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Vitamin D is an important steroid hormone that exerts immunomodulatory actions, controls calcium and phosphate 
homeostasis, and significantly affects human health. Vitamin D deficiency is a global health problem, affecting approxi-
mately 60% of adults worldwide, and has been implicated in a range of different types of diseases, e.g., cancer. Vitamin D is 
involved in the regulation of cell proliferation, differentiation, energetic metabolism, and different types of cell death (e.g., 
apoptosis, autophagy, etc.). In physiological conditions, it is also able to modulate immune responses, angiogenesis, etc., 
which belongs to fundamental cancer-related processes. Vitamin D deficiency has been associated with an increased risk of 
some types of cancer, e.g., colorectal, breast, ovarian, prostate, pancreatic, etc. The role of vitamin D in cancer prevention, 
carcinogenesis, and cancer treatment is still under investigation and depends on the type of cancer. This review summarizes 
the role of vitamin D in all three above-mentioned aspects and discusses the mechanism of action and potential possibilities 
in cancer treatment. 
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Characterization and mechanism of action of vitamin D

Vitamin D is a group of steroid vitamins, occurring in 
two forms-D2 (ergocalciferol) and D3 (cholecalciferol). The 
major natural source of vitamin D originates from the skin, 
where cholecalciferol is synthesized in the lower layers of the 
epidermis after exposure to UV-B light. Vitamin D can also be 
supplemented in the body through dietary intake. The biolog-
ically active form of vitamin D, 1α,25-dihydroxyvitamin D3 
(1,25(OH)2D3-calcitriol), is formed from cholecalciferol by 
two hydroxylating steps (Figure 1). Vitamin D is important 
in the regulation and maintenance of calcium and phosphate 
homeostasis. Also, vitamin D is a significant modulator of 
the immune system. To identify vitamin D target genes, 25 
healthy volunteers were subjected to bolus 80,000 IU vitamin 
D and after 24 hours, target genes were evaluated. From 
these, 61 genes participate in eight major pathways of innate 

immunity [1]. The function of vitamin D to influence innate 
immunity has been demonstrated in a large number of exper-
imental models, but the molecular mechanisms involved in 
these processes are not yet fully understood. Nevertheless, 
appropriate vitamin D status in healthy individuals leads to 
suppression of innate immunity, e.g., suppression of inflam-
mation [2].

The level of vitamin D in the body is determined by the 
serum 25(OH)D (calcifediol) concentration, with 25(OH)
D having a relatively long circulating half-life of 15 days. 
Serum 25(OH)D concentrations can be measured either in 
nanomoles per liter (nmol/l) or nanograms per milliliter (ng/
ml). The majority of the human population struggles with 
vitamin D deficiency when serum 25(OH)D concentra-
tions are less than 30 nmol/l. Serum 25(OH)D concentra-
tions greater than 125 nmol/l may be associated with adverse 
effects. Vitamin D is not eliminated from the body.

Neoplasma 2024; 71(4): 307–318

Copyright © 2024 The Authors. 
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution, 
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source and provide a link to 
the Creative Commons licence. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/



308 Ladislav KLENA, et al.

Two important enzymes are involved in the production 
of the active form of vitamin D-calcitriol. In the liver, chole-
calciferol is converted to calcidiol by cytochrome P450 2R1 
(vitamin D 25-hydroxylase; CYP2R1). Calcidiol is further 
hydroxylated to calcitriol (an active form of vitamin D3) 
in the liver by cytochrome P450 27B1 (25-hydroxyvitamin 
D 1-alpha-hydroxylase; CYP27B1) (Figure 1). Another 
enzyme, localized in mitochondria, cytochrome P450 family 
24 subfamily A member 1 (CYP24A1), catalyzes hydroxyl-
ation reactions, which lead to the degradation of calcitriol. 
Calcitriol mediates its biological effects through the vitamin 
D receptor (VDR). This receptor belongs to the nuclear 
receptor family, which acts as a transcription factor after the 
binding of calcitriol [3]. The importance of all these enzymes 
and also VDR in cancer prevention and/or carcinogenesis 
was studied in various types of cancer.

Expression of VDR, CYP27B1, and CYP24A1 was studied 
in uveal melanoma, together with melanin levels. The inverse 
correlation between VDR, CYP24A1, CYP27B1, and melanin 
was found. The authors have further shown that vitamin D is 
metabolized in uveal melanoma [4]. Lower CYP27B1 expres-
sion was associated with a worse prognosis in melanoma 
patients, proving previous results and suggesting that 
CYP27B1 might be linked to the pathogenesis and progres-
sion of melanoma [5]. CYP27B1 was shown to be involved in 
various types of malignancies. Polymorphism of CYP27B1 
was strongly associated with an increased risk of colorectal 
cancer [6]. Changes in the expression of CYP27B1 and 
CYP24A1 were also described in different types of breast 
cancer (for review see [7]). In breast cancer tumors, the 
expression of CYP27B1 was decreased, while the expression 
of CYP24A1 was upregulated [7].

