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Transcriptomics identifies blunted 
immunomodulatory effects 
of vitamin D in people with multiple 
sclerosis
Wei Z. Yeh 1,2*, Rodney Lea 3,4, Jim Stankovich 1, Sandeep Sampangi 1,2, Louise Laverick 5, 
Anneke Van der Walt 1,2, Vilija Jokubaitis 1,2, Melissa Gresle 1,2,5,6 & Helmut Butzkueven 1,2,6*

Vitamin D deficiency is a risk factor for developing multiple sclerosis (MS). However, the immune 
effects of vitamin D in people with MS are not well understood. We analyzed transcriptomic datasets 
generated by RNA sequencing of immune cell subsets (CD4+, CD8+ T cells, B cells, monocytes) from 
33 healthy controls and 33 untreated MS cases. We utilized a traditional bioinformatic pipeline and 
weighted gene co-expression network analysis (WGCNA) to determine genes and pathways correlated 
with endogenous vitamin D. In controls, CD4+ and CD8+ T cells had 1079 and 1188 genes, respectively, 
whose expressions were correlated with plasma 25-hydroxyvitamin D level (P < 0.05). Functional 
enrichment analysis identified association with TNF-alpha and MAPK signaling. In CD4+ T cells of 
controls, vitamin D level was associated with expression levels of several genes proximal to multiple 
sclerosis risk loci (P = 0.01). Genes differentially associated with endogenous vitamin D by case–control 
status were enriched in TNF-alpha signaling via NF-κB. WGCNA suggested a blunted response to 
vitamin D in cases relative to controls. Collectively, our findings provide further evidence for the 
immune effects of vitamin D, and demonstrate a differential immune response to vitamin D in cases 
relative to controls, highlighting a possible mechanism contributing to MS pathophysiology.

Vitamin D is a secosteroid hormone initially recognized for its important role in skeletal health. The main 
sources of vitamin D are ultraviolet B-induced synthesis in the skin, dietary intake or supplementation. Vitamin 
D is hydroxylated to 25-hydroxy-vitamin D (25(OH)D), and then again to 1,25-dihydroxyvitamin D which is 
its active form and also known as calcitriol. In target cells, calcitriol binds to the vitamin D receptor (VDR) and 
heterodimerizes with retinoid X receptor (RXR). This complex then binds to vitamin D response elements of the 
genome to regulate gene expression1. It is now recognized that multiple extraskeletal cell types express VDR and 
enzymes required to activate vitamin D. These include both innate and adaptive immune cells2–4. In vitro studies 
of immune cells cultured with calcitriol, albeit at supraphysiologic concentrations, have shown an enhancement 
of pathogen clearance in the innate arm and an immunoregulatory effect in the adaptive arm of the immune 
system5–7. The few human in vivo vitamin D supplementation studies that have examined peripheral immune cell 
responses showed reductions in proinflammatory IL-17-producing T cell numbers, and increase in regulatory 
T (Treg) cells, in support of an anti-inflammatory effect8,9.

Vitamin D deficiency is implicated in the development of a number of autoimmune diseases, including mul-
tiple sclerosis (MS)10. However, the specific mechanisms that lead to elevated MS disease risk are not well under-
stood. Lymphocytes isolated from patients with MS develop a tolerogenic phenotype in response to calcitriol in 
culture11,12. However, several studies suggest differences in response when compared to cultured immune cells 
from healthy controls. These findings include a greater reduction in IL-17 secretion by activated T cells of healthy 
controls compared to MS cases11, and an increase in CD25 expression on CD46-stimulated T cells from healthy 
controls but not in those from MS cases12. Further, randomized-controlled trials of vitamin D supplementation 
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in people with MS have not shown conclusive benefit on disease activity13. Although, intriguingly, the largest 
such study showed a significant reduction in MS lesions detected by magnetic resonance imaging among those 
assigned to vitamin D as add-on to MS immunomodulatory treatment of interferon-beta-1a14. Whilst vitamin D 
plausibly has therapeutic potential in diseases such as MS, its role in MS pathophysiology remains incompletely 
understood. Differences in vitamin D response between those with and without MS, and within different immune 
cell subsets, also remain open to further investigation.

We therefore investigated the immunobiology of vitamin D in MS cases and in non-MS controls through 
analysis of transcriptomic datasets generated by RNA sequencing from purified immune cell subsets. We first 
identified genes whose expressions correlated with endogenous 25(OH)D levels in healthy controls and explored 
functional significance of these regulated genes using both traditional bioinformatic pipelines and weighted gene 
co-expression network analysis (WGCNA). We next investigated whether genes are differentially regulated in 
association with endogenous vitamin D levels in people with MS compared to healthy controls, to provide insight 
into the mechanisms by which low vitamin D status may confer MS risk (Fig. 1).

Results
We included 33 healthy participants and 33 participants with relapsing–remitting MS in this study. Included 
participants had both plasma and immune cell subset RNA collected at the same time. This allowed assessment 
of contemporaneous plasma 25(OH)D levels, and gene expression (Table 1). MS cases had not yet commenced on 
immunomodulatory treatment at the time of sample collection. Disability as measured on the ordinal Expanded 
Disability Status Scale (EDSS; range 0–10) of MS cases was mild (< 3) in most participants. Median 25(OH)D 
level was 70 nmol/L in the healthy control group and 90 nmol/L in the MS case group. Vitamin D deficiency at 
plasma 25(OH)D level < 30 nmol/L was present in one control participant and three MS cases.

