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Abstract: Vitamin D receptors are expressed in many organs and tissues, which suggests that vitamin
D (VD) affects physiological functions beyond its role in maintaining bone health. Deficiency or
inadequacy of 25(OH)VD is widespread globally. Population studies demonstrate that a positive
association exists between a high incidence of VD deficiency and a high incidence of chronic diseases,
including dementia, diabetes, and heart disease. However, many subjects have difficulty achieving the
required circulating levels of 25(OH)VD even after high-dose VD supplementation, and randomized
controlled clinical trials have reported limited therapeutic success post-VD supplementation. Thus,
there is a discordance between the benefits of VD supplementation and the prevention of chronic
diseases in those with VD deficiency. Why this dissociation exists is currently under debate and
is of significant public interest. This review discusses the downregulation of VD-metabolizing
genes needed to convert consumed VD into 25(OH)VD to enable its metabolic action exhibited by
subjects with metabolic syndrome, obesity, and other chronic diseases. Research findings indicate
a positive correlation between the levels of 25(OH)VD and glutathione (GSH) in both healthy and
diabetic individuals. Cell culture and animal experiments reveal a novel mechanism through which
the status of GSH can positively impact the expression of VD metabolism genes. This review
highlights that for better success, VD deficiency needs to be corrected at multiple levels: (i) VD
supplements and/or VD-rich foods need to be consumed to provide adequate VD, and (ii) the body
needs to be able to upregulate VD-metabolizing genes to convert VD into 25(OH)VD and then to
1,25(OH)2VD to enhance its metabolic action. This review outlines the association between 25(OH)VD
deficiency/inadequacy and decreased GSH levels, highlighting the positive impact of combined
VD+LC supplementation on upregulating GSH, VD-metabolizing genes, and VDR. These effects
have the potential to enhance 25(OH)VD levels and its therapeutic efficacy.

Keywords: 25(OH)VD deficiency; African American; androgenic index; GSH; H2S; inflammation;
L-cysteine; NO; SHBG; vitamin D

1. Introduction

Vitamin D (VD) is an essential nutrient that helps maintain healthy bones [1]. Many
organs and tissues express vitamin D receptors, suggesting that vitamin D affects physi-
ological functions beyond its role in maintaining bone health [1–3] and is crucial for the
regulation of numerous important genes [4]. Vitamin D deficiency affects nearly one billion
individuals globally. In the US, nearly 45% of the population is vitamin D deficient. In
African Americans (AAs), 70% are vitamin D deficient compared with only 25% of the white
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population [5]. Epidemiological research has shown a link between vitamin D deficiency
and a greater incidence of chronic diseases, including heart disease and diabetes [6–8]. The
escalating incidence of 25(OH)vitamin D (25(OH)VD) deficiency/inadequacy has led to
increased awareness and use of vitamin D supplements by the general population and more
prescriptions for vitamin D by physicians [9]. However, randomized controlled clinical tri-
als have reported limited therapeutic success after supplementation with vitamin D [10–13].
Thus, there is a dissociation between the benefits of vitamin D supplementation and the
prevention of chronic diseases in those with vitamin D deficiency. Why this disconnect
exists is currently under debate. Vitamin D deficiency is widespread despite the availability
of vitamin D obtained through sunlight, food, and supplements [1]. This review discusses
how those with metabolic syndrome, obesity, and other chronic diseases exhibit insufficient
glutathione (GSH) levels and downregulation of the vitamin D-metabolizing genes required
to convert consumed vitamin D into 25(OH)VD and enable its metabolic action [10,11].
It has become clear that vitamin D deficiency needs to be corrected at multiple levels:
(i) vitamin D supplements and/or vitamin D-rich foods need to be consumed to provide
adequate vitamin D, (ii) the body needs to be able to upregulate vitamin D-metabolizing
genes to convert vitamin D into 25(OH)VD and then to 1,25(OH)2VD, and (iii) the levels of
inflammatory biomarkers need to be reduced.

2. VD Metabolism Genes and Blood 25(OH)VD Status in Humans

The primary sources of cholecalciferol or vitamin D in humans are dermal synthesis
and diet. The biosynthesis of vitamin D in the human body is stimulated by skin exposure
to ultraviolet B rays from sunlight. Cholecalciferol (VD) is converted to 25(OH)VD by
VD-25-hydroxylase (CYP2R1, CYP27A1) in the liver [14,15]. Then, 25(OH)VD is bound
to VD-binding protein (VDBP) and transported into the circulation. While the liver is
the main site of VDBP synthesis and secretion [16,17], the conversion of 25(OH)VD to its
active metabolite, 1,25(OH)2VD (calcitriol), is carried out by CYP27B1 in both renal and
non-renal tissues [18] (Figure 1). CYP24A1 is responsible for the catabolic inactivation of
25(OH)VD and 1,25(OH)2D, which helps regulate 1,25(OH)2D signaling [19]. Study of the
mutations in VDBP/CYP2R1 genes in humans and Vdbp/Cyp2r1 knockdown mice models
showed low levels of 25(OH)VD [14,20]. The bioavailability of 25(OH)VD in response
to ingesting vitamin D supplementation significantly varies among individuals and is
influenced by the status of the vitamin D-metabolizing genes [16,21–23]. The levels of
1,25(OH)2VD are regulated by the circulating PTH concentrations [24], while the biological
actions of 1,25(OH)2VD depend on the status of the VDR in the target tissues [25]. Here,
1,25(OH)2VD binds to VDR and translocates to the nucleus, regulating target gene tran-
scription. Thus, biosynthesis of 25(OH)VD and 1,25(OH)2VD and downstream actions
of the VDR (VDR/PGC-1α/GLUT4) are under the control of the VD regulatory genes
(Figure 1). The levels of the stable metabolite 25(OH)VD can be measured to diagnose
25(OH)VD deficiencies and monitor the consumption of vitamin D [26]. Upregulation of
vitamin D regulatory genes can beneficially increase 25(OH)VD levels and the metabolic
actions of 1,25(OH)2VD [27,28].

