
enrichment’, differs from exogenous or post-production for-
tification as the nutritional composition of a chosen food is
naturally altered through a change in agronomic practices
(Bouis and Saltzman 2017). In the case of animal produc-
tion, for example, biofortification of primary produce can be
achieved by altering the feed component or housing envir-
onment as part of animal husbandry. Alternative horticul-
tural strategies and/or technologies have also been used in
mushroom production, for example, to increase their nutri-
tional value. Such strategies have successfully enhanced
nutrient content of iron, vitamin A, zinc, selenium and vita-
min D in a range of foodstuffs (for reviews, see Bouis and
Saltzman 2017; Cardwell et al. 2018; Guo, Lovegrove, and
Givens 2018; Jha and Warkentin 2020; Malagoli et al. 2015).
The current review focuses on the different vitamin D bio-
fortified foods researched to-date, the efficacy of these foods
in human intervention trials and subsequently presents an

argument for considering meat as a biofortification vehicle
to improve population vitamin D status.

Vitamin D deficiency is a global public health priority
issue as many populations fail to meet the recommended
nutrient intake (RNI) and particularly during wintertime, at
higher latitudes, vitamin D endogenous synthesis is at its
nadir. However, estimates of the year-round prevalence of
sub-optimal vitamin D status vary from 13% (increasing to
18% in winter) to 40% across Europe depending on whether
deficiency is defined in accordance with the US Institute of
Medicine (2011) as a 25-hydroxyvitamin D (25(OH)D) con-
centration in blood <30 nmol/l (12 ng/ml) or <50 nmol/l
(20 ng/ml) as recommended by the Endocrine Society
(Cashman et al. 2016a; Holick et al. 2011). These discrepan-
cies are often owed to differences in the primary endpoint
health outcome being considered (i.e. skeletal or non-skeletal
benefits) as well as the lack of diversity in study populations
which values were based upon (for reviews, see Bouillon et
al. 2013; Holick et al. 2012; Pilz et al. 2019). Specifically in
the UK, consumption rates are much lower than the recom-
mended 10 mg/day (Scientific Advisory Committee on
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Nutrition (SACN) 2016) even when accounting for the con-
tribution of supplements (approx. 3-4mg/day) (Public Health
England 2018). Hence, additional food-based strategies are
required to bridge the gap between recommended vitamin D
intakes and current 25(OH)D concentrations (Buttriss and
Lanham-New 2020; Cashman 2020a; Cashman 2020b).

As animals synthesize vitamin D following natural or
artificial ultraviolet-B (UVB) exposure and meat is a popular
food in UK diets (Cocking et al. 2020; Public Health
England 2018), this may be a feasible vitamin D biofortifica-
tion vehicle to increase population vitamin D status. In
recent years, there has been a decline in consumption levels
of red and processed meats in UK populations (74 ± 57 g to
62 ± 51 g/day) (Public Health England 2018) owing to health
and global sustainability concerns (Aune et al. 2013;
Bouvard et al. 2015; World Cancer Research Fund 2018).
Despite meat being a major contributor to vitamin D dietary
intakes (Public Health England 2018), it is often under-val-
ued and not widely recognized as a source of vitamin D
(McNeill and Van Elswyk 2012). Accordingly, there is an
opportunity to further enhance its nutritional profile
through biofortification to ensure meat continues to remain
one of the significant contributors to total vitamin D intakes
despite lower quantities of meat being consumed. Moreover,
it is not simply the concentration of vitamin D within the
food source, but also the effects of food processing and the
bioaccessibility from the food matrix which will impact
upon bioavailability post-consumption which must be con-
sidered for biofortified sources. To date, numerous human
studies have already demonstrated the bioavailability of vita-
min D and subsequent status enhancement using the trad-
itional exogenous, or post-production fortification routes
(Black et al. 2012; Itkonen, Erkkola, et al. 2018; Pilz et al.
2018). However, the evidence surrounding the efficacy of
endogenous vitamin D biofortification is less clear.

Therefore, the aims of the present review were to 1) sum-
marize current evidence showing efficacy of vitamin D bio-
fortification; 2) evaluate the efficacy of consumption of
endogenously biofortified vitamin D-enriched products; 3)
identify the feasibility of meat as a vehicle for endogenous
nutrient biofortification.

Vitamin D biofortification in foodstuffs

Vertebrates as well as fungi and yeast are capable of synthe-
sizing vitamin D3 and vitamin D2, respectively following
exposure to UVB radiation (wavelength 290-315 nm) (J€apelt
and Jakobsen 2013; Wacker and Holick 2013). In humans
and animals, 7-dehydrocholesterol (provitamin D3) in the
epidermis of skin is converted to pre-vitamin D3 before
undergoing thermal isomerization to cholecalciferol and
then two hydroxylation steps in the liver and kidneys to
produce 25-hydroxyvitamin D3 (25(OH)D3) and the final
active metabolite, 1,25-dihydroxyvitamin D3 (1,25(OH)D3),
respectively. A detailed overview of vitamin D pathology has
been documented in detail elsewhere (Bikle 2014; Christakos
et al. 2016). Considering this in-built endogenous synthesis,
one effective method to enhance the vitamin D

concentration of foodstuffs is to expose the animal or plant
to UV radiation, either naturally or artificially.