VDR binds to the retinoid X receptor (RXR) and this 
heterotrimer forms the vitamin D-response element, which 

controls the gene expression of calcitriol-responsive genes 
[8]. Several teams investigated the role of the VDR in carci-
nogenesis. In digestive system tumors, VDR expression could 
be a prognostic indicator and may also be used as a refer-
ence for vitamin D supplementation. From 3,109 patients 
suffering from tumors in the digestive tract, those with high 
VDR expression have better overall survival compared to 
those with low VDR expression. VDR activated by vitamin 
D, or its analog, activates the downstream pathways thus 
resulting in the inhibition of tumor growth. VDR expres-
sion could be correlated with an intake of vitamin D, or its 
analogues. Although serum vitamin D levels can also be 
predictive markers of the prognosis of patients with diges-
tive system tumors, their levels can be easily affected by 
other factors, such as diet, or sun exposure [9]. In mouse 
experimental models, VDR reduced the metastatic poten-
tial of human breast cancer cells [10]. Although most known 
actions of VDR require its ligand, the VDR with unbound 
ligand is also active. For example, in epidermal carcinogen-
esis, the suppressive influence of the unliganded VDR on the 
hedgehog and β-catenin pathways appears to play a major 
role as promoted by VDR on the DNA damage repair process 
[11, 12].

VDRs are overexpressed in breast cancer, which is associ-
ated with a low risk of death and a good prognosis. Therefore, 
VDR agonists may be potential agents for combination use 
with standard chemotherapy as these agents have demon-
strated antiproliferative effects in various triple-negative 
breast cancer cell lines through enhanced apoptosis and 
cell cycle arrest [13]. VDR polymorphisms were shown 
to be associated with renal cell carcinoma mortality in the 
Japanese population [14], colorectal carcinoma [6], and also 
with high-grade glioma mortality [15]. Recently, a significant 
association between positive VDR staining of the nuclear 

Figure 1. Cholecalciferol is produced in the skin but can also be taken by food or oral dietary supplements to prevent D3 deficiency. In the liver, cho-
lecalciferol is converted to calcidiol by cytochrome P450 2R1 (vitamin D 25-hydroxylase; CYP2R1). Calcidiol is further hydroxylated to calcitriol (an 
active form of vitamin D3) in the kidney by cytochrome P450 27B1 (25-hydroxyvitamin D 1-alpha-hydroxylase; CYP27B1).
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membrane in breast cancer with favorable tumor charac-
teristics and a longer breast cancer-free interval and overall 
survival was published [16]. Positive nuclear VDR staining 
might be used to refine prognosis, especially of ER-positive 
cancer [16].

We obtained interesting results using the Tumor online 
Prognostic analyses Platform (http://www.biostatistics.
online/topp/survival). From 33 different types of cancers, 
high levels of VDR were associated with increased overall 
survival in 6 types (lymphoid neoplasm diffuse large B-cell 
lymphoma, cholangiocarcinoma, stomach adenocarcinoma, 
esophageal carcinoma, bladder urothelial carcinoma, and 
lung adenocarcinoma). Interestingly, the association of the 
high levels of VDR with low overall survival was detected in 
11 different types of cancers (pancreatic adenocarcinoma, 
thymoma, uveal melanoma, mesothelioma, brain lower grade 
glioma, cervical squamous cell carcinoma and endocer-
vical carcinoma, glioblastoma multiforme, liver hepatocel-
lular carcinoma, breast invasive carcinoma, acute myeloid 
leukemia, and lung squamous cell carcinoma). These results 
point to the need for more advanced studies on the role of 
VDR in different cancers, more oriented toward mechanisms 
of action.

Low vitamin D levels were determined in dark-skinned 
people living in temperate climates. Dark-skinned people 
are less efficient at making vitamin D because melanin in 
the skin hinders vitamin D synthesis [17]. Also, a higher 
incidence of certain types of cancers was described in the 
black population. African Americans have the highest death 
rate and shortest survival of any racial or ethnic group for 
most cancers [18]. Nevertheless, the connection between low 
levels of vitamin D and cancers in this population remains to 
be further elucidated.