Figure 1.   Overview of study design and analyses. We included 33 healthy controls and 33 participants 
with untreated multiple sclerosis. We collected blood by peripheral venepuncture and isolated immune cell 
subsets. RNA was isolated and sent for RNA sequencing. Transcriptomic analyses were performed within each 
cell type. (A) We first investigated in healthy controls for genes whose expression is correlated with plasma 
25-hydroxyvitamin D (25(OH)D) level. (B) Next, we determined genes with differential association with 
endogenous vitamin D level between cases and controls. (C) We also utilized weighted gene co-expression 
network analysis (WGCNA) to identify modules of interconnected genes which are correlated with 25(OH)D in 
controls and cases. Figure created with BioRender.com.
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Genes and pathways modulated by vitamin D in healthy controls
We first performed correlation analysis between immune cell subset specific gene expression profiles and plasma 
25(OH)D levels in non-MS controls. We then plotted P-value histograms of gene expression correlation sig-
nificance levels with 25(OH)D levels. These histograms had a clear right-skewed distribution of P-values for 
CD4+ and CD8+ T cells, consistent with many gene transcripts correlated with endogenous vitamin D in healthy 
individuals (Supplementary Fig. 1).

For CD4+ T cells, 1079 genes had expressions correlated with 25(OH)D level (unadjusted P < 0.05), of which 
521 and 558 genes were positively and negatively correlated, respectively (Fig. 2A; Supplementary Table 1 includes 
results for significantly correlated genes of each cell type). No genes reached the threshold for statistical signifi-
cance based on FDR < 0.05. To identify biological pathways modulated by vitamin D, we performed gene set 
enrichment analysis (GSEA). This analysis combines the signals from multiple genes to determine regulated 
pathways15 (Supplementary Table 2). In the KEGG Pathway database, we identified downregulation (as inferred 
from negative enrichment scores) of several immune-related pathways (Fig. 2B). These included signaling path-
ways involved in inflammation such as TNF-alpha and NF-κB signaling, autoimmune disease and infection 
pathways, and mitogen-activated protein kinase (MAPK) signaling pathways. The Hallmark gene set “TNF-alpha 
signaling via NF-κB” was enriched by genes negatively correlated with vitamin D (FDR < 0.0001). We found 52 
significantly enriched Gene Ontology Biological Process terms which clustered into several key biological themes 
(Fig. 2C). Processes involved in chromosome separation and telomere maintenance were upregulated, whereas 
immune processes and p38 MAPK cascade were downregulated. Overall, these functional enrichment results 
strongly support an anti-inflammatory effect by vitamin D on CD4+ T cells.

In CD8+ T cells, we identified 1188 genes correlated with 25(OH)D level, 438 and 750 of which were positively 
and negatively correlated, respectively (Fig. 3A). Functional enrichment analysis (Supplementary Table 3) using 
the KEGG database identified positive enrichment in the ribosome pathway, and negative enrichment of remain-
ing pathways involved in responses to infections and cellular signaling including NF-κB and MAPK signaling 
(Fig. 3B). The Hallmark “TNF-alpha signaling via NF-κB” gene set was negatively enriched (FDR = 0.001), con-
cordant with the CD4+ T cell dataset. Enriched Gene Ontology terms revealed upregulation of chromosomal, cell 
cycling and telomere processes, and downregulation of immune responses and cytokine production (Fig. 3C). 
Similar to what we found in CD4+ T cells, these results support an immunoregulatory action of vitamin D on 
CD8+ T cells.

We further identified 858 and 731 genes whose expressions were significantly correlated with 25(OH)D lev-
els in monocyte and B cells, respectively (P < 0.05; Supplementary Fig. 2). For monocytes, GSEA demonstrated 
negative enrichment of the Hallmark gene set “TNF-alpha signaling via NF-κB”, which was also enriched in 
CD4+ and CD8+ T cells, and positive enrichment of gene sets associated with RNA metabolism. There were no 
significantly enriched pathways identified in B cells.

Regulation of MS risk genes by vitamin D
To determine if vitamin D might regulate the expression of MS susceptibility genes in immune cells, we tested 
for enrichment of MS risk genes, prioritized from susceptibility variants identified by a recent genome wide 
association study16. The vitamin D-correlated gene lists derived from our non-MS control transcriptomic datasets 
showed significant over-representation of MS risk gene expression in CD4+ T cells (P = 0.01) but not in other 
immune cell subsets. In CD4+ T cells, 44 genes were both MS susceptibility genes and regulated in association 
with vitamin D level. Of these, 25 genes (56.8%) were negatively correlated with 25(OH)D level (Fig. 4A). We 
conducted over-representation analysis of these 44 genes to delineate their functional significance. There were 
33 Gene Ontology Biological Process terms significantly enriched (FDR < 0.05), with involvement in functions 
of immune cell differentiation, negative enrichment of inflammatory and defense responses, MAPK cascade 
and miRNA transcription (Fig. 4B). Three further terms were enriched, including TNF-alpha signaling. These 
findings support regulation of several MS susceptibility genes by vitamin D in CD4+ T cells, and modulation 
of T cell function and TNF-alpha signaling as potential mechanisms by which vitamin D influences MS risk.