Recent reviews have explored the impact of feed supple-
mentation on vitamin D concentrations found in various
animal-based foods (for reviews, see Barnkob, Argyraki, and
Jakobsen 2020; Duffy et al. 2018a; Guo, Lovegrove, and
Givens 2018), whilst others have extensively investigated
how UV exposure impacts the vitamin D content of fresh
mushrooms (for reviews, see Cardwell et al. 2018; Friedman
2016; Kohn 2016; Taofiq et al. 2017). These are collated and
summarized alongside eighteen additional studies which are
described and fully referenced in Table 1. UV exposure
resulted in elevated vitamin D2 concentrations in baker’s
yeast and mushrooms, with differences observed between
UVA, UVB and UVC. Of those that specified UV wave-
length, UVB was the most popular type of irradiation, fol-
lowed by UVC and then UVA (75%, 31% and 25% of
studies, respectively). Some recorded use of more than one
UV form. Artificial irradiation was favored with 81% studies
using lamps compared to 11% relying on natural exposure
and the remainder investigating both forms. It is important,
therefore, to be cognizant of variability regarding intensity,
wavelength, narrowband and broadband lamps, the spectrum
of broadband, and the duration of UV exposure which limits
comparability of data. Supplementing animal feed with vita-
min D3 increased vitamin D3 concentrations in tissue, blood
and meat of beef cattle, pigs and fish, as well as in egg yolk
and cow’s milk. In view of this data, it can be concluded that
biofortification through feed supplementation or UV radi-
ation is effective at enhancing vitamin D content in a variety
of foods, especially animal-based products.

Vitamin D biofortification in human trials

Despite many studies highlighting the feasibility of enhancing
the vitamin D content of various foods, and particularly meat
sources using biofortification methodologies, remarkably few
randomized controlled trials (RCTs) to-date have investigated
their efficacy in elevating concentrations of circulating serum
25(OH)D in human participants. Following a systematic
approach (see Supplemental Material for search strategy), ten
studies were identified that investigate how participants vita-
min D status has been influenced following consumption of
foods exposed to biofortification practices, namely enriched
eggs (Hayes et al. 2016), bread baked with UV-treated yeast
(Itkonen et al. 2016), fish (Graff et al. 2016) and mushrooms
(Keegan et al. 2013; Mehrotra et al. 2014; Nieman et al. 2013;
Shanely et al. 2014; Stephensen et al. 2012; Stepien et al. 2013;
Urbain et al. 2011). Table 2 describes results from these vita-
min D biofortification human RCTs. Notably, to-date mush-
rooms represent the most popular vehicle for biofortification
studies and have been comprehensively reviewed by others
(Cardwell et al. 2018; Cashman et al. 2016b; Kamweru and
Tindibale 2016; Kohn 2016; Taofiq et al. 2017) so while not
the focus of this review, they have been included in Table 2
for completeness.

Consumption of vitamin D3 enriched eggs and fish had a
positive impact on endpoint total 25(OH)D concentrations,
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compared to control groups (Graff et al. 2016; Hayes et al.
2016). Vitamin D3 and 25(OH)D3-enriched eggs maintained
wintertime total serum 25(OH)D concentrations at around
50 nmol/l (a non-significant change from baseline, P> 0.05)
whereas, the group receiving placebo eggs observed the
expected 25(OH)D seasonal decline (mean ± SD; 41.2 ± 14.1
to 34.8 ± 11.4 nmol/l, P¼ 0.001). There was no significant
difference between endpoint 25(OH)D concentrations in
vitamin D3 and 25(OH)D3-enriched egg groups, however
both groups were significantly higher in endpoint 25(OH)D
from control (P� 0.005). In the study by Graff et al. (2016),
participants offered fish with the highest vitamin D3 content
observed a significant treatment effect in serum 25(OH)D
concentrations from baseline to endpoint (median (IQR);
74.2 (32.5) to 84.0 (15.6) nmol/l, P< 0.001). This differs to
the 25(OH)D maintenance reported by Hayes et al. (2016)
with enriched eggs; however, the weekly vitamin D3 dose
from enriched fish was much greater than the highest vita-
min D3 egg group (114 vs. 7.28 mg). Contrasting with trad-
itional vitamin D2 fortification in bread which has shown
positive outcomes (Mocanu and Vieth 2013; Natri et al.
2006; Nikooyeh et al. 2016), consuming bread baked with
UV-treated yeast had no impact on participant total
25(OH)D concentrations compared to baseline or compared
to control (placebo) bread (Itkonen et al. 2016). As the vita-
min D2 supplement group in the same study observed an
increase in endpoint total 25(OH)D concentration
(þ9.6 nmol/l; þ14.7%), even with relatively equivalent dos-
age to vitamin D2-enriched bread (24.4mg D2/supplement;
26.3 mg D2/bread portion), it has been proposed this may in
part be caused by the baking process or digestibility of the
yeast preventing liberation of vitamin D2. Lastly, response to
vitamin D2-enriched mushrooms varied. All studies observed
increasing 25(OH)D2 concentrations, suggesting enriched
mushrooms do not have to overcome the same vitamin D2