The risk factors for 25(OH)VD deficiencies include race, elevated BMI, winter season
(fewer daylight hours), living in regions with higher latitudes, and consuming diets lacking
in vitamin D [29,30]. According to the National Center for Health Statistics, people with
darker skin are at risk for 25(OH)VD inadequacy (41%) and deficiency (32%) [31]. The
incidence of 25(OH)VD deficiency/inadequacy is increasing due to the rise in metabolic
syndromes such as insulin resistance (IR), obesity, and diabetes. AAs tend to experience
much higher levels of 25(OH)VD deficiency and IR [32,33].
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Figure 1. Vitamin D metabolic pathway.

3. Bioavailable 25(OH)VD Is Linked with Better Health Outcomes

Approximately 85–90% of 25(OH)VD is bound tightly to VDBP [13,34]. Moreover,
25(OH)VD and free 25(OH)VD, which is loosely bound to albumin, are the two distinct
pools of total 25(OH)VD. The free hormone hypothesis proposes that hormones not bound
to carrier proteins with high affinity can freely diffuse across cell membranes to perform
their biological activities [13,34]. Bioavailable 25(OH)VD is the sum of the free and albumin-
bound vitamin D. Various clinical investigations have demonstrated that bioavailable
25(OH)VD serves as a better biomarker for assessing vitamin D levels and a predictor of its
health outcomes compared to total 25(OH)VD [35,36].

4. Impaired Vitamin D-Metabolizing Genes in Obesity/Population

A significant shift in the global work culture, limited outdoor activities and/or exercise,
lack of healthy food consumption, and in some populations, the presence of darker skin [29]
lead to limited consumption of dietary cholecalciferol and limited endogenous production
of cholecalciferol from 7-dehydrocholesterol. Those with obesity and metabolic syndrome
have a higher prevalence of vitamin D deficiency and inflammation. The efficacy of
consumed vitamin D depends on the genes that are required to convert vitamin D to
25(OH)VD metabolite and to 1,25(OH)2VD metabolite. The biological action of consuming
vitamin D depends upon active vitamin D at various cellular levels. Table 1 summarizes
multiple studies carried out in human peripheral blood mononuclear cells. These studies
from different laboratories report a downregulation or depression in the levels of vitamin D-
metabolizing genes in subjects with metabolic syndrome and obesity. Specific mechanisms
proposed for this depressed level of vitamin D-metabolizing genes are hypermethylation
of specific sites of genes and elevated BMI [37,38]. Table 2 summarizes multiple studies
using obese animal models investigating vitamin D-metabolizing gene expression in the
liver and other tissues. These studies report an association between obesity-elevated
inflammatory biomarkers and depressed levels of vitamin D-metabolizing genes. These
genes are required to convert consumed vitamin D into 25(OH)VD to enable its metabolic
action [10,11].
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Table 1. Studies investigating the role of VD metabolism genes in obese humans.

Subject Subjects Sample Size (n) Purpose/Hypothesis Outcome Reference

Obese and lean adults

63
20 obese and 20 lean

women
17 obese adults
6 lean women

VD-metabolizing enzymes
were expressed differently in

AT of lean and obese
individuals and visceral
adipose tissue (VAT) and

subcutaneous adipose tissue
(SAT), and their expression

was influenced by weight loss.

VD-metabolizing enzyme
expression differed within
different ATs. CYP27B1 ↓

in SAT of the obese.
CYP27A1 ↑ after weight

loss.

[39]

Obese Italian men
121

54—non-obese
67—obese

To determine whether the
trafficking of VD is altered in

dysfunctional AT.

Dysfunctional AT shows a
reduced

catecholamine-induced
release of D3 and

25(OH)D3 and altered
activity of

VD-metabolizing enzymes.

[40]

Obese Iranian patients

91
35—non-obese

33—morbidly obese
23—obese

To illustrate the determinants
of VDR gene expression in
visceral and subcutaneous

adipose tissue among
individuals without diabetes.

VDR ↓ in obese subjects
and is negatively

associated with 25(OH)D;
positively associated with

HOMA-IR.

[41]

Obese female patients
and HFD mice

Human—4 women
Mice—23

(M, 11; F, 12)

To explore the relationship
between obesity and CYP2R1

gene expression in human and
mouse tissues.

CYP2R1 expression is
regulated by energy
homeostasis in both
humans and mice.

CYP2R1 ↓.

[10]

Hungarian adults 462
(M, 228; F, 234)

To investigate the relationship
between BMI and genetic

polymorphism of VD
metabolizing genes.