Vitamin D interference with some other molecules

Vitamin D and calcium. Vitamin D significantly affects 
calcium homeostasis and metabolism. It was shown that 
calcium signaling in cancer cells can influence various 
processes important in cancer progression, such as prolifera-
tion, invasion, but also cell death [19].

The role of dietary supplementation of calcium in the 
development and progression of different types of cancer is 
abundantly discussed in the scientific literature. However, 
there are several controversial results. A variety of results 
proposed proliferative or proapoptotic effects.

Bernichtein et al. [20] provided evidence that a  high-
calcium diet dependently and dramatically promotes the 
progression of early prostate lesions. Remarkably, vitamin 
D supplementation had little protective effect per se but 
completely prevented the deleterious effects of a high-calcium 
diet in both mouse models. The authors have shown that 
these antagonistic effects are mediated by opposing regula-
tion of 2 major mediators of calcium-induced cell prolif-
eration, i.e., the calcium channel TRPC6 (transient receptor 

potential canonical 6) and the G-protein-coupled calcium-
sensing receptor. This study predisposes at-risk patients 
with early-stage prostate cancer to careful consideration 
of calcium supplementation with vitamin D [20]. On the 
contrary, no association with the risk of total prostate cancer 
has been found in a dose-response meta-analysis examining 
calcium supplements. A significant positive association with 
fatal prostate cancer was found [21].

Liu et al. [22] found that vitamin D inhibited lung cancer 
tumor growth, migration, and proliferation by downregu-
lating histidine-rich calcium-binding protein (HRC). HRC 
is deeply involved in the maintenance of calcium homeo-
stasis in the cells. The upregulated expression of HRC corre-
lated with the increased expression of the sodium-calcium 
exchanger. Inhibition of the calcium-binding role of HRC 
via vitamin D and VDR may affect the signal transduction of 
cancer pathways such as cyclin D1 [22].

In A431 squamous cell carcinoma, both VDR and protein 
disulfide isomerase family A member 3 (PDIA3) are required 
to regulate membrane response to active forms of vitamin 
D, possibly through CAMKIIα and impaired calcium influx 
[23]. The authors have shown that PDIA3 is required for 
1,25(OH)2D3-induced calcium mobilization in A431 cells.

Vitamin D and cholesterol. Since 25(OH)D is a steroid 
compound, several teams attempted to compare serum 
25(OH)D levels with lipid profiles. Yin et al. [24] used Mende-
lian randomization analysis to decipher the relationship 
between 25(OH)D and lipid levels. This study shows evidence 
of a link between vitamin D deficiency and an increased risk 
of high triglycerides, high total cholesterol, and high LDL-C 
lipids. Thus, a link between triglycerides, total cholesterol, 
and vitamin D is evident [24]. Recently a work by Zhang 
and Dong [25] reported that people working in agriculture, 
forestry, and fishing may benefit from maintaining adequate 
serum 25(OH)D levels to mitigate adverse lipid profiles and 
reduce cardiovascular risk, compared to miners or traffic 
drivers. Importantly, about two-thirds of people working in 
these fields were vitamin D-sufficient. Moreover, vitamin D 
was linearly associated with better HDL-C levels in vitamin 
D-sufficient individuals, females, and those without obesity. 
Nevertheless, the study has several limitations, e.g., seasonal 
variations of vitamin D, different lifestyle factors, etc. [25].

Cholesterol is an important steroid molecule performing 
various functions in the cell, from stabilization of membranes 
to serving as a precursor for steroid hormone synthesis, 
etc. Accumulating evidence shows that reprogramming of 
cholesterol synthesis is a common feature in breast cancer, 
but also in colon, rectal prostatic, and testicular cancers [26, 
27]. LDL-C levels could serve as a prognostic factor in the 
diagnosis of breast cancer [28]. LDL levels can be useful in the 
identification and follow-up of high-risk groups, suggesting 
that cholesterol metabolism may be an important therapeutic 
target in patients with breast cancer.