Table 1.   Participant characteristics. 25(OH)D 25-hydroxyvitamin D, EDSS Expanded Disability Status Scale.

Healthy controls (n = 33) Multiple sclerosis cases (n = 33)

Age, years, median (IQR) 32.4 (26.2–38.3) 38.1 (28.5–45.5)

Sex, n (%)

 Female 22 (66.7) 22 (66.7)

 Male 11 (33.3) 11 (33.3)

25(OH)D level, nmol/L, median (IQR) 70 (61–86) 90 (58.0–106)

Time from first symptoms, years, median (IQR) – 3.29 (0.76–8.75)

EDSS score, median (IQR) – 1.5 (1–2)

Transcriptomic datasets included, n (%)

 CD4 33 (100) 29 (87.9)

 CD8 33 (100) 27 (81.8)

 B cell 30 (90.9) 26 (78.8)

 Monocyte 29 (87.9) 29 (87.9)
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Differences in response to vitamin D between healthy controls and MS cases
We next investigated potential differential vitamin D-gene expression correlation between people with and 
without MS. We determined gene expression correlations with 25(OH)D level in MS cases and plotted P-value 
histograms for the results of each cell type (Supplementary Fig. 1). When compared to that of healthy controls, 
histogram distributions for the MS cohort were relatively flatter for CD4+ and CD8+ T cells.

We next identified genes with differential association with plasma 25(OH)D level between cases and controls 
and assessed if gene expression-25(OH)D level could predict MS case status (P < 0.05). We finally performed 
functional enrichment analysis on the resultant gene lists. We focused on the results of our functional enrichment 
analysis as this combines signals from multiple genes and therefore increased our ability to detect differential 
responses to vitamin D between MS cases and controls at the pathways level. We identified 912, 2029, 984 and 
1144 genes from CD4+, CD8+, monocyte and B cell samples, respectively (P-value histograms in Supplementary 
Fig. 3; Supplementary Table 4 includes tabled results of differentially correlated genes by cell type). Functional 
analyses again revealed significant enrichment of TNF-alpha signaling in all cell types (Fig. 5; Supplementary 

Figure 2.   Genes and pathways correlated with vitamin D status in CD4+ T cells from healthy controls. (A) 
Mirror Manhattan plot of gene-vitamin D correlation analysis. Each dot represents a gene, x-axis represents 
gene location in the genome, y-axis represents weighted effect statistic (Weff) defined as − log10P-value * (log2 
change in expression per 1 nmol/L change in 25(OH)D level). Red dots represent genes positively correlated 
with vitamin D level with P < 0.05, and blue dots represent genes negatively correlated and P < 0.05. (B) Gene 
set enrichment analysis (GSEA) using the KEGG Pathway database, shows negative enrichment of pathways 
involved in immune and cellular signaling pathways (FDR < 0.05). Gene ratio in GSEA is the ratio of core genes 
annotated in a term. (C) Enrichment map of GSEA results of Gene Ontology Biological Process terms. Each 
node represents an enriched gene set (FDR < 0.05), thickness of lines between node represent degree of overlap 
in genes between sets, and node color represents Normalized Enrichment Score (NES).
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Table 5 contains results of significantly enriched gene sets for each cell type). Many of these genes were negatively 
correlated with increasing 25(OH)D level in healthy controls, whereas this relationship was not seen in MS cases 
or for several genes was inverted. A number of other gene sets were enriched in CD8+ T cells. These included 
gene sets involved in RNA metabolism, protein localization, mitochondrial organization and gene expression, 
oxidative phosphorylation, and viral responses. Collectively, these findings strongly suggest that the association 
of gene expression and Vitamin D level in MS cases and controls is different.

Vitamin D‑regulated pathways identified through gene co‑expression network analysis
Multiple gene co-expression patterns were tested using WGCNA, which is a method that utilizes gene correlation 
networks to identify modules of highly interconnected genes17. These modules can then be summarized by their 
respective module eigengenes (defined as the first principal component of each module’s expression matrix) and 
correlated with phenotypic data, with modules of interest interrogated further through functional enrichment 