Two SNPs in CYP2R1 and
VDR showed significant

association with BMI.
[38]

Non-diabetic
obese/overweight

Brazilian adolescents

174
(MS, 48; non-MS, 126)

To investigate the associations
of CYP2R1 and VDR variants
with MS and MS components

in non-diabetic Brazilian
adolescents.

SNPs are associated with
increased risks of diabetes

and hypertension in
overweight/obese subjects.

rs12794714 in CYP2R1 is
associated with MS and
could be a possible new

marker for predicting the
risk of MS.

[42]

Obese Saudi women
100

(31 non-obese; 69
obese)

Testing the associations and
the mechanisms involved in
the silencing of the CYP2R1
gene in normal and obese

Saudi female patients.

Hypermethylation of
specific sites in CYP2R1
and CYP27B1 regulates
gene expression and is

linked to obesity and VD
metabolism.

[37]

AT—adipose tissue; HFD—high-fat diet; MS—metabolic syndrome; ↑, upregulation; ↓, downregulation.
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Table 2. Studies investigating the role of VD metabolism genes in obese mice.

Mice/Treatment Sample Size (n) Purpose/Hypothesis Outcome Reference

HFD-induced obese
mice and control mice

28
(14 per group)

To investigate the effects of
HFD-induced obesity on VD

metabolizing enzyme
expression.

HFD-induced obesity
influences VD-metabolizing
enzyme expression, leading
to abnormal regulation of

serum 1,25(OH)2D. Cyp2r1,
Cyp27a1, Cyp2j3 ↓ in liver;

Cyp27b1 ↑, Cyp24 ↓ in kidney.

[43]

HFD VD-deficient mice
and control mice

25
(control, 7;

3 treatment groups,
6 each)

Glutathione stimulates VD
regulatory and

glucose-metabolism genes,
lowers oxidative stress and
inflammation, and increases

25(OH)VD levels.

HFD downregulates VD
metabolism genes, VD+LC

supplementation upregulates
the gene expression and is a
novel and better strategy to

increase VD levels.

[44]

Female HFD and
control mice

14
(5 per group)

To investigate the alternative
mechanism that reduced the

capacity to convert parent VD
to 25(OH)D due to decreased

expression of Cyp2r1.

Cyp2r1 ↓
VD supplementation is less
effective in obese subjects.

[11]

HFD and control mice 20
(10 per group)

Obesity disrupts VD
homeostasis in key organs of

VD metabolism.

Adipose tissue plays a vital
role in the modulation of VD
metabolism during obesity.

Cyp2r1 induction is
associated with low VD
levels in adipose tissue.

[45]

HFD and control mice 19
(control, 10; HFD, 9)

Nutritional
deprivation-responsive

mechanisms regulate VD
metabolism.

Both fasting and diabetes
suppressed hepatic

cytochrome P450 Cyp2r1.
[46]

HFD and control mice 4 per group

GSH deficiency induces
epigenetic alterations of VD
metabolizing genes, thereby

reducing the circulating
25(OH)VD3 levels in obesity.

Cyp2r1 ↓ in the mice liver.
GSH is a potential adjuvant

therapeutic target for
normalizing 25(OH)VD3

status in vulnerable
populations.

[47]

Obese and control mice 80
(20 per group)

To study the correlation of
25(OH)D3, physiological and
pathological changes caused

by obesity, and the motility of
sperm.

Cyp2r1 ↓ reduces the levels
of 25(OH)VD, which

interferes with regulating
reproductive hormones.

[48]

HFD and control mice

56 (6 groups)
Control and HFD with

either LVd, CVd, or
HVd

Low VD status in obesity
decreases the bioavailability of
VD to sequestration in adipose

tissue.

Excess of body adiposity
contributes to lower serum

25(OH)D levels.
[49]

High fat and high
cholesterol diet mice

and control mice

30
(10 per group)

Diet could impair VD
metabolism.

HFD and HCD reduce serum
25(OH)D3 by suppressing

hepatic Cyp2r1 ↓.
[50]

HFD and control mice 20
(10 per group)

To investigate the impact of a
short-term HFD on VD

metabolism.

HFD-induced obesity
decreases 25(OH)D and

modulates gene expression
in VD metabolism.

Cyp2r1, Cyp3a11 ↓ in the liver,
Cyp24a1, and Cyp27b1↑ in the

kidney of obese mice.

[51]

HCD—high-cholesterol diet; HFD—high-fat diet; ↑, upregulation; ↓, downregulation.
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5. Impaired Glutathione and Obesity

Obesity, a prevalent health challenge in the modern era, is a chronic condition that
impacts the physical, financial, and psychological well-being of individuals, regardless
of their cultural, financial, or ethnic context. Obesity arises from multiple factors and is
characterized by an excessive buildup of body fat [52]. Excessive body fat diminishes
quality of life, raises healthcare expenses, and increases the mortality risk. Obesity is linked
to various health issues, such as diabetes, heart problems, cancer, asthma, sleep apnea, liver
and kidney dysfunction, as well as infertility [53].