Accumulating evidence suggests that anticancer drugs 
may exert their anti-proliferative activities at least in part by 
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clinical trials showed a positive effect of calcium plus vitamin 
D3 supplementation, which facilitated fat loss in patients with 
overweight and/or obesity [42, 44]. Recently, Lee et al. [45] 
showed that excess intracellular Ca2+, a known pathogenic 
factor in hypertension, acts as a critical negative regulator 
of insulin signaling by forming Ca2+-phosphoinositides that 
prevent the membrane localization of AKT, a key serine/
threonine kinase signaling molecule. Pharmacologically 
attenuated intracellular Ca2+ overload in vivo, by admin-
istering candesartan to obese mice successfully improved 
insulin resistance, dyslipidemia, hepatic steatosis, and inflam-
mation by inhibiting dysregulated SOC-mediated Ca2+ entry 
and ectopic lipid accumulation [45]. Thus, there is robust 
evidence for the pleiotropic contribution of intracellular Ca2+ 
overload in the pathogenesis of insulin resistance and there 
are already approved drugs, e.g. candesartan that can act in 
the improvement also of insulin resistance and dyslipidemia. 
However, there is a need for more randomized control trials 
to examine the influence of vitamin D on body fat.

Together with other factors, orexigenic neuropeptide 
agouti-related protein (AgRP) that is associated with obesity 
might be involved in the development of colorectal cancer. 
Moreover, AgRP might be used as a  diagnostic marker for 
this type of cancer [46]. Many studies dealt with ω-3 fatty 
acid intake, which potentially might have a protective effect 
on cancer risk. Nevertheless, usage of vitamin D and omega-3 
fatty acids did not lower the risk of developing cancer during 
a 5.3-year trial [47]. Interestingly, this combination was effec-
tive in reducing aromatase inhibitors-associated arthralgia 
[48], which is important for postmenopausal patients with 
estrogen receptor-positive breast cancer treated by aromatase 
inhibitors.

Recent research has been focused on vitamin D supple-
mentation in diabetes prevention and treatment. Supple-
mentation with vitamin D had a promising effect in reducing 
glycated hemoglobin (HbA1c) in patients with type 1 
diabetes, however, there was no significant impact on the 
incidence of type 2 diabetes or glycemic control in those 
patients [49]. According to guidelines [50], patients at high 
risk of diabetes or with diabetes should have a controlled 
level of serum vitamin D on a regular basis, and if needed 
vitamin D should be supplemented [51]. More longer-term 
trials and randomized controlled studies with bigger sample 
sizes are required to fully elucidate the beneficial effect of 
vitamin D supplementation in patients with diabetes.

Vitamin D in carcinogenesis

In general, vitamin D deficiency/insufficiency has been 
associated with an increased risk of many types of cancer, e.g., 
colorectal, breast, ovarian, prostate, pancreatic, etc. Infor-
mation that vitamin D can have a  protective effect against 
cancer was published a long time ago [52, 53]. Vitamin D is 
generally accepted as a substance with the potential ability 
to increase cellular resistance to malignant transforma-

reducing cholesterol content/biosynthesis [26]. Tamoxifen 
partially mediates its anticancer effect through 5,6β-epoxy-
cholesterol, probably through the ROS-dependent mecha-
nism [29]. Combinational treatment of chemotherapeutics 
and cholesterol-lowering drugs might be a promising novel 
tool in the treatment of cancers. It was shown that the admin-
istration of statins sensitizes anti-hormonal drugs in breast 
and prostate cancers. Statins have been considered an anti-
cancer drug in recent decades, especially in older people [30].

Vitamin D and obese cancer patients, 
or patients with diabetes

Almost 20% of all cancer cases are caused by obesity 
[31–33]. The International Agency for Research on Cancer 
(IARC 2002) assessed that obesity represents a relative 
risk of many cancer cases, e.g., 11% of colon cancer, 9% of 
postmenopausal breast cancer, 39% of endometrial cancer, 
25% of kidney cancer, and 37% of esophageal cancer. There 
is evidence that obesity is involved in the development 
of different types of cancer, including colorectal, renal, 
liver, esophageal, thyroid, melanoma, multiple myeloma, 
gallbladder, leukemia, lymphoma, and prostate in men; and 
postmenopausal breast and endometrial cancer in women 
[34–37].

Greater adiposity is associated with lower vitamin D 
status, and individuals with obesity frequently have marginal 
or deficient circulating 25(OH)D levels. According to a meta-
analysis of Pereira-Santos et al. [38] prevalence of vitamin D 
deficiency was 35% higher in obese subjects compared to the 
normotrophic group and 24% higher than in the overweight 
group.

The mechanisms that drive etiologic pathways for these 
cancers in obesity are different and are not completely under-
stood. Deficiency of vitamin D is thought to be one of them 
[32]. Meta-analysis of observational studies showed a consis-
tent inverse relationship between serum vitamin D levels and 
colorectal cancer, however no association for prostate and 
breast cancer was found [39].

