Check for updates

OPEN ACCESS

EDITED BY Luciane Cruz Lopes, University of Sorocaba, Brazil

REVIEWED BY

Isa Naina Mohamed, National University of Malaysia, Malaysia Wencai Liu, Shanghai Jiao Tong University, China Hyuk-Sang Jung, Kyung Hee University, Republic of Korea

*CORRESPONDENCE Feibin Xie, ⊠ xiefb@xmu.edu.cn

[†]These authors have contributed equally to this work and share first authorship

RECEIVED 23 April 2024 ACCEPTED 29 October 2024 PUBLISHED 21 November 2024

CITATION

Yang Y, Yang M, Su X and Xie F (2024) Efficacy of combination therapy of vitamin D and bisphosphonates in the treatment of postmenopausal osteoporosis: a systematic review and meta-analysis. *Front. Pharmacol.* 15:1422062. doi: 10.3389/fphar.2024.1422062

COPYRIGHT

© 2024 Yang, Yang, Su and Xie. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Efficacy of combination therapy of vitamin D and bisphosphonates in the treatment of postmenopausal osteoporosis: a systematic review and meta-analysis

Yuangui Yang^{1†}, Mingyue Yang^{2†}, Xuanyi Su^{1†} and Feibin Xie³*

¹School of Clinical Medicine, Xiamen University, Xiamen, China, ²School of Clinical Medicine, Fujian Medical University, Fuzhou, China, ³Department of Orthopedic Trauma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China

Objective: There is currently no consensus on whether the combination therapy of Vitamin D (VitD) and bisphosphonates offers superior efficacy compared to monotherapy in the treatment of postmenopausal osteoporosis. The aim of this study is to conduct a meta-analysis of recent relevant research to synthesize the available evidence and further investigate whether the combined use of VitD and bisphosphonates is superior to monotherapy in treating osteoporosis in postmenopausal women.

Methods and results: We systematically searched PubMed, EMBASE, the Cochrane Library, and Web of Science for randomized controlled trials (RCTs) comparing the effects of monotherapy with VitD or bisphosphonates versus their combination therapy in the treatment of postmenopausal osteoporosis, up to 1 February 2024. The articles were independently screened and relevant data were extracted by two investigators. The changes in mean values and percentage changes for bone resorption markers, bone formation markers, bone mineral density, and bone mineral metabolism markers were expressed using the standardized mean difference (SMD) and 95% confidence intervals (CI). Heterogeneity was quantitatively described using the l² test. Subsequently, sensitivity analyses were performed for data with significant heterogeneity. Subgroup analyses were conducted based on the type of monotherapy used, and potential publication bias was assessed. The analysis revealed that the combination of VitD and bisphosphonates demonstrated a more pronounced effect in increasing alkaline phosphatase (ALP), 25-hydroxyvitamin D (25-OH-VD), and serum calcium (sCa) levels, as well as in decreasing levels of serum bonespecific alkaline phosphatase (sBALP), serum C-terminal telopeptide of type I collagen (sCTX), and urinary N-telopeptide of type I collagen (UriNTX) compared to the monotherapy group. However, the combination of VitD and bisphosphonates did not show a significant advantage over monotherapy in terms of improving osteocalcin levels. The differences in the mean changes in osteocalcin, UriNTX, and sCa, as well as the percentage changes in parathyroid hormone (PTH) were not statistically significant (p > 0.05).

Conclusion: The meta-analysis suggests that compared to monotherapy, the combination therapy of VitD and bisphosphonates exhibits a more favorable effect on bone mineral density and bone calcium metabolism-related markers in the treatment of postmenopausal osteoporosis.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/ PROSPERO

KEYWORDS

postmenopausal osteoporosis, combination treatment, vitamin D, diphosphonates, monotherapy

1 Introduction

Osteoporosis, as one of the common diseases among older individuals, has a global prevalence of approximately 18.3% (Wu et al., 2024), with about 30% of postmenopausal women affected by osteoporosis (Vilaca et al., 2022). The disease is characterized by reduced bone mass and deteriorated bone tissue structure (Zhang et al., 2023). This not only leads to increased bone fragility and a higher risk of fractures, with the lifetime fracture risk for patients reaching up to 40% (Rachner et al., 2011), but also significantly diminishes the quality of life for elderly patients, potentially leading to disability and even death. Therefore, it is particularly important to explore the optimal treatment strategies for osteoporosis.

To date, the pharmacological treatment options for osteoporosis primarily fall into two main categories: anabolic agents that promote bone formation and antiresorptive agents that inhibit bone resorption. The former's main component is active vitamin D, with common medications including alfacalcidol and calcitriol, which directly affect the balance and metabolism of calcium and phosphorus in the body (Lips and van Schoor, 2011). Antiresorptive agents primarily consist of bisphosphonates, such as alendronate sodium and risedronate sodium. These medications effectively reduce the risk of fractures in areas like the spine and hip by disrupting the precursor differentiation function of osteoclasts (McClung et al., 2013; Vannala et al., 2020). Patricia Barrionuevo and colleagues conducted a network meta-analysis that demonstrated a significant reduction in the probability of fractures among postmenopausal women with osteoporosis treated with alendronate sodium compared to those in the placebo group (Barrionuevo et al., 2019). The effectiveness of monotherapy for osteoporosis has been established, as noted by P Lips, who pointed out that oral Vitamin D (VitD) can improve bone mineral density and bone metabolic markers, promoting calcification of bone tissue to treat osteoporosis (Lips, 2001).