The pathogenesis of obesity and its associated risk factors have been studied exten-
sively through epidemiological, clinical, and animal research studies, all of which have
consistently highlighted the significant role of oxidative stress in this process [53]. Oxidative
stress has the potential to induce obesity through the accumulation of white adipose tissue
(WAT) and changes in food consumption. Research involving cell cultures and animal
models has shown that oxidative stress can lead to increased preadipocyte proliferation,
enhanced adipocyte differentiation, and enlargement of mature adipocytes [52,54]. Reactive
oxygen species (ROS) regulate body weight by affecting hypothalamic neurons, which
control satiety and hunger [53]. Obesity has the potential to induce systemic oxidative stress
through multiple biochemical pathways. These pathways involve the production of su-
peroxide by NADPH oxidases, oxidative phosphorylation, glyceraldehyde auto-oxidation,
activation of protein kinase C, and the participation of polyol and hexosamine pathways.
Additionally, other factors, such as hyperleptinemia, tissue dysfunction, compromised an-
tioxidant defense, chronic inflammation, and postprandial ROS generation, also contribute
to oxidative stress in individuals with obesity [53].

Oxidative stress has a negative impact on both bone tissue quality and bone
catabolism [55]. Glutathione (GSH) depletion increases oxidative stress and extensive car-
bonylation of proteins [56–58]. Endogenous enzymes and proteins can be covalently modi-
fied through oxidative modification or carbonylation, leading to protein dysfunction, im-
paired cell function, and contributing to the etiology of various human diseases [53,59–62].
Supplementation with GSH or L-cysteine (LC, a GSH precursor) has been effective in
enhancing GSH levels in blood and tissues, reducing inflammation and insulin resistance
in both humans and animals [63–65]. Inadequate levels of GSH can elevate oxidative stress,
resulting in increased inflammatory markers like TNF-α, disruption of enzyme and protein
function, and insulin resistance [10,11,44,66,67]. The association between oxidative stress
and obesity becomes stronger as the BMI increases [68].

GSH plays a crucial role as an antioxidant and acts as a co-factor for numerous enzymes.
The levels of GSH in the bloodstream serve as an indicator of the body’s ability to combat
oxidative stress and maintain its defense mechanisms against it [44,47,69,70]. Exhausted
or impaired antioxidant pathways in obese individuals and mice fed a high-fat diet are
indicated by decreased levels of GSH in the blood and increased oxidative stress. The lower
levels of GSH can be attributed to various factors, such as a lack of LC in the diet, increased
production of ROS and oxidative stress caused by the consumption of an energy-rich diet,
and/or increased utilization of GSH compared to its biosynthesis. It has been observed
that the blood levels of GSH are lower in obese, diabetic, and AA subjects [32,33,44,70–75].
The formation of GSH occurs through the enzymatic action of glutamate-cysteine ligase
(GCL) and glutathione synthetase [58,76]. NRF2 transcription factor is also implicated in
the regulation of the GSH biosynthesis genes (GCLC, GCLM). The MDA assay measures
the reactive aldehydes formed during lipid peroxidation, such as malondialdehyde and
4-hydroxynonenal. The protein carbonyl assay measures protein carbonyl derivatives
formed during the oxidation of specific amino acids in proteins or introduced into proteins
by a secondary reaction of nucleophilic side chains to amino acids, such as LC residues,
with aldehyde products of lipid peroxidation [57]. Protein-bound carbonyls represent an
irreversible form of protein modification and are relatively more stable in contrast to lipid
peroxidation products [77]. Oxidative modification or carbonylation of proteins leads to
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the covalent alteration of endogenous enzymes and proteins, which can cause a loss of
protein function, disrupt metabolism, and impair cellular function [56,78].

Link between GSH and 25(OH)VD

Studies of obesity and diabetes in humans, as well as in experimental animals that
consumed a high-fat diet (HFD), have shown elevated oxidative stress and impaired
GSH status [53,54,59,70]. Blood analyses of similarly aged healthy children, in a group
comprising lean, overweight, and obese subjects, showed significantly lower levels of
25(OH)VD and GSH in obese (BMI > 30) compared with lean (≤25 BMI) or overweight (≤30
and >25 BMI) subjects; in addition, a significant positive relationship was seen between the
blood level of 25(OH)VD and that of GSH. A study carried out in healthy adolescents, with
a much wider age range among the subjects, ruled out the role of confounding variables,
such as diabetes, medications, and age, in the association between GSH and 25(OH)VD.
Previous studies have reported a positive association between the concentrations of GSH
in the blood and 25(OH)VD in adults, children, and diabetic subjects [71,72,74]. The blood
levels of 25(OH)VD are independently associated with GSH and redox status in adults [74].
Studies have demonstrated a connection between the levels of serum vitamin D and the
overall antioxidant capacity in both diabetic adults and obese adolescents [79,80]. The
intake of dietary antioxidants has been found to have a positive impact by elevating the
levels of serum 25(OH)VD [81].