The genetic risk score (GRS) is a predictive model of 
genetic risk that can be calculated using an allelic scoring 
system that incorporates each risk allele identified as being 
associated with the studied phenotype. Recently, Almaghrbi 
et al. [40] systematically reviewed the association of the GRS 
of low-vitamin-D-risk alleles with different non-commu-
nicable diseases. They found the contribution of the single 
nucleotide polymorphisms (SNPs) of low-vitamin-D-risk as 
an accumulative factor associated with the risk of developing 
obesity, type 2 diabetes, cardiovascular diseases, and cancer.

Obesity often coexists with low calcium intake and vitamin 
D insufficiency [41], however, there are contradictions in the 
evidence regarding an association between calcium intake 
and body weight. According to one hypothesis, weight loss 
combined with increased calcium intake should result in 
reduced loss in fat-free mass and greater fat loss [42]. Some 
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tion and influence cancer treatment’s efficacy depending on 
its supplementation [54]. It has been shown that increased 
pre-diagnostic serum vitamin D levels are associated with 
improved overall cancer survival [55]. However, some 
large-scale studies have suggested that the cancer-protective 
effects of vitamin D observed elsewhere, might not apply 
to overall cancer survival, but only to specific cancer types 
[56]. Barry et al. [57] suggested that the VDR genotype 
might affect the effectiveness of vitamin D3 supplementa-
tion in the prevention of colorectal adenoma recurrence 
[57]. There was no observed preventative effect of vitamin 
D on colorectal polyps or incident cancer was not observed 
in a cohort of overweight or prediabetic patients as well [58]. 
On the contrary, the incidence of metastatic or fatal cancer 
was reduced in the overall cohort with a high-dose supple-
mentation of vitamin D for 5 years. The most prominent risk 
reduction was observed in normal-weight individuals [59]. 
It should be noted that despite the undoubted importance of 
these trials, they all suffer from distinct limitations-vitamin 
D dosing, racial differences, duration of the trials, etc.

The protective role in human carcinogenesis is boosted 
by the regulatory role of vitamin D on cell proliferation, 
apoptosis, cell differentiation, angiogenesis, autophagy, 
inflammation, oxidative and energy metabolism, as well 
as immune response modulation, which are fundamental 
cancer-related processes [60]. Vitamin D plays a preventive 
role in cervical cancer rather than a therapeutic [61].

The question arises about the optimal levels of vitamin D 
in cancer prevention. Torres et al. [62] reported that serum 
levels of vitamin D ≥40.26 ng/ml ± 14.19 ng/ml could exert 
a protective effect against breast cancer. Guyonnet et al. [63] 
reported that women with increased vitamin D intake had 
a  46% lower chance of developing breast cancer. It should 
be noted though, when looking at the role of vitamin D in 
breast cancer, different subtypes have to be considered. For 
example, vitamin D was found to have a significantly more 
protective effect in triple-negative breast cancer (TNBC) 
when compared to other subtypes [64]. Table 1 summarizes 
clinical studies and meta-analyses of such studies, which 
have aimed to determine the protective levels of vitamin D in 
various cancer types.

How does then vitamin D mediate cancer protective effects 
at the cellular level? As mentioned previously, the active form 
of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) or 
calcitriol, exerts its biological functions by binding to VDR. 
The VD3 -VDR complex can then regulate the transcription 
of a myriad of genes, which contain responsive elements 
VDREs. Cellular processes commonly deregulated in carci-
nogenesis, which are also commonly targeted by calcitriol, 
include cell cycle progression, cell proliferation, oxidative 
stress, immune function, cell migration, cellular adhesion, 
metabolism, angiogenesis, and apoptosis [78].

Effects on cell proliferation and the cell cycle. Cell cycle 
dysregulation and sustaining cell proliferation are promi-
nent hallmarks of many cancers [79]. Several studies have 

reported that calcitriol can mediate the downregulation of 
aberrant proliferative signaling in a variety of cancers. It has 
been shown that calcitriol inhibits the NOTCH1 pathway 
in colorectal cancer (CRC) in vitro, thus inhibiting CRC 
cell proliferation, invasion, and migration [80]. Another 
study has reported that CRC cell proliferation is reduced by 
calcitriol acting downstream on SIRT1 deacetylase via VDR, 
which in turn mediates anti-proliferative activity [81]. In 
melanoma cell lines, calcitriol was found to transcriptionally 
inhibit NSUN2 (NSUN2) by binding to VDR. NSUN2 has 
been linked to promoting cell proliferation and metastatic 
behavior in melanoma. Knocking down NSUN2 has been 
shown to reduce cell proliferation and the migratory ability 
of melanoma cells in vitro.