Combination therapy has been increasingly used in the treatment of osteoporosis, particularly in postmenopausal women (Saul and Drake, 2021). However, there is still no consensus on whether combination therapy is superior to monotherapy for osteoporosis (Pinkerton and Dalkin, 2007). In an expert consensus document (Huang et al., 2023) regarding the prevention and treatment of osteoporosis, the combination therapy of bisphosphonates and Vitamin D in the treatment of postmenopausal osteoporosis has been affirmed, but there is still a scarcity of robust evidence-based medical evidence to assess the safety and effectiveness of such combined therapy. Therefore, this study holds certain guidance significance and clinical value for the

pharmaceutical treatment of postmenopausal osteoporosis. Research conducted by Z. L. Zhang has demonstrated that the use of combined alendronate sodium and vitamin D3 tablets can more effectively treat postmenopausal women with osteoporosis and alleviate symptoms of the disease (Zhang et al., 2015). However, research conducted by Joel S. Finkelstein and colleagues suggests that the combined use of teriparatide and alendronate sodium did not show superior efficacy compared to the use of teriparatide alone (Finkelstein et al., 2010). Compared to analyzing a single study, a systematic review synthesizes all available evidence, providing a more comprehensive analysis of therapeutic efficacy.

The purpose of this study is to conduct a meta-analysis of recent relevant research to synthesize and analyze various clinical diagnostic and prognostic indicators of osteoporosis, such as bone mineral density (BMD) at different sites (lumbar BMD [LBMD], femoral neck BMD [ftroBMD], femur BMD [fBMD], and total hip BMD [ThipBMD]), bone resorption markers (Carboxy terminal collagen crosslinks in serum [sCTX], urinary N-terminal cross-linked telopeptides of type I collagen [UriNTX]), bone formation markers (osteocalcin [OC], alkaline phosphatase [ALP], serum bone-specific alkaline phosphatase [sBALP]), bone calcium metabolism indicators (parathyroid hormone [PTH], serum calcium [sCa], 25-hydroxyvitamin D [25-OH-VD]) and safety metrics, to further investigate whether the combined treatment of VitD and bisphosphonates is superior to monotherapy in treating postmenopausal osteoporotic women. This research aims to provide a scientific basis for the effective clinical treatment of osteoporosis.

2 Materials and methods

The study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (Page et al., 2021). A formal protocol was established and registered in advance on the PROSPERO platform of systematic review and meta-analysis protocols. (Registration number: CRD42023384638).

2.1 Literature search selection criteria

The systematic search conducted by two researchers (YG Y and MY Y) across authoritative databases, including PubMed, EMBASE, the Cochrane Library, and Web of Science, aimed to retrieve randomized controlled trials (RCTs) comparing monotherapy with combination therapy of VitD and bisphosphonates in the

treatment of postmenopausal osteoporosis up to 1 February 2024. The search was not restricted by language, ensuring a comprehensive literature review. The search strategy utilized a combination of Medical Subject Headings (MeSH) terms and free text words to enhance the sensitivity and specificity of the search. The key search terms included "Vitamin D," "Diphosphonates," "osteoporosis," and other relevant terms. The detailed search strategy for the aforementioned databases is provided in the supplementary attachment. The two researchers (MY Y and XY S) began by reviewing the titles and abstracts of the identified literature. They documented the reasons for excluding certain studies. In cases where it was not possible to determine inclusion or exclusion based solely on the title and abstract, they proceeded to carefully examine the full text of the studies. When discrepancies arose between the two researchers during the screening process, a third researcher (YG Y) was consulted to resolve the disagreement through discussion. If the articles meet the aforementioned criteria, they will be selected for further analysis. The inclusion criteria were as follows: 1) Population: Postmenopausal women with osteoporosis; 2) Intervention: combination therapy of vitaminD (VitD3,alfacalcidol, calcitrol,etc.) and bisphosphonates (alendronate, zoledronateacid,etc.); 3) Comparison: Monotherapy of VitD or biphosphonate; 4) Outcome: bonemineral density (BMD), fracture incidence,etc.,; 5) Design: RCT. Subsequently, the third researcher (YG Y) conducted a summary of the screening results. Based on the established exclusive criteria, studies were excluded for the following reasons: 1) non-relevant study types; 2) studies with experimental groups limited to monotherapy; 3) duplicate publications; 4) animal studies; 5) study populations with conditions affecting bone density, such as HIV, cirrhosis, thalassemia, etc.; 6) absence of pertinent outcome measures; 7) research subjects with a history of organ transplantation, gastrectomy, or long-term glucocorticoid use.

2.2 Data extraction and quality assessment

For each article that met the inclusion criteria, two researchers (MY Y and XY S) independently extracted relevant data using a predesigned data extraction form. Disagreements in data extraction were resolved through discussion or with the assistance of a third researcher (YG Y). The extracted data included:

- a. Basic study information: the name of the first author, year of publication, and the region or country where the study was conducted.
- b. Basic demographic information of the study population: sample size, average age, concomitant treatments, and other baseline clinical characteristics.
- c. Outcome measures: Femoral neck Bone mineral density (F BMD),Total-hip Bone mineral density (T hip BMD),Lumbar spine Bone mineral density (LBMD),25-hydroxy-vitamin D (25-OH-VD),Femoral trochanter Bone mineral density (f trochanterBMD),Urinary N-terminal cross-linked telopeptides of type I collagen (Uri NTX),Osteocalcin (OC), sBALP, Carboxy terminal collagen crosslinks in serum (sCTX),Calcium in serum (sCa),Parathyroid hormone (PTH),Alkaline phosphatase (ALP). The assessment of the risk of bias in the included literature was independently

conducted by two researchers, using the ROB 1.0 tool embedded in Review Manager 5.4 to evaluate the risk of bias in the included literature. The following items were assessed: 1) random sequence generation; 2) allocation concealment; 3) blinding of participants and personnel; 4) blinding of outcome assessment; 5) incomplete outcome data; 6) selective reporting or publication bias; 7) other bias. Each item of bias was evaluated, with "low risk" indicating a low risk of bias, "high risk" indicating a high risk of bias, and "unclear risk" indicating a medium risk of bias. We did not assign an overall quality rating to the literature.