Silencing of glutamate-cysteine ligase (GCLC), a rate-limiting enzyme in GSH biosyn-
thesis, caused an increase in oxidative stress/protein oxidation and downregulation of
the the CYP2R1, CYP27A1, CYP27B1, VDBP, and VDR genes in cultured hepatocytes.
GCLC knockdown (GCLC KD) resulted in simultaneous downregulation of GSH and the
mRNA levels of CYP27A1, CYP27B1, VDBP, and VDR in hepatocytes. GSH deficiency
impairs the expression of vitamin D regulatory genes, but supplementation with VD and
LC can improve the levels of GSH and vitamin D regulatory genes in liver cells [82]. GSH
positively enhances the expression of CYP27B1, leading to the conversion of 25(OH)VD
to 1,25(OH)2VD [44,47]. While the kidney is traditionally known as the primary site for
1,25(OH)2VD production, recent research reveals the presence of CYP27B1 in non-renal cells
and tissues, suggesting localized formation of 1,25(OH)2VD and its tissue-specific paracrine
role across various tissues [7]. Most cells express VDR, and its expression can be modu-
lated by the GSH status [25,69]. The mechanism of the biological actions of 1,25(OH)2VD
involves heterodimeric complex formation between 1,25(OH)2VD and VDR/RXRα [83–85].
The VDR content of target tissues directly influences the biological actions of 1,25(OH)2VD.
Once bound to VDR, 1,25(OH)2VD translocates to the nucleus and controls the transcription
of target genes. Physiological factors such as Ca2+, 25(OH)VD, 1,25(OH)2VD, and VDBP
regulate the expression of VDR [24].

Various studies in humans and animals have successfully used LC, N-acetyl-L-cysteine
(NAC), and/or LC-rich whey protein supplementation to improve the status of GSH and
lower the levels of inflammation and insulin resistance in blood and tissues [63,64,86–90].
Evidence in the literature indicates a strong correlation between increased intake of dairy
products and leafy greens and biomarkers of bone health and levels of 25(OH)VD in the
bloodstream [91]. Milk and leafy vegetables contain high levels of vitamin D, glutathione,
and methionine/LC, which could potentially enhance vitamin D absorption and overall
well-being through their consumption. Improvement of the GSH status using LC supple-
mentation resulted in the upregulation of genes in both hepatocytes and myotubes [69].

Similar to the reduced GSH levels seen in obese adolescents, the GSH concentrations
were also reduced in the blood, liver, and muscle tissues of mice that consumed an HFD
compared with those of mice that consumed a normal diet. Interestingly, the tissues of the
HFD-fed mice showed a significant decrease in the mRNA levels of the GSH-biosynthesis
genes (NRF2, GCLC, and GCLM), VD regulatory genes (CYP2R1, CYP27A1, CYP27B1,
VDBP, and VDR) in the liver, and of GSH-metabolism genes and GLUT4 gene transcription
factors (VDR/PGC-1α) in the skeletal muscle compared to those of mice that consumed a
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normal diet [44,47]. GLUT4 is considered a master regulator of glucose metabolism. LC
enhances the expression of vitamin D regulatory genes and contributes to the activation of
GLUT4. The protein oxidation and lipid peroxidation levels were notably decreased in the
liver and muscle of mice co-supplemented with VD+LC compared to those supplemented
with only vitamin D. An increased GSH status may help mitigate oxidative stress induced
by HFD intake. Combined supplementation with VD+LC caused a significant upregulation
of GSH-synthesizing enzymes, GSH, and vitamin D regulatory genes in both liver and
muscle. There was significant upregulation of PGC-1α, NRF2, and GLUT4 in muscle
from mice supplemented with VD+LC. Co-supplementation of VD+LC in mice resulted in
elevated NRF2, increasing the antioxidant enzymes and improving the cellular glutathione
levels. Consequently, this supplementation effectively reduced the oxidative stress levels in
tissues, as compared to mice supplemented with vitamin D alone [44,69,70].

The efficacy of VD in raising blood 25(OH)VD and GSH and reducing the inflam-
mation levels in vitamin D-deficient mice was significantly greater when vitamin D was
supplemented in combination with LC, in comparison with supplementation with vi-
tamin D alone. The potential mechanism responsible for the increasing blood levels of
25(OH)VD could be that the improvement in the GSH status reduces oxidative stress and
upregulates vitamin D-metabolizing genes, thereby increasing blood levels of 25(OH)VD
(Figure 2). Furthermore, the translocation of the VDR/1,25(OH)2VD complex is induced
by the upregulation of VDR expression in target tissues, making it available for metabolic
action, such as GLUT4 upregulation. Thus, LC not only improves the GSH status, which
enables the upregulation of vitamin D regulatory genes, but also reduces the TNF-α levels
and adds to VDR/PGC-1α/GLUT4 activation. Therefore, combined supplementation
with LC along with vitamin D can stimulate the levels of GSH, thus helping reduce the
25(OH)VD deficiency/inadequacy and inflammation associated with obesity and type 2
diabetes [44,69,73].
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The association between the GSH and 25(OH)VD statuses is unlikely to be non-
specific [1]. In human studies, this relationship was observed in non-diabetic persons who
were healthy and not taking any medication as well as in diabetic patients who were not
healthy and were on medications [2]. In cell culture studies, the knockdown of specific
enzymes that synthesize GSH did cause both a decrease in GSH and the VD metabolism
genes statuses, and L-cysteine supplementation simultaneously caused an improvement in
both GSH and VD metabolism genes [3]. In animal studies, the high-fat diet-induced onset
of obesity simultaneously caused a decrease in both GSH and the 25(OH)VD blood levels. In
addition, previous studies have reported that compared with the summer season, the blood
levels of GSH and 25(OH)VD are lower in the winter season in the same subject [80,92,93].

These studies demonstrate a novel pathway through which the status of GSH can
enhance the levels of 25(OH)VD and that the use of combined VD+LC supplementation
significantly lowers inflammation and increases the levels of GSH, vitamin D regulatory
genes, and VDR, all of which are required to raise the blood levels of 25(OH)VD and reduce
the inflammation levels. The combined use of VD and LC provides a novel approach to
stimulate vitamin D regulatory genes and protects against 25(OH)VD deficiency [70,71].