entrapment limitation reported within UV-treated yeast;
however only two studies (Nieman et al. 2013; Urbain et al.
2011) were deemed successful in elevating total 25(OH)D
concentrations post-consumption of biofortified mushrooms
compared to control. In all studies, little to no difference
was observed in circulating parathyroid hormone (PTH) or
calcium concentrations in any of the bio-enriched food
intervention groups over time.

Taken together, these findings indicate that biofortifica-
tion, particularly vitamin D3-enrichment in animal-based
foods, may be a viable concept to offer consumer protection
against the expected decline in vitamin D status to nadir
during winter. The complexity of vitamin D human inter-
vention studies, however, must be acknowledged, both in
terms of study design, and in drawing comparisons between
trials. Such research is often conducted during the winter
months to avoid confounding by sun exposure, and thus a
significant seasonal decline in the control group is often
observed which is at variance to that typically expected in a
micronutrient trial. Interpretation therefore can be compli-
cated by differing hypotheses, in particular whether the
desired outcome is to maintain or increase 25(OH)D con-
centrations within the intervention groups. Moreover, many

other reasons may exist for the observed heterogeneity of
results in the present review however, arguably, the main
factors include efficacy differences between vitamin D2 and
D3, as well as different vitamin D responses between paren-
tal vitamin D3 and its metabolite, 25(OH)D3, the effect of
participants baseline status and the impact of the food
matrix in which vitamin D is encompassed.

Relative effectiveness of parent forms, vitamin D2

and D3

Both vitamin D parental forms, vitamin D2 (ergocalciferol)
and vitamin D3 (cholecalciferol) have been enriched in bio-
fortification studies for mushroom/bread and animal-based
foods, respectively. Within the present review, eight RCTs
included at least one vitamin D2 study arm (Itkonen et al.
2016; Keegan et al. 2013; Mehrotra et al. 2014; Nieman et al.
2013; Shanely et al. 2014; Stephensen et al. 2012; Stepien et
al. 2013; Urbain et al. 2011) and six studies included vitamin
D3 (Graff et al. 2016; Hayes et al. 2016; Itkonen et al. 2016;
Keegan et al. 2013; Mehrotra et al. 2014; Stepien et al.
2013), albeit only two studies increased vitamin D3 by bio-
fortification (Graff et al. 2016; Hayes et al. 2016) whilst the
remaining included supplemental vitamin D3 as a compari-
son to a biofortified product. Participants serum responses
differ depending on the specific vitamer which was either
enhanced in the food item or provided in supplement form
as seen in Table 2. Prohormones vitamin D2 and D3 differ
only by side chain structure, with the former containing an
extra double bond. Much research has questioned if both
are equipotent and interchangeable, however accumulating
evidence suggests otherwise (Armas, Hollis, and Heaney
2004; Binkley et al. 2011; Glendenning et al. 2009; Heaney
et al. 2011; Jakobsen et al. 2017; Leventis and Kiely 2009;
Logan et al. 2013; Melhem, Aiedeh, and Hadidi 2015;
Oliveri et al. 2015; Wetmore et al. 2016) and has been
reviewed elsewhere (Tripkovic et al. 2012; Wilson et al.
2017). From the current review, where comparative vitamin
D2 vs. D3 intervention groups exist, mainly within a supple-
ment matrix, vitamin D3 has always resulted in higher total
serum 25(OH)D concentrations at endpoint (n¼ 4 studies)
(Itkonen et al. 2016; Keegan et al. 2013; Mehrotra et al.
2014; Stepien et al. 2013).

Specifically, it has been postulated that a competitive situ-
ation may exist between the two metabolites. Vitamin D2 is
reported to escalate at the apparent expense of vitamin D3,
meaning as dietary vitamin D2 intake and serum 25(OH)D2

increases, a concomitant decrease is observed in vitamin D3

and its vitamers, thus affecting the overall total vitamin D
pool (Hammami et al. 2019; Martineau et al. 2019). The
suggested mechanisms have been presented elsewhere
(Armas, Hollis, and Heaney 2004; Hammami et al. 2019;
Houghton and Vieth 2006; Jones et al. 2014; Shieh et al.
2016). This may, in part, offer an explanation for the lack of
change or lower total 25(OH)D concentrations post-inter-
vention compared to baseline in a number of the biofortifi-
cation studies, which have been enriched with vitamin D2
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(Mehrotra et al. 2014; Nieman et al. 2013; Stephensen et al.
2012; Stepien et al. 2013).