Figure 3.   Genes and pathways correlated with vitamin D status in CD8+ T cells from healthy controls. (A) 
Mirror Manhattan plot of gene-vitamin D correlation analysis. Each dot represents a gene, x-axis represents 
gene location in the genome, y-axis represents weighted effect statistic (Weff) defined as − log10P-value * (log2 
change in expression per 1 nmol/L change in 25(OH)D level). Red dots represent genes positively correlated 
with vitamin D level with P < 0.05, and blue dots represent genes negatively correlated and P < 0.05. (B) Gene 
set enrichment analysis (GSEA) using the KEGG Pathway database, shows negative enrichment of pathways 
involved in immune signaling and infectious disease pathways, and positive enrichment of the ribosome 
pathway (FDR < 0.05). Gene ratio in GSEA is the ratio of core genes annotated in a term. (C) Enrichment 
map of GSEA results of Gene Ontology Biological Process terms. Each node represents an enriched gene set 
(FDR < 0.05), thickness of lines between node represent degree of overlap in genes between sets, and node color 
represents Normalized Enrichment Score (NES).
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Figure 4.   Vitamin D-modulated genes in CD4+ T cells from healthy controls which are multiple sclerosis 
susceptibility genes. (A) Plot of the 44 multiple sclerosis susceptibility genes whose expressions are significantly 
correlated with 25(OH)D level (P < 0.05). X-axis represents the weighted effect statistic (Weff) defined as 
− log10P-value * (log2 change in expression per 1 nmol/L change in 25(OH)D level). (B) Functional enrichment 
analysis of these genes shows involvement in immune cell differentiation, TNF-alpha signaling and miRNA 
transcriptional functions. X-axis represents the number of genes of interest present in the annotated term.
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Figure 5.   Heatmap of genes differentially correlated with endogenous vitamin D level between multiple 
sclerosis (MS) case and healthy control (HC) and leading to enrichment for TNF signaling. All genes which 
contributed to enrichment of Hallmark “TNF-alpha signaling via NF-κB” for any cell type were included in 
rows. Columns represent immune cell subsets, split by group (HC or MS). Tile color represents weighted effect 
statistic (Weff = − log10P-value * (log2 change in expression per 1 nmol/L change in 25(OH)D level). * Represents 
P < 0.05 for correlation between gene expression and 25(OH)D level. Grey tiles indicate genes not expressed in 
respective cell types.
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analysis. Two networks can be compared through detection of modules common to both (in our study, healthy 
controls and MS cases), referred to as consensus modules18. We employed WGCNA, which summarizes our 
high-dimensional transcriptomic data to several modules before correlation with 25(OH)D level, to complement 
our traditional single-gene bioinformatic approach (which identified correlations for each gene) and to further 
investigate differences in vitamin D response between healthy controls and MS cases.

For CD4+ T cells, 27 consensus modules were detected (excluding the grey module to which non-clustered 
genes are assigned), five of which showed significant correlation with 25(OH)D levels in healthy controls (green 
yellow, light yellow, blue, tan, salmon) and none in MS cases (Fig. 6A). Genes in the “green yellow” module were 
enriched for RNA metabolic pathways, TNF-alpha signaling and IL2-STAT5 signaling (enrichment results for 
significant modules in Supplementary Table 6). The “light yellow” module was enriched for interleukin and 
cytokine signaling pathways such as TNF-alpha, IL-10 and IL-17, regulation of T helper (Th) cell differentia-
tion, and vitamin D metabolism and response (including Gene Ontology Biological Process term “response 
to vitamin D”, FDR = 0.004; “Vitamin D in inflammatory diseases” pathway, FDR = 0.01) (Fig. 6B). The “blue” 
module showed enrichment for gene transcription and expression processes. We found no gene sets significantly 
enriched for the “tan” or “salmon” modules.

For CD8+ T cells, 25(OH)D level was significantly correlated with module eigengenes of 2/20 consensus 
modules for healthy controls (tan, blue) and one for MS cases (purple) (Supplementary Fig. 4). Interleukin-10 
and cytokine signaling and regulation of T cell differentiation and activation were enriched for the “tan” module, 
and RNA metabolism and translation were enriched for the “blue” module (enrichment results in Supplementary 
Table 7). For the “purple” module, there was enrichment for leukocyte differentiation and activation, regulation of 
TNF and interleukin production, toll-like receptor signaling, other cellular signaling pathways including NF-κB 
and MAPK, and the vitamin D receptor pathway.

There were two significant modules for B cells, namely “light green” in healthy controls and “orange” in MS 
cases (Supplementary Fig. 5). Functional enrichment analysis identified TNF-alpha signaling as enriched in the 
“light green” module. No gene sets were enriched in the “orange” module. There were no modules associated 
with vitamin D level for monocytes (Supplementary Fig. 6).

In summary, results of WGCNA identify immune and metabolic processes as modulated by vitamin D, par-
ticularly in CD4+ and CD8+ T cells, and a greater number of modules associated with vitamin D levels in healthy 
controls than MS cases. These support a differential and reduced response in those with MS.

Figure 6.   Vitamin D-regulated pathways in CD4+ T cells determined through weighted gene co-expression 
network analysis. (A) Consensus modules of healthy control (HC) and multiple sclerosis (MS) groups. For each 
module, the number represents the correlation coefficient between their respective module eigengene (ME) 
and plasma 25(OH)D level, and the number in brackets represents the P-value. (B) Functional enrichment 
results for the “light yellow” module, with the top 30 enriched Hallmark gene sets and pathways shown. X-axis 
represents the number of genes of interest present in the annotated term, and bar color represents the false 
discovery rate (FDR).
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Expression of vitamin D metabolism and receptor genes by case status
We investigated whether our observed differences in vitamin D responsiveness between cases and controls could 
be due to differential expression of genes involved in vitamin D metabolism and response. However, our analysis 
did not identify any evidence of differential expression of vitamin D metabolism or response genes between MS 
cases and non-MS controls (Supplementary Table 8).