Aberrant WNT/β-catenin signaling has been well charac-
terized to promote tumorigenesis in a  variety of human 
cancers [82], including cell proliferation. A recent study has 
shown that in thyroid cancer, the activated form of VDR 
(activated by calcitriol), inhibits cell proliferation by binding 
E-cadherin and β-catenin, preventing TCF/LEF transcrip-
tional activity and therefore the activation of aberrant WNT 
signaling [83]. This has been shown both in vitro and in vivo. 
Calcitriol has also been shown to reduce β-catenin expression 
in breast cancer in vitro [84]. Similarly, in colorectal carci-
noma, VDR has been shown to bind β-catenin and prevent 
its nuclear accumulation, which is necessary to initiate WNT 
signaling by regulating the transcription of WNT target 
genes [85]. Similarly, calcitriol was reported to reduce the 
expression of β-catenin and therefore suppress aberrant 
WNT signaling in gastric cancer cells in vitro [86], and in 
colorectal cancer cells in vitro by the same mechanism [87].

Table 1. Clinical studies (bold letters) and meta-analyses (plain letters) 
reporting concentration-dependent protective effects of vitamin D.

Cancer type
Protective serum 

levels of vitamin D 
(nmol/l)

Sample 
size (n) References

Breast cancer ≥100.65±35.48*
30–70

129,486
6,090

[62]
[64]

Colorectal cancer 25–50
≥50
≥75*

403,170
7,718
2,819

[65]
[66]
[67]

Prostate cancer ≥50 4,065 [68]
Lung cancer 41.05–59.85* 445 [69]
Glioblastoma 66 1,704 [70]
Melanoma ≥62.5* 12,297 [71]
Hepatocellular carcinoma ≥50 431,807 [72]
Pancreatic cancer 50–65* 529,917 [73]
Thyroid cancer ≥75* 402 [74]
Head and neck cancer ≥75* 81 [75]
Bladder cancer ≥60.35 115 [76]
Leukemia ≥75* 125 [77]

Note: *the following values were converted from ng/ml to nmol/l for 
consistency
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Calcitriol has also been shown to reduce the prolifera-
tion of non-small-cell lung cancer both in vitro and in vivo 
in an elegant study by Songyang et al. [88]. The authors have 
shown that calcitriol inhibits lung cancer cell proliferation by 
interacting with the PI3K/AKT/mTOR pathway in vitro. The 
dysregulation of the PI3K/AKT/mTOR pathway in cancer is 
well characterized and known to drive cancer development 
and progression [89]. The individual components of this 
pathway were shown to be inhibited by calcitriol in a nearly 
similar way as if they were inhibited by synthetic inhibitors. 
Both cisplatin and calcitriol alone showed a similar effect on 
lung tumor size reduction in vivo.

In vivo and in vitro experiments on colorectal cancer 
have shown that vitamin D can cause cell cycle arrest by 
downregulating CCND1 (Cyclin D1, which promotes cell 
cycle progression) and upregulating P21 (inhibits cyclin-
dependent kinases, which results in cell cycle arrest at various 
stages) [90, 91]. Idris and colleagues [91] have also shown 
that vitamin D significantly downregulates CCND3 (Cyclin 
D3 – promotes the cell cycle) and upregulates p27 (inhibitor 
of CDKs, resulting in cell cycle arrest) in several CRC cells in 
vitro. Breast cancer cell lines treated with vitamin D in vitro 
exhibited cell cycle arrest in the sub-G0/G1 phase (apoptotic 
state) [92].

Apoptosis. Another hallmark of cancer is resisting cell 
death [79]. A number of studies have reported that vitamin 
D can interfere with cell death resistance in cancer. In vitro 
studies using breast cancer cell lines have shown that calcitriol 
mediates the upregulation of the pro-apoptotic BCL-associ-
ated X (BAX), caspase-3 (CASP3), and the downregulation 
of anti-apoptotic B-cell lymphoma 2 (BCL2) gene [93]. In 
another study, breast cancer cell lines treated with calcitriol 
induced apoptosis by activating caspase 3/7 [92]. A similar 
mechanism is also observed in ovarian cancer cells in vitro 
[94]. This study has also shown that in vitamin D-treated 
cells, elevated expression of P53 can be observed, together 
with decreased levels of BCL-2 and cyclin D1 (namely in 
TNBC). These results showed that vitamin D also induces 
apoptosis via P53 upregulation. Similar results were seen 
both in vivo and in vitro in CRC, where pro-apoptotic genes 
and proteins including cytochrome C were upregulated and 
the anti-apoptotic ones were downregulated [90]. In head and 
neck squamous cell carcinoma cells, vitamin D was found to 
increase the expression of pro-apoptotic BH3 domain only 
protein BIM in a number of cell lines in vitro [95]. Addition-
ally, the authors supported this with in silico data, showing 
that higher BIM expression correlates with better survival, 
thus giving a more clinical relevance to the study. Idris et al. 
[91] have shown similar mechanisms of action of vitamin D 
on CRC cells in vitro. The study reported the downregula-
tion of anti-apoptotic markers such as BCL2 and the upregu-
lation of pro-apoptotic markers, BAX, cytochrome C, and 
caspase-3.