6. LC, GSH Biosynthesis, Oxidative Stress, and Inflammation

L-cysteine is semi-essential and can be synthesized by the body under normal physio-
logical conditions if a sufficient quantity of methionine is available. The gastrointestinal
(GI) tract breaks down dietary LC into cystine. Cystine then safely passes through the
GI tract and blood plasma and is quickly converted into two LC molecules upon cell
entry. The enzymes glutamate-cysteine ligase and glutathione synthetase play a crucial
role in the formation of GSH from LC, glycine, and glutamate [58]. LC is considered a
rate-limiting precursor of glutathione biosynthesis and a physiological antioxidant and
anti-inflammatory molecule. The reduced form of glutathione is crucial to protecting the
body from oxidative stress-induced damage. It can counteract reactive particles that can
harm cells and tissues. Therefore, supplementing the diet with LC can restore glutathione
synthesis in compromised cases, leading to an improved redox balance and reduced oxida-
tive stress [94]. Low levels of GSH or LC may lead to elevated levels of ROS and oxidative
stress, impaired reduction of oxidized GSSG to GSH, and/or heightened consumption of
GSH compared to its production [63,86,89,95,96].

A reduced GSH status can further compromise the defense against oxidative stress
and increase the oxidative modification of proteins or enzymes, causing major changes
in the secondary structure that result in the impaired metabolic stability and function of
modified proteins or enzymes [78,97]. Supplementation with a combination of glycine and
N-acetylcysteine (a cysteine precursor) has been shown to enhance and rectify deficiencies
in cellular glycine, cysteine, and GSH. Additionally, it has been found to reduce oxidative
stress, improve mitochondrial function, alleviate inflammation, decrease IR, and target
various hallmarks of aging [87].

LC transporter (SLC7A10) mRNA in adipose tissue shows a strong inverse correlation
with IR, adipocyte size, and metabolic syndrome components, along with a strong heri-
tability and an association with type 2 diabetes risk alleles. Overexpression of SLC7A10 in
mature white adipocytes was observed to reduce ROS generation and enhanced suppres-
sion of SLC7A10 had the opposite impact, suggesting that SLC7A10 supports a beneficial
increase in mitochondrial activity within white adipocytes [98]. Nuclear factor erythroid-2-
related factor (NRF2) is implicated in the biosynthesis of GSH [99–101] and protection from
oxidative stress and tissue damage [101]. The levels of peroxisome proliferator-activated
receptor gamma coactivator-1 alpha (PGC-1α) and NRF2 are reduced in human tissues in
obesity and diabetes [102]. PGC-1α upregulates the expression of GLUT4 in skeletal mus-
cle [103–105], inhibits pro-inflammatory cytokine production [106], and is a co-activator
of the retinoic X receptor (RXRα) [83,85,107]. The genomic mechanism of 1,25(OH)2VD
action involves the direct binding of the 1,25(OH)2VD activated VDR/RXRα heterodimeric
complex to specific DNA sequences [83–85]. PGC-1α functions as a co-factor for many tran-
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scription factors, including NRF2 [102]. Animal studies suggest that LC supplementation
has the potential to upregulate PGC-1α/NRF2 and reduce IR [108].

These animal and cell culture studies suggest that the improvement in GSH status that
results from co-supplementation with VD and LC had significant positive results compared
with vitamin D alone in ZDF rats and in a mouse model of 25(OH)VD deficiency. The liver
exhibited an increase in VD regulatory genes (VDBP/VD-25-hydroxylase/VDR) and the
muscle showed an upregulation of glucose metabolism genes (VDR/PGC-1α/GLUT-4).
Additionally, there was an increase in the 25(OH)VD levels in the blood and a decrease
in IR [69,109]. GSH deficiency in cell culture studies induced oxidative stress, leading to
the downregulation of VDBP/VD-25-hydroxylase/VDR, and upregulation of CYP24A1 in
hepatocytes. Additionally, the downregulation of PGC-1α/VDR/GLUT-4 was observed in
myotubes [44]. GSH deficiency epigenetically altered the vitamin D biosynthesis pathway
genes in the livers of diabetic mice [47]. The data from these studies provide evidence of a
novel mechanism that connects 25(OH)VD deficiency/inadequacy and lower GSH levels.
These findings emphasize that the commonly consumed vitamin D supplements may not
be effective unless the GSH levels are increased to enhance the function of the vitamin
D-metabolizing genes. Therefore, a more effective approach to improve bioavailability
and increase blood levels of 25(OH)VD would be to consume both LC and VD nutrients
together rather than relying solely on high-dose vitamin D supplementation. This approach
is both innovative and superior in achieving desired outcomes in response to vitamin
D consumption.