In general, participants assigned to vitamin D2-enriched
groups observed significant increases in circulating
25(OH)D2 compared to baseline (range þ45.0 to þ5.0 nmol/
l) but either a decrease (range �16.5 to �20.6 nmol/l) or no
significant change was observed in circulating 25(OH)D3

(Itkonen et al. 2016; Keegan et al. 2013; Mehrotra et al.
2014; Nieman et al. 2013; Shanely et al. 2014; Stephensen et
al. 2012; Stepien et al. 2013). The impact of vitamin D2 bio-
fortified foods, however, on total 25(OH)D concentration
compared to baseline varies. There was either no change or
a decrease in circulating total 25(OH)D concentrations in
five studies (Itkonen et al. 2016; Mehrotra et al. 2014;
Nieman et al. 2013; Stephensen et al. 2012; Stepien et al.
2013), whilst three mushroom studies observed a significant
increase in 25(OH)D concentrations compared to baseline
(Keegan et al. 2013; Shanely et al. 2014; Urbain et al. 2011).
Vitamin D biofortified bread baked with UV-treated yeast
was not effective in elevating vitamin D status in human
participants (Itkonen et al. 2016). Whilst serum 25(OH)D2

observed a mean change of þ6.4 nmol/l, total 25(OH)D and
25(OH)D3 concentrations remained unchanged amongst the
vitamin D2-enriched bread group. These findings, therefore,
potentially confirm the assertion from previous studies that
vitamin D2 is less potent (Heaney et al. 2011; Wilson et al.
2017), with an inverse relationship existing between vitamin
D2 and D3 (Cashman et al. 2016b). Human studies investi-
gating biofortified animal products (eggs and fish) and thus,
enrich with vitamin D3 rather than vitamin D2, only
reported on total 25(OH)D. As such, comments regarding
the specific impact of its consumption on 25(OH)D3 and
25(OH)D2 are limited. However, based on supplemental
data, a similar inverse relationship would be assumed.

Despite extensive research investigating supplemental
vitamin D2 vs D3 (for reviews, see Bouillon, Verlinden, and
Verstuyf 2016; Tripkovic et al. 2012; Wilson et al. 2017),
research directly comparing the effect of vitamin D2 and D3

from biofortified foods on 25(OH)D concentrations is lack-
ing. Unlike supplementation trials, however, where the form
of vitamin D can be controlled, the selected biofortification
food vehicle will naturally determine whether vitamin D2 or
D3 is predominantly increased. As such, differing food
matrices will limit direct comparisons between vitamin D2

and D3 from biofortified sources.
Whilst some uncertainty remains as to the impact of dos-

ing-schedule, sex, age, ethnicity and genetic variation
(Hammami and Yusuf 2017; Nimitphong et al. 2013) on
vitamin D2 and D3 potency, the consensus to date, predom-
inantly from supplemental studies may provide validation to
vitamin D3 being the more common vitamer when fortifying
or biofortifying food. Nonetheless, the value of vitamin D2

biofortified products should not be overlooked, especially
amongst those who follow a vegan or vegetarian diet as well
as consumers with cultural considerations who rely on plant
sources or consciously limit their intake of animal products
and/or sun exposure, and to whom the vitamin D3 metabol-
ite will most likely be lacking.

Relative effectiveness of parent form, vitamin D3 and its
metabolite, 25(OH)D3

When supplementing animal feed for biofortification, either
parental vitamin D or its hydroxylated form (25(OH)D)
may be selected to increase the vitamin D content within
the end food product. This demands careful consideration
when implementing biofortification practices, as evidence
suggests that these vitamers affect vitamin D status differ-
ently. Within the present review, only one study compared
vitamin D3 and 25(OH)D3 biofortification. In Hayes et al.
(2016), both vitamin D enhanced eggs resulted in higher
post-intervention participant serum 25(OH)D concentrations
compared to control, with a similar response noted between
groups (vitamin D3 eggs vs 25(OH)D3 eggs). Nevertheless,
regarding acute pharmacokinetics, 25(OH)D3 would be
expected to reach its peak significantly earlier, around
11 hours compared to 22 hours for equivalent vitamin D3,
depending on the dosage (Guo et al. 2017; Jetter et al.
2014). This may be owed to polar 25(OH)D3 having higher
solubility than parental vitamin D3 (Cesareo et al. 2019;
Cianferotti et al. 2015). Consumption of 25(OH)D3 negates
the hepatic metabolism of vitamin D3 within the liver, and
thus may be advantageous for those with impaired liver
function (Guo, Lovegrove, and Givens 2019; Sosa Henr�ıquez
and G�omez de Tejada Romero 2020). Furthermore,
25(OH)D is less dependent on bile acids and micelle forma-
tion for absorption (Maislos, Silver, and Fainaru 1981;
Maislos and Shany 1987). This accumulated evidence has
stimulated debate on the exact potency of 25(OH)D in com-
parison to vitamin D, with ranges from 1 to 9 proposed,
depending on dermal synthesis, host-related characteristics
such as baseline status or genotype, dose, intervention dur-
ation and study design (for reviews, see Cashman et al.
2017; Guo, Lovegrove, and Givens 2018; Jakobsen, Melse-
Boonstra, et al. 2019; Quesada-Gomez and Bouillon 2018).
As no international consensus exists, national food compos-
ition tables vary in the factor used to quantify total vitamin
D activity [vitamin D3 þ (25-OH-D3 � n)]. Some food
databases, including the United Kingdom, Denmark and
Switzerland apply a factor of five, whilst others use a factor
of one or do not account for concentration of 25(OH)D,
such as the Netherlands, Canada and the United States
(Federal Department of Home Affairs 2019; Health Canada
2015; National Food Institute 2019; NEVO online version
6.0 2019; Public Health England 2019; U.S. Department of
Agriculture (USDA), Agricultural Research Service 2019).