Metabolism. Reprograming cellular energetics is also a 
hallmark of cancer and a hot topic of research in the past 

decade [79]. Cancer cells have a tendency to rewire metabolic 
programs in their favor. Huang et al. [87] have shown that 
calcitriol can downregulate the Warburg effect in CRC 
cells in vitro. The Warburg effect is a metabolic phenom-
enon observed in cancer cells, where cancer cells switch 
from mitochondrial respiration to aerobic glycolysis in the 
presence of oxygen, thus producing more cellular energy 
to drive oncogenic processes [96]. The authors have shown 
that CRC cell lines treated with calcitriol displayed reduced 
expression of Glucose transporter 1 (GLUT1), Hexokinase 2 
(HK2), and Lactate dehydrogenase (LDHA), and decreased 
extracellular acidification rate while increasing oxygen 
consumption rate and ATP production. These colorectal 
carcinoma cells have therefore switched back to mitochon-
drial respiration, thus reversing the Warburg effect. The same 
phenomena were observed in vivo, supporting the in vitro 
data, that calcitriol can indeed reverse the Warburg effect. 

Calcitriol was also observed to suppress glycolysis in 
gastric cancer cells in vitro by downregulating GLUT1, HK2, 
and LDHA as in the previous study [97].

For an illustration of the whole process, see Figure 2.
Cell adhesion and cell migration. Increased cell plasticity 

and migratory capabilities are the cornerstone of metastasis 
of many cancers. A number of studies reported that calcitriol 
can reduce deregulated cell migration. Vitamin D-treated 
head and neck squamous carcinoma cells showed a significant 
reduction in migratory capability. The authors also showed 
that this could be the effect of E-cadherin levels being restored, 
which downregulated EMT and therefore the metastatic 
potential of these cells [95]. In invasive breast cancer cell 
lines, experiments have shown an upregulation of the epithe-
lial marker E-cadherin and a downregulation of mesen-
chymal markers N-cadherin and P-cadherin, suggesting that 
calcitriol can reverse EMT [93]. In the same study, calcitriol 
was found to downregulate individual components of the 
mitogen-activated protein kinase (MAPK) pathway, namely 
JNK and p38, and upregulate the ERK1 (which can be benefi-
cial for the survival of breast cancer patients). Furthermore, 
the study has shown that vitamin D downregulated Ras and 
MEK, the components of the Ras signaling pathway, which 
usually promotes oncogenic and metastatic processes in 
many cancer types when dysregulated.

Autophagy. Autophagy is responsible for removing 
potentially toxic and cancer-inducing waste from cells. This 
may include damaged or misfolded proteins, for example 
[98]. In cancer, it has been reported that autophagy may 
have a dual role, both in suppressing cancer progression and 
promoting it. In breast cancer, calcitriol has been found to 
suppress pro-survival autophagy [99]. This study has shown 
that breast cancer cell lines, as well as mice with mammary 
tumors treated with calcitriol, exhibited lower levels of 
autophagy markers (such as Beclin1, Atg5, and LC3B). 
Another study on breast cancer has revealed that supple-
mentation with calcitriol induces autophagy in luminal-
type breast cancer, which is similar to autophagy observed 
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in normal breast tissue, which facilitates the suppression of 
breast cancer progression [100]. In prostate cancer, calcitriol 
was shown to potentiate the effects of sulforaphane in 
inducing autophagy and prostate cancer cell lines by upregu-
lating the autophagy marker NRF2 [101]. Interestingly, in 
cervical cancer, calcitriol inhibits autophagy, which has been 
shown by p62 accumulation in vitro [102].

Angiogenesis. The formation of new blood vessels to facil-
itate oxygen and nutrients for tumors, also known as angio-
genesis, is also a hallmark of cancer [79]. An in vitro study 
using ovarian cancer cell lines reported that cells treated with 
calcitriol exhibited reduced activity of the vascular endothe-
lial growth factor (VEGF), which plays a part in angiogenesis 
signaling [94].