2.3 Statistical analysis

The primary outcomes for postmenopausal osteoporosis patients receiving combination or monotherapy were the mean changes or percentage changes in bone mineral density, bone resorption markers, bone formation markers, and bone calcium metabolic markers. These outcomes were represented using the standard mean difference (SMD) and its 95% confidence interval (CI). Initially, the heterogeneity among studies was quantitatively described using the I^2 test. A p-value less than 0.05 was considered to indicate statistically significant differences. When the I² value was less than 50% and the *p*-value was greater than 0.05, indicating low heterogeneity, the fixed-effect model was used for data synthesis. Otherwise, the random-effects model was applied. Secondly, for data showing significant heterogeneity, sensitivity analyses were conducted to identify the sources of heterogeneity and to assess whether they influenced the robustness of the results. Additionally, if the monotherapy group involved different types of monotherapy, subgroup analyses were conducted based on the types of monotherapy used in the monotherapy groups, followed by an analysis of statistical heterogeneity within each subgroup. Finally, when the number of included studies was 10 or more, publication bias was assessed using funnel plots and Egger's test. If the funnel plot was symmetrical or the *p*-value was greater than or equal to 0.05, there was no significant publication bias. Conversely, if the funnel plot was asymmetrical or the p-value was less than 0.05, it indicated the presence of significant publication bias. In cases where significant publication bias was identified, the "trim and fill" algorithm was employed to correct for it. All statistical analyses were performed using R (version 4.3.2), with the primary packages involved being the 'meta' package (version 7.0-0). The confidence of evidence would be assessed by GRADE system, the results of assessment would be presented along with the pooling estimations (Inc, 2021) (Table 1).

3 Results

3.1 Literature search

The process of literature screening, study selection, and reasons for exclusion were described in a flowchart (Figure 1). Initially, we identified 3,268 records from our primary search (Supplementary Material S2). We then excluded 994 duplicates. After screening the titles and abstracts, 76 studies were deemed potentially eligible for inclusion. Upon full-text studies, 33 randomized controlled trials were ultimately included in the meta-analysis.

TABLE 1 Table of GRADE.

			Certainty as	sessment			No of	patients		Effect	
No of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Dual VD-BP	Mono VD or BP	Relative (95% CI)	Absolute (95% CI)	Certainty
ftroBMD											
8	randomised trials	not serious	very serious ^a	not serious	not serious	none	2426	1475	-	SMD 2.57 SD higher (0.82 higher to 4.31 higher)	⊕⊕OO Low ^a
LBMD											
22	randomised trials	not serious	very serious ^a	not serious	not serious	none	3239	2283	-	SMD 3.02 SD higher (1.61 higher to 4.42 higher)	⊕⊕OO Low ^a
fBMD											
15	randomised trials	not serious	very serious ^a	not serious	not serious	none	2701	1734	-	SMD 1.93 SD higher (0.72 higher to 3.15 higher)	⊕⊕OO Low ^a
ThipBMD		1		1	1		1		1	1	1
10	randomised trials	not serious	very serious ^a	not serious	not serious	none	2675	1716	-	SMD 1.68 SD higher (0.3 higher to 3.06 higher)	⊕⊕OO Low ^a
sCTX abs											
7	randomised trials	not serious	very serious ^a	not serious	not serious	none	332	290	-	SMD 1.22 SD lower (1.9 lower to 0.54 lower)	⊕⊕OO Low ^a
sCTX per											
6	randomised trials	not serious	very serious ^a	not serious	not serious	none	2204	1224	-	SMD 1.45 SD lower (2.52 lower to 0.38 lower)	⊕⊕OO Low ^a
UriNTX abs											
1	randomised trials	not serious	not serious	not serious	not serious	none	140	139	-	SMD 0.23 SD lower (0.47 lower to 0.01 higher)	⊕⊕⊕⊕ High

Yang et al.

(Continued on following page)

TABLE 1 (Continued) Table of GRADE.

			Certainty as	sessment			No of	patients		Effect	
No of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Dual VD-BP	Mono VD or BP	Relative (95% CI)	Absolute (95% CI)	Certainty
UniNTX per											
9	randomised trials	not serious	very serious ^a	not serious	not serious	none	1308	1246	-	SMD 1.74 SD lower (3.29 lower to 0.2 lower)	⊕⊕OO Low ^a
sCa abs											
5	randomised trials	not serious	very serious ^a	not serious	not serious	none	262	272	-	SMD 0.94 SD higher (0.4 lower to 2.27 higher)	⊕⊕OO Low ^a
sCa per											
1	randomised trials	not serious	not serious	not serious	not serious	none	90	90	-	SMD 2.99 SD higher (2.56 higher to 3.41 higher)	⊕⊕⊕⊕ High
25-OH-VD abs											
4	randomised trials	not serious	very serious ^a	not serious	not serious	none	584	571	-	SMD 1.61 SD higher (0.51 higher to 2.7 higher)	⊕⊕OO Low ^a
25-OH-VD per											
2	randomised trials	not serious	very serious ^a	not serious	not serious	none	127	109	-	SMD 1.37 SD higher (0.54 higher to 2.19 higher)	⊕⊕OO Low ^a
PTH abs											
4	randomised trials	not serious	serious ^b	not serious	not serious	none	280	274	-	SMD 0.74 SD lower (1.05 lower to 0.42 lower)	⊕⊕⊕O Moderate ^b
PTH per											
4	randomised trials	not serious	very serious ^a	not serious	not serious	none	531	525	-	SMD 1.25 SD lower (3.19 lower to 0.69 higher)	⊕⊕OO Low ^a

(Continued on following page)

TABLE 1 (Continued) Table of GRADE.

CI: confidence interval; OR: odds ratio; SMD: standardised mean difference.