Commercial perspective of vitamin D biofortification

From an industry perspective, there may be additional con-
cerns when deciding whether to enrich with vitamin D or
25(OH)D as The European Food Safety Authority (EFSA)
currently only recognizes and regulates the presence of vita-
min D3 and D2 (cholecalciferol and ergocalciferol, respect-
ively) within a product when establishing a health claim
(EFSA Panel on Dietetic Products and Nutrition and
Allergies (NDA) 2010), and not total vitamin D activity
(including 25(OH)D content within the product). Further
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well-designed long-term RCTs are required to cement this
concept and generate legislative change. Albeit convincing
data exists to suggest intake of 25(OH)D is of greater advan-
tage owing to a more rapid increase in vitamin D status
(Bischoff-Ferrari et al. 2012), increased potency (Barger-Lux
et al. 1998; Cashman et al. 2012; Jetter et al. 2014; Navarro-
Valverde et al. 2016; Shieh et al. 2017; Vaes et al. 2018),
higher intestinal absorption efficacy (Davies, Mawer, and
Krawitt 1980; Sitrin and Bengoa 1987) and less fluctuations
in serum 25(OH)D compared to vitamin D3 after intermit-
tent intake (Quesada-Gomez and Bouillon 2018; Russo et al.
2011). Considering animal-based products, EFSA has
approved and informed the quantity of vitamin D and
25(OH)D permitted in feed of all animal species, of which
Hayes et al. (2016) adhered to and thus reflected commercial
application (European Food Safety Authority 2009;
European Food Safety Authority 2017). From a business per-
spective, selecting to supplement animal feed with vitamin
D3 could result in an end-product meeting the quantitative
requirement for a front-of-pack vitamin D health claim.
This marketing may increase the likelihood of a consumer
purchasing a biofortified product, compared to a similar
25(OH)D3 enriched food without such advertising, and thus
regulations may also dictate the vitamer most suitable for
biofortification.

Impact of baseline status on serum response

When investigating the efficacy of vitamin D biofortified
foods, a participant’s baseline status may elucidate varying
levels of intervention response (for reviews, see Jakobsen,
Melse-Boonstra, et al. 2019; Mazahery and von Hurst 2015;
Quesada-Gomez and Bouillon 2018). Although some
research suggests the baseline status has little to no effect,
recent large-scale randomized control trials have confirmed
different serum 25(OH)D responses between deficient and
sufficient participants, cementing the general consensus that
those with lower baseline vitamin D status would be
expected to observe a greater effect on health outcomes than
individual’s with higher baseline status (Borel, Caillaud, and
Cano 2015; Manson et al. 2019; Pittas et al. 2019; Scragg
2019). Participants consuming enriched bread baked with
UV-treated yeast had relatively high mean baseline vitamin
D concentrations (64.6 ± 15.1 nmol/l) which reflects the sta-
tus of the Finnish population but may underrepresent the
effectiveness of UV-treated yeast (Itkonen et al. 2016). As
the study was carried out in Finland, where the majority of
liquid milk products (1 mg vitamin D/100g) and fat spreads
(20 mg vitamin D/100g) are fortified based on voluntary rec-
ommendations (National Nutrition Council 2010), this will
naturally have repercussions on the vitamin D status of the
selected study population. Interestingly, participants assigned
enriched salmon also had high total 25(OH)D baselines sta-
tus (median (IQR); 75.4 (30.5) nmol/l) yet significant
changes in serum 25(OH)D were still observed (Graff et al.
2016). This elevated status will likely be owed to the popu-
larity of cod liver oil supplements in Norway (Brustad,
Braaten, and Lund 2004; Brustad et al. 2003), alongside

modest voluntary fortification of some types of low-fat milk
(0.4 mg vitamin D/100g), margarine and butter (10 mg vita-
min D/100g) (Itkonen et al. 2020), resulting in higher vita-
min D concentrations compared to other European regions
(Hilger et al. 2014). From mushroom studies, when baseline
status was higher, increases in vitamin D2 also observed
similar decreases in vitamin D3, whereas when baseline con-
centrations were lower, vitamin D2 increases were accompa-
nied with more modest reductions in vitamin D3 and
resulted in significant response on serum 25(OH)D
(Cashman et al. 2016b). As noted previously, the complexity
in directly comparing vitamin D RCTs with different
hypotheses is also relevant here. Modest or no increase in
participant vitamin D concentrations may not necessarily
reflect an unviable biofortification vehicle, rather that the
participant’s baseline status may be at such a level, a signifi-
cant change is not observed. In light of this, widespread
vitamin D biofortification of staple foods may be of particu-
lar benefit to populations with sub-optimal status who
would observe a greater response comparatively to those
with sufficient vitamin D status prior to the inclusion of
biofortified products within their diet.