Discussion
We successfully identified pathways associated with plasma 25(OH)D level in immune cell subsets (Fig. 7). Our 
study of healthy controls indicates that genes associated with immune processes, RNA metabolism and cellular 
signaling pathways are correlated with 25(OH)D in CD4+ and CD8+ T cells. Vitamin D-responsive genes in CD4+ 
T cells were enriched for MS risk gene loci. TNF-alpha signaling was differentially regulated between those with 
and without MS. Consensus analysis using WGCNA identified fewer vitamin D-associated modules in MS than 
non-MS controls, in support of a potential reduced response to vitamin D in cases.

We identified TNF-alpha signaling pathways as associated with plasma vitamin D level across multiple 
immune cell types and, intriguingly, demonstrated differential association with vitamin D between those with 
and without MS. Some TNF-alpha pathway-associated genes are in known MS risk loci, and, interestingly, several 
were associated with vitamin D in CD4+ T cells from non-MS controls. TNF-alpha is a cytokine with a wide 
spectrum of functions, including both pro-inflammatory and immunoregulatory roles via its receptors TNFR1 
and TNFR2, respectively. It can be produced by innate and adaptive immune cells, as well as non-immune cell 
types such as glial cells19–22. The role of TNF-alpha in MS is complex. Elevated TNF-alpha levels detected either 
peripherally or in cerebrospinal fluid of people with MS are associated with disease activity23–25. However, the 
use of TNF inhibitors to treat MS instead led to disease aggravation26. The non-selective inhibition of both 

Figure 7.   Summary of functional enrichment analyses results for vitamin D-correlated genes. (A) Significantly 
enriched pathways and processes within each immune cell type showed overlap across CD4+ and CD8+ T cells, 
including immune activation and differentiation and telomere maintenance. RNA metabolism and processing 
gene sets were enriched in T cells and monocytes, while TNF-alpha signaling was enriched across all four 
immune cell types. (B) Heatmap of enrichment for TNF-alpha signaling and production processes/pathways 
for each cell type (rows). Each column represents our primary analyses: gene correlation with plasma 25(OH)
D in non-multiple sclerosis control samples (column 1), genes differentially correlated with 25(OH)D between 
cases and controls (column 2), and weighted gene co-expression network analysis (WGCNA) (column 3). Black 
represents significant enrichment (FDR < 0.05), while beige indicates absence of enrichment. Figure created with 
BioRender.com.
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TNFR1 and TNFR2 signaling could explain this, as TNFR2 promotes anti-inflammatory Treg function as well 
as remyelination, whereas TNFR1 signaling is thought to be more pro-inflammatory27.

Our transcriptomic analyses support a role for vitamin D in the regulation of TNF-alpha signaling, includ-
ing downstream pathways (NF-κB and MAPK), and a likely role in MS pathogenesis mediated via CD4+ T 
cells. Prior evidence has shown that addition of vitamin D reduces TNF-alpha production in immune cells 
in vitro28,29. Furthermore, serum TNF-alpha levels are known to be negatively correlated with serum 25(OH)D 
in healthy women30. Based on our results and those of previous studies, it is likely that vitamin D regulates both 
downstream signaling of TNF-alpha and TNF-alpha levels to promote an anti-inflammatory phenotype. One 
other possibility, in the context of MS, is that vitamin D may skew TNF-alpha signaling through TNFR2 rather 
than TNFR1. A study of smooth muscle cells showed that vitamin D could induce shedding of TNFR1, but not 
TNFR2, from the cell surface and therefore reduce signaling via TNFR131. However, it is not known if this also 
occurs in immune cells and is an area open to future study. Overall, our results suggest that dysregulated TNF-
alpha signaling either in the setting of vitamin D deficiency or vitamin D hyporesponsiveness, could be important 
for determining MS pathogenesis. This could also be a mechanism by which vitamin D might promote immune 
tolerance and prevent autoimmunity.

Vitamin D deficiency has been epidemiologically linked with elevated risk of autoimmune diseases including 
MS, rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus and inflammatory skin 
diseases10,32–35. However, the pathophysiology of these diseases and links to vitamin D deficiency are not under-
stood. In a recent randomized placebo-controlled trial of vitamin D supplementation in adults over 50 years, 
investigators found a 22% reduction in risk of incident autoimmune disease over a median 5.3 years follow-up 
in those randomized to vitamin D336. Much of our understanding of the immunobiology of vitamin D has been 
derived from animal and in vitro studies, the latter using cells cultured with calcitriol or analogues at supraphysi-
ological concentrations. In these models, investigators can define functional and transcriptional regulation in 
both innate and adaptive immune cells5,6,37. Importantly, our study adds to this understanding by correlating 
vitamin D levels and gene expression profiles in immune cell subsets from both healthy people and people with 
untreated MS.