7. Testosterone and Vitamin D Metabolism

Testosterone in men upregulates the vitamin D-metabolizing genes, which increases
the total vitamin D. Cell culture studies have shown that testosterone treatment of mono-
cytes upregulates vitamin D-metabolizing genes, which can contribute to elevated vitamin
D levels in men compared to women [110]. Previous studies report that the testes also have
high levels of CYP2R1, which can promote vitamin D hydroxylation in men [110–113]. This
may suggest that adequate levels of vitamin D are required to optimize the effect of testos-
terone in vitamin D-deficient men. The free/total testosterone ratio (androgenic index)
has been used to assess the influence of testosterone on metabolic pathways [110,114–116].
Traditionally, sex hormone-binding globulin (SHBG) has been considered a binding protein
that transports testosterone and estradiol to target tissues and regulates the free concen-
tration of testosterone and estradiol. However, SHBG also influences biological actions
independent of total or free testosterone [117,118]. Serum SHBG can directly mediate
steroid hormone signal transduction at the plasma membrane. SHBG prevents sex steroid
deficiency by increasing its absorption, half-life, and steroid biosynthesis [119]. Deficient
SHBG may contribute to the pathogenesis of inflammation by modulating the biological
effects of sex hormones (testosterone and estrogen) on peripheral tissues (liver, muscle,
and fat) [120,121]. Previous studies in transgenic mice that overexpress human SHBG
transgenes have shown that they circumvent metabolic syndrome, inflammation, and type
2 diabetes [121,122]. Studies have concluded that SHBG suppresses inflammation and acts
on macrophages, muscles, and adipocytes [123].

Co-supplementation of alpha-lipoic acid with NAC has prevented intensive swimming-
induced testicular spermatogenic and steroidogenic disorders by decreasing ROS gener-
ation [124]. Modification of the Nrf2/HO-1 signaling pathway is one of the mechanisms
through which NAC, a powerful antioxidant, exerts significant protective effects against
busulfan-induced male reproductive impairment [125]. NAC protects against chromium-
induced oxidative damage in mice testes [126] and the testes of rats treated with sodium
fluoride by reducing lipid peroxidative 8-hydroxy-2-deoxyguanosine formation [127].

NAC attenuates the blood–testis barrier damage caused by the SR X-ray [128] and may
be used as a preventive measure against iron overload-induced testicular damage [129]. The
antioxidant effect of NAC reduces the damage caused by various chemicals and radiation
to testicular cells [130–133]. NAC is a well-tolerated mucolytic drug that decreases the
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viscosity of mucous secretions and enhances glutathione S-transferase activity. NAC
possesses strong antioxidant properties and shows a potential therapeutic intervention
for conditions marked by the production of free oxygen radicals. Its effectiveness as
an antioxidant is attributed to its ability to serve as a precursor to glutathione, a key
endogenous antioxidant in the body [12]. Oral supplementation with NAC improves
sperm parameters and reduces oxidative stress in infertile men [134].

8. L-Cysteine, Nitric Oxide, Hydrogen Sulfide, and Vitamin D Metabolism

Nitric oxide (NO) is a gaseous signaling molecule crucial for maintaining vascular
homeostasis. The synthesis of NO occurs when L-arginine is converted by nitric oxide
synthases (NOS) in the presence of oxygen [135]. The plasma nitrite levels, a well-known
indicator of NO production, exhibit a higher concentration in healthy individuals during
the summer compared to the winter. This disparity could be attributed to increased
exposure to UV-A radiation, which triggers the release of NO metabolites from the skin.
Furthermore, it is plausible that the fluctuation in nitric oxide availability throughout
the seasons contributes to elevated blood pressure during winter [135]. Reduced NO
synthesis is linked to both aging and VD deficiency [136]. Hydrogen sulfide (H2S), which
is produced in vivo from LC catalyzed by the enzyme CSE [137], plays a crucial role in
regulating numerous cellular functions and biochemical processes. Several reviews discuss
the potential benefits of NO and H2S availability in biological systems and the association
of decreased levels with the development of cardiovascular diseases and an increased risk
of pathogenic events [138–140].

Vitamin D can regulate the production of NO and/or the expression of inducible
NOS (iNOS) in various types of cells, such as endothelial cells, osteoblasts, microglial
cells, macrophages, and astrocytes [140]. Vitamin D acts as a transcriptional regulator
for eNOS, leading to enhanced production of NO, which is known as the most powerful
vasodilator in the vasculature [141]. The bioavailability of NO is reduced in VDR knockout
mice, leading to an increase in arterial stiffness [142]. Endothelial dysfunction and the
compromised production of endothelial-dependent NO are the key factors linking vitamin
D deficiency to cardiovascular disease [143]. The potential benefits of vitamin D include
enhancing endothelial function and promoting the production of endothelial nitric oxide
synthase (eNOS), as well as reducing inflammation-induced endothelial dysfunction [144].
NO deficiency contributes to the pathogenesis of various neurological diseases related to
reproduction, inflammation, vasodilation, and cardiac function [145].

Vitamin D plays a role in regulating the synthesis of NO by influencing the activity of
endothelial NO synthase (eNOS) in the endothelial cells. In pathological conditions, exces-
sive production of ROS leads to oxidative stress, which promotes the degradation of NO
and inhibits its synthesis, resulting in reduced NO bioavailability. Vitamin D counteracts
the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which is
responsible for ROS production, and enhances the antioxidant capacity by increasing the
activity of antioxidative enzymes such as superoxide dismutase [146]. Supplementation
with L-arginine and beetroot extracts rich in nitrates elevated the vitamin D levels in indi-
viduals aged 60 and above at risk of sarcopenia who also participated in a physical activity
regimen [147].