Bioaccessibility and bioavailability of vitamin D from
food matrix

Understanding the bioaccessibility and bioavailability of
nutrients is paramount to recognizing its availability for
physiological activity. Often these terms are wrongly used
interchangeably. Bioaccessibility refers to the release of bio-
active compounds from its encapsulating matrix in the
gastrointestinal tract allowing for absorption, whilst bioavail-
ability determines the rate of absorption efficiency and avail-
ability of metabolic utilization for physiological functions or
storage (Benito and Miller 1998; Fairweather-Tait 1993;
Fern�andez-Garc�ıa, Carvajal-L�erida, and P�erez-G�alvez 2009;
Godber 1990; Hedr�en, Mulokozi, and Svanberg 2002;
Jackson 1997; Saura-Calixto, Serrano, and Go~ni 2007). Thus,
considering the food vehicle is an important factor when
assessing the effectiveness of biofortified foods.

Biofortification studies vary in how vitamin D enriched
sources are provided to participants, either as a mushroom
extract within a capsule (Keegan et al. 2013; Shanely et al.
2014), within a meal as was the case for five mushroom
studies (Mehrotra et al. 2014; Nieman et al. 2013;
Stephensen et al. 2012; Stepien et al. 2013; Urbain et al.
2011), or left to the discretion of the participant to decide
how to consume as part of the habitual diet as instructed
for studies investigating biofortified fish, eggs and bread
baked with UV-treated yeast (Graff et al. 2016; Hayes et al.
2016; Itkonen et al. 2016).

Vitamin D-enriched yeast has also been used in animal
and in vitro studies, but with equivocal results (Hohman et
al. 2011; Itkonen et al. 2016; Itkonen, Pajula, et al. 2018;
Lipkie, Ferruzzi, and Weaver 2016). In vitro research shows
6-7% vitamin D bioaccessibility of yeast-fortified breads,
with no difference between whole wheat and white wheat
bread (Lipkie, Ferruzzi, and Weaver 2016). This contrasts
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starkly with 71-85% vitamin D bioaccessibility from bovine
milks and infant formula. In vitro and rat in vivo digestion
suggests yeast vitamin D2 fortified bread has �4x and �2x
lower bioaccessibility than bread fortified with crystalline
vitamin D2, respectively (Hohman et al. 2011; Lipkie,
Ferruzzi, and Weaver 2016). Such evidence suggests that
vitamin D2 is not fully released as simulation of oral, gastric
and small intestine digestions resulted in unchanged yeast
cells (Lipkie, Ferruzzi, and Weaver 2016). The same research
group postulated that harsher lyophilization, autolysis or
purification may enhance digestive release of vitamin D2

from yeast.
Both studies providing capsules of UV-exposed mush-

rooms observed significant increases in vitamin D status
(Keegan et al. 2013; Shanely et al. 2014). It could be
hypothesized that the single, dried food component was
advantageous to meal settings as it negated the more com-
plex digestion and release required from food matrices. The
array of additional nutritional components in food meal set-
tings, together with the multiplicity of interactions, warrants
bioaccessibility implications, as unlike supplemental isolated
vitamin D forms, it must be released from the incorporated
food matrix in the human gastrointestinal tract (Aguilera
2019). Being a fat-soluble vitamin, dietary fat content may
be of particular interest to vitamin D and the food matrix
context. Some evidence to date suggests that neither the
amount of fat consumed alongside vitamin D, nor the food
matrix, have any impact on the bioavailability of fortified
food and supplemental forms of vitamin D and are extrane-
ous to total vitamin D activity (for reviews, see Borel,
Caillaud, and Cano 2015; Jakobsen, Melse-Boonstra, et al.
2019). However, in healthy older adults, ingesting a vitamin
D3 supplement alongside a low-fat meal resulted in
increased absorption compared to a high-fat meal or no
meal (Dawson-Hughes et al. 2013). In addition, a prospect-
ive cohort study observed improved absorption when a vita-
min D supplement was consumed with the largest meal of
the day (Mulligan and Licata 2010). Fatty acids, vitamins A,
E and K, and dietary fibers may require specific consider-
ation as they have previously demonstrated an affect on vita-
min D absorption efficiency (Maurya and Aggarwal 2017),
however it is doubtful these would have influenced the cur-
rent biofortification studies. The heterogeneity of vitamin D
biofortification vehicles proves difficult to confirm the exact
influence of the matrix on bioaccessibilty and bioavailability,
and is an area which demands future research to confirm
the optimal food group. If pursuing biofortification, indus-
tries must be conscious of not simply the nutrient of interest
but the use of a matrix which ensures physiological rele-
vance to the consumer.