Our results support CD4+ and CD8+ T cells as vitamin D-responsive in a physiological setting, with both cel-
lular metabolic and immunomodulatory effects. We identified gene enrichment in cell cycling and chromosomal 
separation pathways, concordant with the recognized role of vitamin D signaling in the priming and prolifera-
tion of naïve T cells38. We also identified enrichment of telomere maintenance processes, supporting previous 
findings that higher vitamin D levels are associated with longer leukocyte telomere length39. Our GSEA results 
also demonstrated downregulation of MAPK signaling, including the p38 MAPK cascade. Interestingly the p38 
MAPK is involved in the alternative T cell receptor signaling pathway and has been shown to upregulate VDR 
expression and vitamin D responsiveness in activated T cells38. Inhibition of p38 MAPK signaling via the T cell 
receptor in CD4+ T cells led to reduced production of IFN-γ and IL-17 and reduced severity of animal autoim-
mune disease models for MS and rheumatoid arthritis40. Several studies have shown that vitamin D can promote 
anti-inflammatory effects via inhibition of p38 MAPK activation41–43. Considered together, these findings inform 
vitamin D’s immune homeostatic role in T cells and also propose possible mechanisms by which vitamin D 
deficiency can contribute to autoimmunity.

Multiple immune signaling pathways were enriched by vitamin D-correlated genes of T cells from healthy 
controls. These included IL-2, IL-10 and IL-17 signaling pathways. In terms of genomic regulation of cytokine 
expression, vitamin D is known to repress IL2 and IL17A transcription through VDR binding at their pro-
moter regions and competition for DNA binding with the transcription factor NFAT44–47. Vitamin D also 
induces Foxp3 in CD4+ T cells to negatively regulate IL-17A production44. Cell culture with calcitriol dem-
onstrated decreased production of IL-2 and IL-177,44,48–50, and increased IL-10 production with promotion of 
Treg differentiation7,49,51,52. Furthermore, a recent study delineated a complement-induced autocrine/paracrine 
vitamin D autoregulatory loop in CD4+ T cells which represses Th1 and Th17 responses and activates a Treg 
program52. Considered together, these pieces of evidence support an important immune homeostatic role for 
vitamin D. Plausibly, dysregulation of this system, for instance in the setting of vitamin D deficiency, could lead 
to inappropriately sustained inflammation and loss of tolerance towards self-antigens.

In our consensus analysis using WGCNA, we detected more vitamin D-correlated modules in non-MS con-
trols than MS cases. This suggests immune cells from people without MS are more vitamin D responsive. Prior 
evidence of a “blunted” vitamin D response in those with MS are smaller changes in serum 25(OH)D level and 
attenuated alterations in plasma metabolites following vitamin D supplementation in those with MS compared to 
those without53,54. Culture with calcitriol of peripheral blood mononuclear cells isolated from MS cases showed 
smaller decreases in TNF-alpha production compared to cells from healthy controls, again suggesting a reduced 
responsiveness of the MS group55. Enzymes involved in vitamin D metabolism are important regulators of vita-
min D levels, and are also MS susceptibility genes, in particular CYP27B1, CYP24A1 and CYP2R116. Here we 
did not assess the genotypes of the study participants at vitamin D-related risk loci. However, nor did we identify 
any differences in the expression of vitamin D metabolism genes by case–control status. Thus, it appears unlikely 
that the observed differences in vitamin D-associated gene expression between MS cases and controls are asso-
ciated with changes in vitamin D metabolism pathways. Other potential explanations for these case vs control 
differences in vitamin D immune gene regulation could include altered isoform proportions of genes involved 
in vitamin D metabolism and response56 and epigenetic differences, both inherited and acquired57. Further work 
is, however, required to confirm and elucidate mechanisms for a differential response to vitamin D in those with, 
and at risk of, MS. A recent study which investigated the effect of high dose vitamin D3 supplementation in par-
ticipants with MS identified changes in immune subset gene expression after 6 months58. Future research of the 
effects of vitamin D3 supplementation on the immune cell transcriptome, particularly among individuals with 
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vitamin D deficiency and comparisons between those with and without MS, will yield additional insights into 
the immunoregulatory effects of vitamin D and how vitamin D response differs in people with and without MS.

Our study of transcriptomic changes by vitamin D using human immune cells has a number of strengths. We 
isolated immune cell subsets which allowed us to determine cell-specific signals, in contrast to studies which uti-
lize whole blood or peripheral blood mononuclear cells. We utilized GSEA for functional analyses of our healthy 
control datasets, which combines signals from multiple genes and increases power to detect relevant pathways. 
We also applied a gene co-expression network approach to complement our generalized linear modelling with 
edgeR. Enrichment for vitamin D-related pathways provided additional validation of our results. There are how-
ever, several limitations. Our cross-sectional design and sample size limit our power, particularly at the single 
gene level in which we did not identify any FDR significant genes correlated with vitamin D level. We therefore 
combined the signals from multiple genes to maximise our power to detect associations with vitamin D level 
through our analytical pipelines which utilize functional enrichment analysis and WGCNA. Due to our limited 
sample size, we were unable to perform subgroup analysis based on 25(OH)D level stratification. Participants 
in this study were originally recruited for a previous genomics study and vitamin D supplementation data was 
not collected. Therefore, we were unable to investigate any specific gene expression changes due to vitamin D 
supplementation. Our correlational approach to gene expression and vitamin D level means we can only infer 
on vitamin D immunoregulation, although our results are supported by in vitro and animal-based studies of 
vitamin D; we are planning human vitamin D supplementation studies which will be better placed to determine 
vitamin D-induced immune effects. We examined peripherally-collected immune cells which are most accessible 
but may not be most relevant in regards to investigating pathophysiologic alterations in MS.