			Certainty as	sessment			No of	patients		Effect	
No of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Dual VD-BP	Mono VD or BP	Relative (95% CI)	Absolute (95% CI)	Certainty
ALP											
5	randomised trials	not serious	very serious ^a	not serious	not serious	none	191	185	-	SMD 0.52 SD lower (1.02 lower to 0.02 lower)	⊕⊕OO Low ^a
Osteocalcin abs	5										
6	randomised trials	not serious	very serious ^a	not serious	not serious	none	187	188	-	SMD 0.54 SD higher (2.76 lower to 3.84 higher)	⊕⊕OO Low ^a
Osteocalcin per	r										
2	randomised trials	not serious	very serious ^a	not serious	not serious	none	380	350	-	SMD 1.81 SD lower (3.03 lower to 0.59 lower)	⊕⊕OO Low ^a
sBALP abs											
3	randomised trials	not serious	serious ^b	not serious	not serious	none	495	492	-	SMD 0.64 SD lower (0.9 lower to 0.38 lower)	⊕⊕⊕O Moderate ^b
sBALP per											
10	randomised trials	not serious	very serious ^a	not serious	not serious	publication bias strongly suspected ^c	1448	1344	-	SMD 1.38 SD lower (2.15 lower to 0.61 lower)	⊕000 Very low ^{a,c}
AE											
18	randomised trials	not serious	serious ^b	not serious	not serious	none	3811/ 6786 (56.2%)	2975/ 6786 (43.8%)	OR 1.03 (0.77–1.37)	1 more per 100 (from 6 fewer to 8 more)	⊕⊕⊕O Moderate ^b
SAE											
7	randomised trials	not serious	not serious	not serious	not serious	none	2693/ 4411 (61.1%)	1718/ 4411 (38.9%)	OR 1.10 (0.93–1.30)	23 more per 1,000 (from 17 fewer to 64 more)	⊕⊕⊕⊕ High

Explanations

^aI2 is very high. ^bI2 is high. ^cEgger P > 0.05. Yang et al.

3.2 Characteristics of the included studies

Table 2 provides a summary of the baseline characteristics and medication details of the study populations included in this metaanalysis. The meta-analysis encompassed 33 studies published from 1997 to 2022, involving 8058 postmenopausal women with osteoporosis who received combination or monotherapy from Europe (17 studies), Asia (11 studies), and North America (five studies). The average age of the included participants ranged from 55 to 77 years old, with the sample size varying from 30 to 2860 individuals. In the 33 studies included in this meta-analysis, the experimental group utilized a combination of VitD and bisphosphonates. Beyond this, in nine studies, the control group only used bisphosphonates, while in 23 studies, the control group used VitD alone. The included studies in our analysis have largely adhered to the standard treatment guidelines for medication prescription: calcium supplementation is consistently maintained within the range of 0.5-1.0 g per day (g/d), Vitamin D supplementation is generally around 500 International Units per day (IU/d), Alendronate is commonly prescribed at a dose of 10 mg per day (mg/d), and Neridronate at a dosing range of 12.5-50 mg per month (mg/m). Other bisphosphonates also follow the standard treatment protocols. The duration of treatment varies from 3 months up to 48 months, with most treatments consisting of a complete cycle of either 12 or 24 months, as detailed in the Supplementary Table S2 Drug regimens of included studies. Additionally, one study featured control groups for both monotherapies, each using one of the drugs alone. The included participants were all postmenopausal women who did not suffer from HIV, liver cirrhosis, Eastern Mediterranean and other diseases affecting bone density. They also had no history of surgeries like organ transplantation or gastrectomy, nor did they have a history of long-term use of glucocorticoids. They were highly comparable.

3.3 Quality assessment of the included studies

Although all the studies included in this meta-analysis were randomized controlled trials, some studies had a higher risk of bias due to the use of list order allocation rather than true randomization (Dundar et al., 2009). Additionally, several studies employed an open-label design without adequate use of double-blind or tripleblind methods, which posed a higher risk of bias (Cesareo et al., 2015; Frediani et al., 1998; Iwamoto and Sato, 2014; Iwamoto et al.,

TABLE 2 Characteristics of the included studies.