Vitamin D supplementation in the management of 
cancer therapy and in the treatment of side effects

The effect of vitamin D supplementation has been inten-
sively studied in different types of breast tumors. Vitamin 
D deficiency is characteristic of all breast cancer patients, 
especially those with the most aggressive form of the tumor 
– TNBC. It has been shown that while vitamin D is an impor-
tant factor in breast cancer prevention, its role in treatment 
is still unclear [13]. Vitamin D had no effect in inhibiting 

the proliferation of the TNBC cell lines MDA-MB-157, 
MDA-MB-231, and MDA-MB-468 [13].

Chemotherapy-induced peripheral neuropathy is an 
important burden during chemotherapy, especially in 
taxane-treated patients [103]. Jennaro et al. [104] published 
that vitamin D deficiency elevates the severity of paclitaxel-
induced peripheral neuropathy. In general, patients with 
vitamin D insufficiency are more vulnerable to chemo-
therapy-induced peripheral neuropathy. Since the black 
population suffers from vitamin D hypovitaminosis, a higher 
incidence of chemotherapy-induced peripheral neuropathy 
might be, at least partially, explained by this fact [105]. The 
potential effectiveness of vitamin D supplementation for the 
prevention of chemotherapy-induced peripheral neurotox-
icity remains to be further elucidated. However, considering 
the minimal toxicity and cost of vitamin D supplementa-
tion, and the use of vitamin D in the prevention of bone loss 
in patients with breast cancer receiving aromatase inhibi-
tors, supplementation with vitamin D may be a reasonable 
intervention to prevent chemotherapy-induced peripheral 
neuropathy during paclitaxel treatment in some high-risk 
patients even in the absence of confirmatory clinical trial 
evidence [105].

Vitamin D analogs are also being studied by researchers. 
These may also possess the anticancer activity of vitamin D, 

Figure 2. Scheme showing proposed mechanisms of calcitriol action at the cellular level in cancer cells. Apoptosis-Calcitriol binds the VDR and forms 
the VDR complex, which translocates into the nucleus and regulates the transcription of VDR responsive elements (VDREs) by binding to its co-acti-
vators-the DRIP complex (VDR-interacting proteins) and the RXR. Target genes regulating apoptosis, which contain VDREs, are activated. This causes 
the upregulation of BIM, which inhibits BCL-2, thus allowing the activation of BAD/BAX, which induces apoptosis and the mitochondrial release of 
cytochrome C into the cytoplasm. Cytochrome C activates Caspase-9, which subsequently activates Caspase 3/7 leading to cell death. Metabolism-The 
VDR complex downregulates glucose transporter 1 (GLUT-1) as well as hexokinase 2 (HK2) and lactate dehydrogenase A (LDHA), which promotes the 
conversion of lactate into pyruvate, thereby reversing the Warburg effect. Cell cycle, proliferation, and migration-The VDR complex binds β-catenin and 
inhibits its translocation to the nucleus, thereby preventing the transcription of WNT target genes. The VDR complex also increases the expression of 
E-cadherin and decreases the expression of epithelial-to-mesenchymal transition (EMT) markers P-Cadherin and N-Cadherin, suggesting a reverse of 
EMT. The VDR complex downregulates the individual components of the PI3K/AKT/mTOR pathway, decreasing cancer cell migration. Calcitriol also 
causes cell cycle arrest by upregulating the expression of P53, which mediates the downregulation of Cyclin D1 and Cyclin D3, and upregulates P21 
and P27, which inhibit the cell cycle.
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albeit without the toxic effects of high doses. One example is 
a current clinical trial, where both vitamin D and its analog 
paricalcitol alone or in combination with other treatments, 
including chemotherapy and immunotherapy are tested in 
patients with pancreatic cancer [106].

In summary, from the current knowledge about the role 
of vitamin D, it is clear that normal or higher levels of the 
vitamin are an effective preventive tool against some types of 
cancers e.g., breast cancer. Also, vitamin D hypovitaminosis is 
a negative predictive tool in obese people with cancer compli-
cations. Vitamin D can target different signaling pathways, 
which can result in decreased proliferation, cell cycle arrest, 
increased apoptosis, etc., that might help to combat tumor 
growth, or metastasis formation. However, it is clear that the 
beneficial effect of the vitamin D is not equal on all types 
of cancers. Also, a large number of other factors have to be 
taken into account, such as tumor type, severity of disease, 
dose, duration of vitamin D administration, seasonal varia-
tions of vitamin D, different lifestyle factors, race, gender, etc. 
Further investigation in this field might clarify the potential 
utilization of vitamin D as an anticancer drug.
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