Overall, we analyzed purified human immune cell subset transcriptomes and identified numerous CD4+ and 
CD8+ T cell gene expression profiles as correlated with endogenous vitamin D levels. This extended to immune 
cell pathways of TNF-alpha and MAPK signaling, and chromosome and telomere maintenance processes. Vita-
min D-associated genes in CD4+ T cells were enriched for MS risk genes, which supports the importance of this 
cell type in MS pathogenesis. We detected differential response to vitamin D in TNF-alpha signaling between 
those with and without MS, and supportive evidence for an overall reduced vitamin D responsiveness in people 
with MS. A dysregulated vitamin D response and consequent impaired immunoregulatory effect could, in part, 
explain vitamin D’s role in MS risk and pathogenesis. Future studies of vitamin D supplementation and utiliza-
tion of multiple omics technologies will help further elucidate the in vivo effects of vitamin D in physiologic 
and pathophysiologic contexts, and these insights will likely allow us to delineate strategies to prevent and better 
treat MS and other autoimmune diseases.

Methods
Study population
Participants with relapsing–remitting MS were recruited from Box Hill Hospital and Royal Melbourne Hospital, 
Victoria, Australia, between 2014 to 2016. MS cases were diagnosed by a neurologist and met McDonald’s diag-
nostic criteria59. Cases were not on immunomodulatory treatment at time of blood sampling. Healthy controls 
who did not have any medical history of neurological or autoimmune disease were recruited across the same 
time period. Cases and controls were both of European ethnicity to avoid confounding due to ethnicity and as 
most people with MS in Australia are of European ethnicity.

Ethics approval and consent to participate
The study was conducted according to the Declaration of Helsinki principles and approved by the Human 
Research Ethics Committees of Royal Melbourne Hospital and Box Hill Hospital, Victoria, Australia. Written 
informed consent was obtained from all participants.

Plasma vitamin D level assessment
Blood was collected by peripheral venepuncture, plasma isolated and then frozen at − 80 °C on the same day as 
collection. Plasma samples were sent to Melbourne Pathology and 25(OH)D levels quantified by the LIAISON 
25 OH Vitamin D TOTAL Assay, which assesses both 25(OH)D2 and 25(OH)D3.

Peripheral immune cell collection and isolation
Up to 110 mL of venous blood was collected in EDTA vacutainer tubes (BD). To isolate peripheral blood mono-
nuclear cells (PBMC), up to 70 mL of blood was diluted with PBS at a 1:2 ratio and then gently overlaid over 
15 mL Histopaque-1077 (Sigma-Aldrich) in 50 mL tubes. Tubes were centrifuged at 400g with brakes off for 
30 min at room temperature. The PBMC-enriched layer was collected, washed twice with PBS and cells counted. 
Collected cells were incubated with human CD19 and CD8 microbeads, and then B cells and CD8+ T cells, 
respectively, were positively selected using LS columns as per manufacturer’s instructions (Miltenyi Biotec). The 
negative fraction after CD8+ T cell selection was used to isolate CD4+ T cells using CD4 microbeads (Miltenyi 
Biotec) as per manufacturer’s instructions. For monocyte isolation, up to 40 mL of blood was centrifuged at 400g 
with brakes off for 15 min at room temperature. Buffy coat was collected and incubated with RosetteSep human 
monocyte enrichment cocktail (Stemcell Technologies). This was layered over 5 mL Histopaque in 15 mL tubes 
and centrifuged at 1200g with brakes off. The enriched cell layer was collected, washed, counted and labelled with 
human CD14 microbeads for positive selection by autoMACS Pro separator (Miltenyi Biotec). Purity of isolated 
immune cell subsets were assessed by standard flow cytometry protocols on a Cyan Flow cytometer (Beckman 
Coulter). Samples with purity greater than 90% were included.
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RNA isolation and sequencing
RNA was isolated from immune subsets using the Qiagen RNeasy Mini Kit as per manufacturer’s protocol with 
DNase digestion. RNA yield and quality were assessed by NanoDropND-1000 or the Qiagen QIAxpert System. 
RNA samples were sent to the Australian Genome Research Facility for library preparation and RNA sequencing. 
For B cell and monocyte samples, cDNA libraries were generated with the TruSeq Stranded mRNA kit (Illumina) 
and 100 base pair single end reads produced on the Illumina HiSeq 2500 System, with approximately 40 mil-
lion reads per sample generated. For CD4+ and CD8+ T cell samples, library preparation was with the Illumina 
Stranded mRNA kit and sequencing on the Illumina Novaseq 6000 system to generate approximately 30–40 
million paired end reads per sample of 150 base pair length. Read quality was assessed with FastQC60 and reads 
mapped to the reference transcriptome by Kallisto61.