Reference	Country	Number	Age	Monotherapy	Combination therapy	Adjuvant baseline
Adami et al. (2008)	Italy	94	62.46 ± 6.49	Vitamin D 800IU/D	(Neridronate 50 mg/M or 12.5 mg/M or 25 mg/M)and vitamin D 800IU/D	Calcium 1g/D
Barone et al. (2007)	Italy	91	69.25 ± 6.92	ALN 10mg/D	1,25-D3 0.5µg/D and ALN 10mg/D	Calcium 1g/D
Bell et al. (2002)	USA	65	66.15 ± 8.77	Vitamin D 500IU/D	Alendronate 10mg/D and vitamin D 500IU/D	Calcium 0.5g/D
Braga et al. (2003)	Italy	78	64.55 ± 7.76	Vitamin D 400IU/D	Neridronate 50 mg/M and vitamin D 400IU/D	Calcium 0.5g/D
Cascella et al. (2005)	Italy	40	72.70 ± 5.19	Vitamin D 400IU/D	Neridronate 25 mg/M and vitamin D 400IU/D	Calcium 0.5g/D
Cesareo et al. (2015)	Italy	30	58.00 ± 5.02	Cholecalciferol 400 IU/D	Alendronate 10 mg/D and cholecalciferol 400 IU/D	Calcium 1g/D
Cheng et al. (2002)	China	56	63.95 ± 6.12	Vitamin D 1000IU/D	Alendronate sodium 10mg/D and vitamin D 1000IU/D	Calcium 0.6g/D
Dobnig et al. (2006)	Germany	56	67.98 ± 5.34	Vitamin D 400-800IU/D	(Risedronate 5mg/D or alendronate 10mg/ D) and vitamin D 400-800IU/D	Calcium 1.0-1.2g/D
Dundar et al. (2009)	Turkey	61	60.35 ± 8.99	Vitamin D 400IU/D	Risedronate 5mg/D and vitamin D 400IU/D	Calcium 1g/D
Felsenberg et al. (2011)	Germany	279	73.67 ± 4.75	Alendronate 10mg/D	Alfacalcidol 1µg/D and alendronate 10mg/D	Calcium 0.5g/D
Frediani et al. (1998)	Italy	90	63.13 ± 6.51	Alendronate10mg/D or calcitriol 0.5µg/D	Alendronate 10mg/D and calcitriol 0.5µg/D	Calcium 0.5g/D
Greenspan et al. (2015)	USA	181	85.45 ± 5.22	Vitamin D 800IU/D	Zoledronate 5mg/D and vitamin D 800IU/D	Calcium 1.2g/D
Iwamoto and Sato (2014)	Japan	96	70.77 ± 9.19	Alendronate5mg/D or risedronate 2.5mg/D	Vitamin D 0.75µg/D and (alendronate 5mg/ D or risedronate 2.5mg/D)	NR
Iwamoto et al. (2003)	Japan	40	71.15 ± 6.25	Etidronate 2800 mg/3M	Alfacalcidol 1µg/D and etidronate 2800 mg/3M	Calcium 0.8g/D
Karadag-Saygi et al. (2011)	Turkey	71	62.96 ± 7.43	Vitamin D 400IU/D	Risedronate 35 mg/W and vitamin D 400IU/D	Calcium 0.6g/D
Kim et al. (2014)	Korea	268	NR	ALN 10mg/D	Vitamin D 800IU/D	Calcium 0.2g/D
Leung et al. (2005)	China	65	67.00 ± 5.95	Vitamin D 400IU/D	Risedronate 5mg/D and vitamin D 400IU/D	Calcium 0.5g/D
Lyritis et al. (1997)	Athens	100	72.00 ± 0.41	Calcitriol R 0.4µg/D	Etidronate 400mg/D (20d) and calcitriol R $0.4\mu\text{g/D}$	Calcium 0.5g/D
Masud et al. (1998)	Britain	47	66.29 ± 8.28	Etidronate 0.4g/D	Calcitriol 0.5 µg/D and etidronate 0.4g/D	Calcium 0.5g/D
Matsumoto et al. (2009)	Japan	674	71.55 ± 5.80	Vitamin D 200IU/D	Minodronate 1mg/D and vitamin D 200IU/D	Calcium 0.6g/D
McClung et al. (2009)	USA	160	53.54 ± 3.70	Vitamin D 400IU/D	Ibandronate 5mg/D and vitamin D 400IU/D	Calcium 0.5g/D
Nenonen et al. (2005)	Finland	148	53.50 ± 2.36	Vitamin D 200IU/D	Alendronate 5mg/D and vitamin D 200IU/D	Calcium 0.63g/D
Olmos et al. (2005)	Spain	140	68.04 ± 8.03	ALN 70 mg/W	Calcifediol 0.266 mg/W and ALN 70 mg/W	NR
Peng et al. (2022)	China	262	61.80 ± 5.99	Vitamin D3 200IU/D	Minodronate 1mg/D and vitamin D3 200IU/D	Calcium 0.5g/D
Popp et al. (2013)	Swit	107	76.80 ± 4.98	Vitamin D3	Zoledronate 5mg/Y and Vitamin D3	Calcium
Recker et al. (2006)	USA	717	66.80 ± 8.70	Alendronate 10mg/D	Alendronate 10mg/D and cholecalciferol 400IU/D	Calcium 0.5–0.6g/D
Recker et al. (2004)	USA	2860	67.00	Vitamin D 400IU/D	(Ibandronate 1 or 0.5 mg/3M) and vitamin D 400IU/D	Calcium 0.5g/D

(Continued on following page)

Reference	Country	Number	Age	Monotherapy	Combination therapy	Adjuvant baseline
Rhee et al. (2006)	Korea	199	62.04 ± 5.51	Alfacalcidol 1µg/D	Maxmarvil = Calcitriol 0.5μ g/D and alendronate 5 mg	NR
Rossini et al. (2000)	Italy	124	63.01 ± 5.37	Vitamin D 440U/D	(alendronate 20 mg/W or alendronate 10mg/D for 1month/3month) and vitamin D 440U/D	Calcium 0.5g/D
Shiota et al. (2001)	Japan	40	61.70 ± 6.72	Alphacalcidol 0.5µg/D	Etidronate 200mg/D (2W) and alphacalcidol $0.5 \mu\text{g/D}$	Calcium 2g/D
Tanakol et al. (2007)	Turkey	79	56.88 ± 8.15	Vitamin D 400IU/D	Clodronic acid 400mg/D and vitamin D 400IU/D	Calcium 0.5g/D
Yan et al. (2009)	China	560	64.93 ± 6.18	Vitamin D 200IU/D	Alendronate 70 mg/W and vitamin D 200IU/D	Calcium 0.5g/D
You et al. (2011)	China	180	62.32 ± 6.86	Alfacalcidol 0.5µg/D	Alendronate 70 mg/2W and alfacalcidol 0.5µg/D	Calcium 0.6g/D and vitamin D3 400IU

TABLE 2 (Continued) Characteristics of the included studies.

2003; Kim et al., 2014; Leung et al., 2005; Lyritis et al., 1997; Masud 1998; Tanakol et al., 2007). Furthermore, certain outcomes were assessed as having a medium risk of bias because the studies did not clearly describe the relevant specifics (Figure 2).

3.4 Bone density analysis results from different sites

We first analyzed the changes in LBMD before and after treatment between the combination group and the monotherapy group. A total of seven articles with 622 patients were included. Before conducting the meta-analysis, it was important to ensure that there was no difference in the baseline values between the combined treatment and the control treatment. The results indicated that the combination of bisphosphonates and VitD was superior to the monotherapy group, with a significant difference ($I^2 = 99.40\%$, p = 0; random effects model; SMD [95% CI] = 3.02 [1.61, 4.42], p < 0.01, Low GRADE). Similarly, the combination of bisphosphonates and VitD shows a significant advantage over monotherapy in improving

ftroBMD ($I^2 = 99.70\%$, p = 0; random effects model; SMD [95% CI] = 2.57 [0.82, 4.31], p = 0.04, Low GRADE), fBMD ($I^2 = 99.10\%$, p < 0.01; random effects model; SMD [95% CI] = 1.93 [0.72, 3.15], p = 0.01, Low GRADE), and ThipBMD ($I^2 = 99.60\%$, p = 0; random effects model; SMD [95% CI] = 1.68 [0.30, 3.06], p = 0.02, Low GRADE) (Figure 3) (Supplementary Material S3).