LC is unique in that it can upregulate the levels of both NO and H2S. The potent
scavenging action of H2S on peroxynitrite implies a chemical interplay between H2S and
NO/reactive nitrogen species. The ability of H2S to effectively remove peroxynitrite sug-
gests a potential chemical interaction between H2S and NO/reactive nitrogen species [148].
In the vascular system, H2S regulates the availability of NO [149]. The production of NO
enhances the accessibility of nutrients and hormones by causing blood vessels to dilate,
thereby increasing their bioavailability [150]. Supplementation using NO precursors such
as L-arginine and beetroot extracts, as well as LC, resulted in a significant increase in
circulating 25(OH)VD levels and a decrease in oxidative stress and inflammation [147]. Our
previous study showed that H2S and NO2 treatment upregulated the relative expression of
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CYP2R1 and CYP27B1 genes in THP-1 monocytes [151]. Cell culture and animal studies
findings report increased levels of 25(OH)VD in LC-supplemented animals and humans
supplemented with NO precursors such as L-arginine, suggesting that elevated levels of
H2S and NO can increase the bioavailability of vitamin D and blood levels of 25(OH)VD.

9. Justification for Combined Use of VD and LC

Recent studies indicate a positive correlation between the blood levels of GSH and
those of 25(OH)VD in normal adults, AA type 2 diabetics, and children [70,71,74]. However,
no previous study has investigated the effect of improving the GSH status by combined
supplementation with VD and LC on the levels of vitamin D regulatory proteins and
25(OH)VD (mechanistic signatures) and a simultaneous decrease in IR (biological signa-
tures). Increasing GSH with LC supplementation has demonstrated a positive effect on
insulin sensitivity in clinical trials [63,152]. The central hypothesis is that LC upregulates
the synthesis of GSH and the status of vitamin D regulatory genes and thereby increases
the 25(OH)VD and 1,25(OH)2VD levels and its metabolic action, such as GLUT4 upreg-
ulation. In addition, LC induces PGC-1α/GLUT4 upregulation independent of vitamin
D. Thus, LC not only upregulates vitamin D regulatory genes and the 25(OH)VD status
but also adds to PGC-1α/GLUT4 activation, substantially decreasing and possibly pre-
venting IR. Upregulation of the vitamin D-metabolizing genes using combined VD+LC
supplementation, thereby increasing the blood levels of 25(OH)VD and reducing IR and
inflammation biomarkers, is a highly innovative approach (Figure 3). The mechanism is
potentially responsible for the increased blood levels of 25(OH)VD and the reduction in IR
in combined VD+LC-supplemented animals and may result from an improved GSH status.
It thereby reduces oxidative stress and upregulation of VDBP/CYP2R1/CYP27A1/VDR,
which is required for the efficient transport and hydroxylation of cholecalciferol, and ac-
tivation of the VDR/PGC-1α/GLUT-4 pathway responsible for the metabolic actions of
1,25(OH)2VD [44]. It is essential for the VD-hydroxylase/metabolism genes required for
the conversion of vitamin D to 25(OH)VD for effective use by the body [1,44,71]. Animal
studies have shown that consumption of VD and LC is more effective in raising blood
levels of 25(OH)VD (treating vitamin D deficiency) and lowering IR and inflammation
compared to intake of vitamin D alone [82,153]. These findings focus attention on the fact
that vitamin D supplements are unlikely to be successful unless the status of the vitamin D
and vitamin D-metabolizing genes is also corrected by improving the GSH status.

However, higher doses of LC could result in a greater number of side effects being
experienced. These include, but are not limited to, sleepiness, intestinal gas, indigestion,
dysphoria, local erythema, swelling, lightheadedness, nausea, rashes, and coughing [154].
Similarly, an overdose of VD may also cause adverse health effects [155]. The rise in
awareness regarding vitamin D deficiency and its impact on health has led to a significant
increase in the use of vitamin D supplements. The excessive use of vitamin D supplements
without proper medical consultation can lead to vitamin D toxicity [156]. The suggested
maximum safe intake of cholecalciferol is 4000 IU daily [155]. Vitamin D overdose may
cause hypercalcemia, vomiting, polydipsia, dehydration, constipation, pain, loss of appetite,
and cardiovascular and renal complications [156,157]. Therefore, it may be advisable to
consider a daily intake of 1000 mg of LC combined with 2000 IU of VD as a potentially
safer approach to elevate vitamin D levels in the bloodstream.
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Figure 3. A novel mechanism highlighting combined VD+LC supplementation, which is hy-
pothesized to reduce IR and inflammation biomarkers and increase blood levels of 25(OH)VD,
thereby increasing VD metabolism and its therapeutic effects. Yellow arrow, upregulation; red
arrow, downregulation.

10. Conclusions

Deficiencies in 25(OH)VD are widespread globally. Substantial data in the literature
support the role of vitamin D deficiency in the development of chronic health problems.
Preclinical studies suggest that the simultaneous intake of LC and VD nutrients, rather
than solely using high doses of vitamin D, represents an innovative and better approach
to enhancing the bioavailability of cholecalciferol and boosting 25(OH)VD blood levels.
Validation of this novel approach will lead to the design of new clinical trials using LC
supplementation coupled with lower vitamin D doses as an adjuvant therapy to reduce
25(OH)VD deficiency/inadequacy and its associated complications and help reduce the
related health hazards, particularly in the AA population.
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