In essence, with the exception of mushrooms, research
regarding the efficacy of biofortified foods to increase serum
25(OH)D concentrations in humans is in its infancy but
some encouraging results have been observed (see Table 2).
Additional RCTs in other foods/food groups are required to
add to the body of evidence in support of vitamin D biofor-
tification efficacy and allow a greater understanding of the

long-term implications for both healthy and disease-state
populations.

Meat as biofortification vehicle

Enriching food vehicles via biofortification, namely eggs,
fish and mushrooms, with vitamin D can result in a positive
response on participant status. Poultry and red meat, natur-
ally a source of protein, B-vitamins, zinc and iron
(Marangoni et al. 2015; Williams 2007), could be another
plausible vehicle for vitamin D biofortification. It is evident
that UV exposure and feed supplementation can improve
the vitamin D content in animals, however it is critical to
understand its implication on human participants 25(OH)D
concentrations. We conducted a systematic review which
identified four human intervention trials investigating
enriched meat via feed alterations. All of the eligible studies
increased PUFA concentrations in meat (see Supplementary
Table 1). To the best of the authors’ knowledge, no studies
have investigated the impact of biofortified meat on human
participant vitamin D status, however evidence exists on the
efficacy of this food vehicle choice from PUFA models.

Encouragingly, the majority of meat biofortification stud-
ies showed that the increased presence of PUFA within the
meat matrix effectively improved fatty acid status in human
participants (Coates et al. 2008; Haug et al. 2012; McAfee et
al. 2011), with the exception of one study which only
reported a decrease in total cholesterol and no concurrent
change in circulating fatty acids (Sandstr€om et al. 2000).
Direct comparison proves limited owing to different fatty
acid sources targeted across the studies and substantial vari-
ation in the quantified markers (see Supplementary Table
2). Overall, consuming enriched meat increased participants’
fatty acid profiles, albeit the specific fatty acids which did so
differed across studies.

Biofortification aligns with the need to optimize the
nutritional quality of meat products, especially within the
broader context of health and environmental advice to limit
red and processed meat consumption (Godfray et al. 2010;
Scientific Advisory Committee on Nutrition (SACN) 2010;
Springmann et al. 2018; Willett et al. 2019).

Impact of meat product on human participant response

The form of meat offered to participants may have impacted
upon their fatty acid response. Higher PUFA concentration
was apparent in homogenous products, such as mince and
sausage meat than that in unprocessed cuts of meat
(182 ± 29 vs. 89 ± 5mg/100 g), most probably owing to the
inclusion of multiple meat cuts from a larger range of ani-
mals processed with added higher fat (Haug et al. 2012;
McAfee et al. 2011; Sioutis et al. 2008). This suggests that
food processing impacts upon PUFA concentrations in meat
offered to participants. In addition, inter- and intra-variation
may be prevalent amongst meat, depending on the quantity
of supplemented feed consumed by the respective animal.
Naturally this would then impact the nutritional content of
meat which could have repercussions on human status if the
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enriched meat product offered to participants does not
include a combination of animal samples. Furthermore,
these findings may hint toward a substantial limitation in
human feeding studies, whereby processed products offer an
arguably more homogenized study design, yet may not be
reflective of normal, or indeed, recommended consumption
patterns. One example meal plan provided participants with
three sausage-based eating occasions per day (Sandstr€om et
al. 2000) and another successfully increased PUFA concen-
trations but required participants to consume supra-physio-
logical quantities (1000 g pork/week) (Coates et al. 2008),
neither of which are reflective of typical ‘real-life’ intakes
and would contradict current health advice in its transla-
tional application. Both studies, however, do highlight proof
of concept, given the popularity of pork consumption glo-
bally (OECD 2020) and stimulate thought that biofortifica-
tion could enhance n-3 concentration, or other nutrients,
albeit within smaller portion sizes. Considering long-term
public health implications, small changes across multiple
products may be more realistic.

Vitamin D biofortification in meat

Increasing the vitamin D biofortification portfolio has been
suggested by many as a viable way to address poor status
globally (Cashman 2020b; Guo, Lovegrove, and Givens 2019;
Guo et al. 2017; Hayes and Cashman 2017; Saternus, Vogt,
and Reichrath 2019). The positive results from n-3 PUFA-
enriched meat arguably justifies the plausibility of vitamin D
biofortification of meat as a vehicle to safely elevate
25(OH)D status in participants. Although, a paucity of data
exists on the effect of consuming vitamin D-enriched meat,
on-farm evidence has clearly demonstrated that supplement-
ing feed and/or exposing animals to UV light significantly
increases vitamin D concentrations in meat (see Table 1).
For example, Duffy et al. (2017a) observed a 145% increase
in total vitamin D activity in the Longissimus thoracis of
beef heifers offered the EU limit of enriched vitamin D3