3.5 Results of bone formation marker analysis

3.5.1 Pooled analysis for the changes in osteocalcin

Meta-analysis included eight studies, of which six studies with a total of 375 patients provided data on the changes in mean osteocalcin values and were included in the analysis ($I^2 = 97.90\%$, p < 0.01; random effects model; SMD [95% CI] = 0.54 [-2.76, 3.84], p = 0.75, Low GRADE). Notably, the *p*-value of the SMD indicating that the results of this analysis did not have statistical significance and should be referred to with caution. Additionally, two studies with a total of 750 patients provided data on the percentage change

Bell 2002 32 6.40 3.39 33 -0.20 4.60 Dobnig 2006 37 4.60 0.71 19 -0.50 1.10 Micclung 2009 77 2.67 3.26 63 -0.91 3.30 1.6 Micclung 2009 77 2.67 3.26 63 -0.91 3.30 1.6		Study	Total	Mean	ental SD	Total	Control Mean	SD		Standa Di	rdised Mean fference	SMD	95%-CI
Thomas Solution <		Ball 2002	32	6.40	2.20	33	-0.20	4.60			1	1.61	[105:21
Long 2001 31 020 101 34 020 102 103		Dobnig 2006	37	4.60	0.71	10	-0.50	1.10			100 million (100 million)	- 5.95	[1.00, 2.17
TroBMD Data and a basic an		Looping 2004	21	4.00	0.71	19	-0.50	1.10				0.00	[4.00; 7.10
Mccaure 2009 7 2.8 3.8 8.3 -1.91 3.50 TroBMD Man 2000 28 3.4 4.83 280 0.73 3.50 + 4.34 128 Reder 2004 1211 3.40 0.55 940 -0.55 8.81 4.4 -0.55 0.45 Hetrogendiy: I* = 100% I 6.62 3.6 4.4 3.75 2.65 0.45 Barone 2007 47 6.84 3.56 4.4 3.75 2.66 - - - 2.75 10.82 Barone 2007 47 6.84 3.56 44 3.75 2.66 - - - 2.77 10.82 Barap 2003 39 7.72 5.53 3.97 1.66 6.45 - - 2.24 1.14 1.49 1.63 Barap 2003 39 7.72 5.53 3.97 1.80 0.22 - - 4.83 1.24 1.14		Leung 2004	51	3.61	3.14	54	0.69	5.8/				0.60	[0.11; 1.10
TroBMD Tankol 2007 30 2.00 4.80 2.00 7.30 2.50 Cheng 2002 28 -1.94 6.62 28 -5.80 8.11 -6 -6 -7.90 2.50 Random effects model 2426 1475 -6 -4 -2 0 -6 -4 0 0 0.50 0.51 -6 -4 0.7 0.51 -6 -4 0.7 0.52 -5 0 -6 -4 0.7 0.51 0.51 -6 -4 0.61 10.1 0.63 10.1 0.63 10.1 0.63 10.1 0.63 10.1 0.63 0.51 0.55 0.55 0.55 0.55 0.55 0.55 0.55		Mcclung 2009	77	2.87	3.36	83	-0.91	3.30			*	1.13	[0.80; 1.46
ThioBMD Yan 2009 220 3.34 4.32 200 0.78 3.34 Cheng 2002 22 23 1.44 6.62 28 8.11 Recher 3004 1011 3.49 0.65 949 -0.55 0.45 Heresgendiy: I* -0.63 1.66 3.54 -0.52 -0.55 Barone 2007 47 6.84 3.96 44 3.73 2.65 -0.5 -0.5 Barone 2007 47 6.84 3.96 44 3.73 2.65 -0.5 -0.5 0.5 Barone 2007 47 6.84 3.96 44 3.73 2.65 -1.13 1.14 103 Damoto 2020 40 4.78 100.04 40 2.34 -0.44 1.14 103 Modung 2005 71 370 0.30 40 2.34 -0.44 1.14 103 Modung 2006 71 370 2.00 374 4.03 2.04 3.02 -1.14 103 Modung 2009 240 4.77	6	Tanakol 2007	30	2.20	2.90	49	-7.30	2.50				3.54	[2.81; 4.26
Chemg 2002 28 -1.94 -6.22 28 -5.83 8.11 -6 -6.33 (5.6 Random effects model 2426 1475 -6 -4 -2 0 2 4 6 Barone 2007 47 6.84 3.96 44 3.73 2.65 -4 -2 0 2 4 6 Barone 2007 47 6.84 3.96 44 3.73 2.65 -4 -2 0 2 4 6 Barone 2007 47 6.84 3.96 44 3.73 2.65 4.00 3.22 1.149 10.4 Barga 2033 39 7.72 5.83 3.97 -1.63 6.44 3.13 0.66 4 -2.24 1.13 1.14 10.5 Machinel 2010 20 1.34 8.00 2.20 1.34 1.34 1.35 1.14 10.5 Machinel 2009 71 3.70 0.59 1.38 0.66	ftroBMD	Yan 2009	280	3.24	4.63	280	0.78	3.34			•	0.61	[0.44; 0.78
Recker 2004 1911 3.49 0.65 949 -0.55 0.45 Random effects model 2426 1475 Heterogeneity: $l^2 = 100\%$, $l^2 = 6.26$, $p = 0$ -6 -4 -2 0 2 4 6 Barone 2007 47 6.84 3.96 44 3.73 2.65 -6 -6 -6 -6 -72 0 2 4 6 Barone 2007 47 6.84 3.96 44 3.73 2.66 -6 -6 -2 0 2 4 6 Cascella 2005 2.0 6.60 3.00 2.97 5.81 3.97 -1.61 6.01 -2.23 1.15 1.15 1.15 1.16 1.16 1.16 1.15 1.16 1.		Cheng 2002	28	-1.94	6.62	28	-5.83	8.11			-	0.52	[-0.02; 1.05