Gene expression data pre‑processing, normalization and correction of unwanted variation
Downstream processing and analyses were performed in R version 4.1.162. Tximport was used to summarize 
transcript abundances to the gene level, scaled for average transcript length and library size63. Gene-level counts 
were imported by the package edgeR64. Principal components analysis was performed, and Principal Component 
1 and Principal Component 2 were plotted to identify outlier samples which were then excluded. Genes with a 
minimum count of 10 across the number of samples in the smallest group were kept by use of the edgeR function 
“filterByExpr”. Count data were normalized using the trimmed mean of M-values method. We used RUVseq to 
estimate latent variables which represent unwanted technical variation65. The RUVg method was used which 
uses a list of housekeeping genes as negative controls66. This list of housekeeping genes was excluded for MS risk 
genes16 and any genes potentially modulated by vitamin D, as identified by previous in vitro and supplementa-
tion studies67–69, to avoid unwanted adjustment out of our signals of interest. The number of latent variables to 
include was assessed by visualizing adjusted principal component analysis and relative log expression plots70, as 
recommended by authors of RUVseq. Gene annotations were accessed through Ensembl (version 106) through 
the package biomaRt71,72.

Gene expression analysis with plasma vitamin D level
edgeR was used to perform generalized linear modelling with the use of the quasi-likelihood framework73. Genes 
whose expressions were correlated with plasma 25(OH)D level (nmol/L) were determined, and models were 
adjusted for participant age and sex, as well as latent variables if required. We considered genes significant based 
on an unadjusted P < 0.05. As we expected limitations in power to detect correlations with 25(OH)D at the single 
gene level, we used our defined P-value cut-off to facilitate downstream functional enrichment analyses which 
combines the signals from multiple genes to better detect vitamin D associations at the pathway/processes level.

Differential expression analysis of vitamin D metabolism genes
Genes involved in vitamin D metabolism were retrieved from the WikiPathways “Vitamin D metabolism (Homo 
sapiens)” pathway74. edgeR was used to assess for differential expression of these genes between cases and con-
trols, with the model adjusted for age, sex and 25(OH)D level. Significance was defined by P < 0.05.

Over‑representation analysis for MS risk genes
Non-MHC MS candidate risk genes were determined by a recent genome-wide association study16. We assessed 
for enrichment of these risk genes in our lists of vitamin D-correlated genes identified for each immune subset 
of healthy controls through one-sided Fisher’s exact test. A significant enrichment was defined by P < 0.05.

Modelling for genes differentially regulated by vitamin D between cases and controls
We used logistic regression to identify genes whose interaction with plasma 25(OH)D level predicted case–con-
trol status after adjustment for age, sex, gene expression and plasma 25(OH)D level for each immune subset 
(P < 0.05). These genes exhibit differential correlation of their expressions with vitamin D level between MS 
cases and healthy controls.

Weighted gene co‑expression network analysis (WGCNA)
WGCNA is a method which utilizes gene co-expression relationships to construct gene networks17. Modules 
of highly co-expressed genes are identified and summarized by their module eigengene. Module eigengenes 
can then be correlated with traits of interest (vitamin D level in our study) to determine modules of interest, 
following which the genes belonging to these modules can be used to perform functional enrichment analysis 
to determine relevant biological pathways. MS cases and healthy controls were compared by detection of con-
sensus modules18. We used the WGCNA package to perform this analysis by each immune subset, and followed 
Tutorial II for consensus analysis as provided by the package’s authors (https://​horva​th.​genet​ics.​ucla.​edu/​html/​
Coexp​ressi​onNet​work/​Rpack​ages/​WGCNA/​Tutor​ials/, accessed on 20th November 2021)75. Expression data 
adjusted for latent variables, if required, were used as input data. For network construction and consensus 
module detection, we chose the lowest soft threshold power which achieved a scale free topology model fit of 
at least 0.8. Eigengene networks for all cell types showed overall high preservation between controls and cases, 
as represented by high densities of their preservation networks (range 0.85–0.88). Module eigengenes were cor-
related with plasma 25(OH)D level to determine modules significantly correlated with vitamin D (P < 0.05) for 
cases and controls, respectively.

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
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Functional enrichment analysis and visualizations
For functional analysis of our healthy control samples, we employed gene set enrichment analysis (GSEA) 
which uses the ranked full gene list15. Genes were ranked in descending order of weighted effect statistic (Weff), 
defined as − log10(P-value) * (log2 change in expression per 1 nmol/L change in 25(OH)D level). For each gene 
set, GSEA calculates a normalized enrichment score which represents the amount of genes over-represented 
either among positively correlated genes (positive enrichment score) or negatively correlated genes (negative 
score). Significantly enriched gene sets were defined by a false discovery rate (FDR) < 0.05, as controlled by the 
Benjamini–Hochberg method76. Gene sets in the Molecular Signatures Database (Hallmark gene sets, canonical 
pathways and Gene Ontology sets) and KEGG Pathway database were assessed for enrichment, respectively77,78. 
GSEA and result visualization by enrichment map were performed by the package clusterProfiler, with other 
visualizations created by ggplot279,80.

Enrichment analysis by over-representation analysis was performed in the online tool ToppGene using Hall-
mark, Gene Ontology and Pathway gene sets81. Benjamini–Hochberg-adjusted FDR < 0.05 was considered to be 
significant enrichment. Heatmap was generated by the ComplexHeatmap package82.

Data availability
The RNA sequencing datasets generated during and/or analysed during the current study are available in the 
European Genome-Phenome Archive under study EGA ID EGAS00001007254.
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