feed (4000 IU/kg) compared to those receiving no vitamin
D3. In another example, considering UV exposure, an 18-
fold difference was observed in lean meat vitamin D3 con-
centration between control pork and the highest UV-
exposed pork meat (0.2 ± 0.03 vs 3.7 ± 1.0 ng/g) (Barnkob et
al. 2019). While meat naturally contains both vitamin D3

and 25(OH)D3, the quantities of each and the vitamin
D3:25(OH)D3 ratio likely vary by species as well as by part
of animal (e.g. muscle and offal) and season (Cashman et al.
2020). Consequently, such inherent variability coupled with
downstream effects of food processing, have implications for
the success of any biofortification strategy. Offsetting this,
biofortification merits greater consumer acceptability as it
could be perceived as a more natural option (Kotta et al.
2015). Animals for example, naturally synthesize vitamin D
endogenously and are capable of self-regulation owing to
the negative feedback system involving PTH secretion and
1,25-dihydroxyvitamin D (1,25(OH)2D) (Bikle 2009; Nussey
and Whitehead 2001). Consequently, reducing the risk of
vitamin D toxicity within the animal and ensuring a

maximum plateau concentration, thus limiting the risk of
consumers over-dosing from a portion of biofortified meat,
which may be a cause of concern when using vitamin D
supplements (Galior, Grebe, and Singh 2018).

Owing to the popularity of meat in many Western coun-
tries, particularly in the UK (108 ± 68 g/day) (Cocking et al.
2020; Public Health England 2018), a beneficial and realistic
dose could theoretically be ingested. Nevertheless, it is
important to acknowledge the recent shift toward lower
meat intakes owing to environmental and public health con-
cerns. If the trend toward lower consumption rates contin-
ues, it may appear questionable to use meat as a vitamin D
biofortification vehicle. However, whilst striving to reduce
potentially detrimental effects of excessive meat consump-
tion, it is important that the health-benefiting nutritional
composition of meat are still preserved; thus, ensuring vita-
min D levels can be maintained even with fewer eating
occasions or smaller portions of meat. Furthermore, those
with lower incomes are less likely to access sustainable
healthy diets (Drewnowski et al. 2020), consume red and
processed meats more often (Clonan, Roberts, and
Holdsworth 2016) and are at greater risk of low vitamin D
status (Lin et al. 2021). A range of vitamin D biofortified
meat products may therefore provide a more meaningful
contribution to lower socioeconomic status consumers.
Whilst vitamin D biofortification alone will not solve the
vitamin D crisis, it may offer an additional, feasible, poten-
tially cost-effective strategy to contribute toward its eradica-
tion in certain subgroups.

Determining the long-term efficacy of including realistic
portion sizes of vitamin D biofortified meat in diets to
reduce rates of hypovitaminosis D and maintain optimal
25(OH)D concentrations year-long, will necessitate valid-
ation by high-quality RCTs. Moreover, dietary modeling
facilitates the opportunity to explore at a population level,
the impact on vitamin D status if such bio-enriched meats
were widely available and consumed.

Future research

Evidence regarding the effectiveness of consuming bioforti-
fied products is clearly lacking, and challenges exist in repli-
cating habitual consumption patterns or imitating expected
home preparations in a robust scientific study design.
However, biofortification warrants undeniable potential to
complement public health policies to improve population
nutritional status. Additional factors requiring attention to
ensure the successful implementation of biofortification
include assessing consumer acceptability, shelf-life, stability
of vitamin D-enriched food over time and manufacturing
costs (Buttriss and Lanham-New 2020). Demonstration of
bioaccessibility and status impact from vitamin D bioforti-
fied meat via feed supplementation and/or UV exposure
awaits conclusive outcomes from RCTs. Moreover, further
research should also consider the role of free 25(OH)D as
an additional marker of vitamin D bioactivity (Shieh et al.
2016). In vitro research may be considered to screen poten-
tial vitamin D meat biofortification approaches prior to
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human interventions. As discussed, future research demands
careful consideration toward the selected form of vitamin D,
participants baseline status and the food matrix to allow
robust application of beneficiary outcomes.

Conclusion

Biofortification can be a simple, noninvasive, convenient
way in which to increase nutritional intake amongst partici-
pants and may offer preventative health benefits in the lon-
ger-term. Vitamin D3-enriched animal products, specifically
eggs and fish, are effective in elevating or maintaining
wintertime human vitamin D status, compared to enriched-
mushrooms and bread baked with UV-treated yeast which
produced heterogenous outcomes. Biofortified meat is an
unexploited area in human research which, based on results
from vitamin D on-farm work and PUFA-enriched meat
RCTs, may offer an exciting opportunity. Nevertheless, the
greatest benefit from consuming either vitamin D3 or D2

biofortified foods will be observed amongst those with lower
baseline status. In combination with traditional fortification
processing, biofortification and supplement usage may help
to reduce the prevalence of vitamin D deficiency.
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