Barcone effects model 2426 1475		Recker 2004	1911	3.49	0.65	949	-0.55	0.45			1 B E	6.83	[6.64; 7.03
Random effects model 2426 1475 Heterogeneity: l ² = 100%, l ² = 6.26, p = 0 -6 - 4 - 2 0 2 4 6 Barone 2007 47 6.84 3.95 44 3.73 2.65 -6 -72 0 2 4 6 Barone 2007 47 6.84 3.95 44 3.73 2.65 -6 -6 -2 0 2 4 6 Barone 2002 40 4.77 10.05 40 2.96 6.04 -2.23 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.16 1.15 1.15 1.14 1.02 2.03 1.22 1.14 1.03 1.03 3.00 49 -5.40 2.00 -3.44 1.14 1.09 1.04 3.08 2.00 3.24 + 4.14 1.02 3.04 1.04 2.00 3.24 + 4.14 1.03 2.04 3.00 1.02 3.04 1.04 3.04 1.0												an e se s	- 8 0
Barone 2007 47 6.84 3.96 44 3.73 2.65 4.60 0.91 104 Barone 2007 3.2 6.60 3.00 20 6.00 3.20 3.95 - - - - - 0.91 104 105 Cascella 2005 2.0 6.60 3.00 20 -1.50 2.80 - - - - 2.74 11.51 11.11 11.51 11.51 11.51 11.51 11.51 11.51 11.51 11.56 - 2.93 2.24 (1.7 2.93 12.24 (1.7 2.93 12.24 1.65 - - 4.69 17.7 1.59 3.00		Random effects model Heterogeneity: $l^2 = 100\%$,	$\frac{2426}{\hat{t}} = 6.2$	26, p = 0		1475			-			2.57	[0.82; 4.31
Baron 2007 47 6.84 3.86 44 3.73 2.65 1 0.91 0.01 Bell 2003 32 6.60 3.00 32 0.90 1.39 1.49 1.69 1.49 1.69 1.49 1.69 1.49 1.69 1.49 1.69 1.49 1.69 1.62 2.46 4.47 1.03 1.69 1.62 2.46 4.47 1.03 1.69 6.62 32 0.40 0.32 1.41 1.41 1.13 1.13 1.63 0.55	2	1970 ht - 5	201	2024				_	-6 -	4 -2	0 2 4 6		
Bell 2002 32 6.50 4.00 32 0.90 3.39 + 1.49 [65 Brags 2003 39 7.72 5.83 39 1.63 6.64 - 2.274 [11] Brags 2003 39 7.72 5.83 39 1.63 6.64 - - 2.24 1.13 Lipviti 1997 50 15.88 1005 50 -2.87 6.04 - - 2.24 1.13 Mecling 2009 77 370 0.59 83 -0.40 0.32 - - 8.69 1.72 Shiots 2001 20 10.34 5.68 20 -1.11 5.05 - - 3.47 123 Yan 2009 280 4.87 4.87 120 1.76 2.20 - 3.47 123 Yan 2009 4.81 4.42 1.21 2.00 5.74 0.02 1.03 - 6.62 1.64 Gachar 2004 131 6.66 3.06 74 0.42 2.76 - 2.12		Barone 2007	47	6.84	3.96	44	3.73	2.65			= :	0.91	[0.48; 1.34
LBMD Cascella 2005 20 6.60 3.00 20 -1.50 2.80 + 2.74 [13] Ivamoto 2002 40 4.77 10.05 40 2.96 6.64 - 0.22 [-0.2] 2.24 [13] 1.05 40 2.96 6.64 - 2.23 [-0.2] [-1.6] 1.15 I.1		Bell 2002	32	6.50	4.00	32	0.90	3.39			+	1.49	[0.93; 2.05
Brage 2003 39 7.72 5.83 39 -1.63 6.45 -1.51 [1.10] Lyrris 1997 50 15.88 1005 50 -2.87 6.04 -2.23 -1.03 0.22 1-0.22 2.93 1.24 1.15 5.93 2.93 1.24 1.75 2.93 1.24 1.75 2.93 1.24 1.75 2.93 1.24 1.75 2.93 1.24 1.75 2.93 1.24 1.75 2.93 1.24 1.75 2.93 1.24 1.75 2.93 1.24 1.75 2.93 1.24 1.75 2.93 1.24 1.75 2.93 1.24 1.75 2.93 1.24 1.75 2.93 1.24 1.75 2.93 1.24 1.76 2.93 1.24 1.76 2.93 1.24 1.76 2.93 1.24 1.20 1.75 0.26 1.72 0.26 1.72 0.26 1.72 0.26 1.74 1.21 1.14 1.93 0.24		Cascella 2005	20	6.60	3.00	20	-1.50	2.80			+	2.74	[1.85; 3.62
Bernoro 2002 40 4.79 100.5 40 2.96 6.04 9 2.23 102 Masud 2015 2 4 1.58 0.62 23 -0.40 0.55 -2.34 1.03 2.34 1.03 2.34 1.03 0.04 55 -2.34 1.03 2.34 1.03 0.04 0.32 2.34 1.14 1.03 3.06 3.		Braga 2003	39	7.72	5.83	39	-1.63	6.45			*	1.51	[1.00; 2.01
LBMD LBMD LBMD LBMD Analog 2009 77 370 0.59 83 -0.40 0.32 Popp 2013 54 9.58 0.44 53 1.38 0.66 Popp 2013 54 9.58 0.44 53 1.38 0.66 Popp 2013 54 9.58 0.44 53 1.38 0.66 Popp 2013 24 0.247 0.467 220 0.40 0.302 Tanakal 2007 30 3.10 3.00 49 -5.40 2.00 Pro 2011 90 3.66 3.68 90 1.56 5.55 Por 2021 129 3.52 4.82 130 2.00 5.74 Pop 2021 129 3.52 4.82 130 2.00 5.74 Popp 2010 55 4.50 5.50 Por 2021 129 3.52 4.82 130 2.00 5.74 Popp 2010 55 4.50 5.50 Por 2022 129 3.52 4.82 130 2.00 5.74 Popp 2010 55 4.50 5.50 Por 2021 129 3.52 4.82 130 2.00 5.74 Popp 2010 55 4.50 5.50 Por 2021 129 3.52 4.82 130 2.00 5.74 Popp 2010 55 4.50 5.50 Por 2022 129 3.52 4.82 130 2.00 5.74 Popp 2010 55 4.50 5.50 Por 2022 129 3.52 4.82 130 2.00 5.74 Popp 2010 55 4.50 5.50 Por 2022 129 3.52 4.82 130 2.00 5.74 Popp 2010 55 4.50 5.50 Por 2022 129 3.52 4.82 130 2.00 5.74 Popp 2010 55 4.50 5.50 Popp 2010 53 4.50 53 2.00 Popp 2010 53 4.50 53 2.20 7.50 5.56 Popp 2010 54 4.00 1.20 0.20 2.40 2.10 Popp 2010 53 4.52 0.77 28 -2.55 6.10 Popp 2010 54 1.221 20 1.33 1.20 Popp 2010 54 1.52 0.77 28 -2.55 6.10 Popp 2010 54 1.221 20 1.33 1.20 Popp 2010 54 1.211 20 1.33 1.20 Popp 2010 54 1.221 20 1.33 1.20 Popp 2010 54 1.221 20 1.33 1.20 Popp 2010 54 1.211 20 1.33 1.20 Popp 2010 205 2.33 -101 0.22 Popp 201 2.56 0.01 2.90 0.28 2.55 0.01 2.90 0.28 2.55 0.01 1.90 Popp 201 2.90 0.97 7.227 0.15 Popp 202 2.56 0.01 2.		Iwamoto 2002	40	4.79	10.05	40	2.96	6.04			6 1	0.22	I-0.22: 0.66
Mand 2015 24 198 0.52 23 0.40 0.05 Macking 2009 77 3.70 0.59 83 -0.40 0.32 Macking 2009 77 3.70 0.59 83 -0.40 0.32 Shiot 2001 20 10.34 3.68 20 -11 5.66 Shiot 2007 30 3.66 3.68 90 1.56 5.65 Pra 2022 129 3.52 4.82 10.76 7.30 0.26 -0.34 Pra 2022 129 3.52 4.82 10.2 0.74 -0.26 -0.03 Prag 2022 129 3.52 4.82 10.76 7.30 0.99 -0.63 10.2 Adami 2008 50 3.39 0.48 44 0.35 0.48 -7.40 16.62 Greenspan 2016 55 4.50 5.06 67 7.73 6.69 -4.10 15.8 Barone 2007 47 2.21 4.26		Lyritis 1997	50	15.88	10.05	50	-2.87	6.04				2.24	1 74: 2 75
Hackelung 2009 72 7.0 0.02 83 0.40 0.03 + 8.99 174 Popp 2013 54 9.88 0.44 53 1.38 0.66 1.44 1.15		Maeud 2015	24	1 08	0.62	23	-0.40	0.05			+	2 03	[2.00: 3.77
Bitcumg 2009 77 3.00 0.39 33 0.00 0.22 1 4.00 112 Binda 2001 20 10.34 3.66 20 -11 5.05 -10.35 3.65 122 Mask 2007 30 3.10 3.00 3.00 3.00 3.00 3.01 3.06 3.02 -1.14 105 Van 2009 20 4.87 4.67 280 0.40 3.02 -1.14 105 Perg 2012 129 3.52 4.82 130 200 5.74 0.26 -0.23 Perg 2012 129 3.52 4.82 130 200 5.74 0.02 -7.70 0.26 160 Cheng 2002 128 5.00 6.77 0.36 6.69 1.0 2.2 1.14 105 Recker 2006 102 2.40 0.57 4.00 91 4.14 0.35 1.0 15 Recker 2007 4.7 2.21 4		Masura 2000	24	2.70	0.02	23	-0.40	0.95				2.95	[2.09, 3.77
Biola 201 34 9.38 0.44 93 1.38 0.06		Deep 2012	11	5.70	0.59	83	-0.40	0.52			and the second	0.09	[7.68; 9.70
Banola 2001 20 0.34 3.68 20 -6.11 5.05 ++ 3.66 [27] LBMD Yan 2009 200 4.87 4.67 280 0.40 3.02 1.14 [05] Dundar 2009 41 4.42 11.24 20 1.76 7.20 0.26 1.01 0.22 1.02 0.26 1.01 0.32 0.26 1.01 0.32 0.26 1.01 0.28 1.01 0.32 0.26 1.02 0.26 1.02 0.26 1.01 0.32 0.26 1.02 0.26 1.01 0.32 0.26 1.04 0.26 1.02 0.26 1.02 0.26 1.04 0.26 1.04 1.05 0.28 1.06 1.05 0.28 1.06 1.05 1.0 1.05 1.0 1.05 1.0 1.0 3.02 [11.61] 1.06 1.05 1.0 1.0 3.02 [11.61] 1.0 1.01 3.02 [11.61] 1.01		Popp 2013	54	9.58	0.44	53	1.38	0.66				14.54	[12.52; 16.56
LBMD Tanakol 2007 30 3.10 3.00 49 -5.40 2.00 47 3.47 [27] LBMD Yan 2009 280 4.87 4.76 280 4.67 280 4.67 280 4.66 5.05 0.34 100 Dundar 2009 41 4.42 120 1.76 7.20 0.28 100 2.05 7.44 100 0.28 10.29 10.4 0.28 10.29 10.4 10.29 10.4 10.29 10.4 10.22 10.29 10.6 10.2 10.4 10.2 10.6 10.2 10.6 10.2 10.6 10.2 10.6 10.6 10.2 10.6 10.0		Shiota 2001	20	10.34	3.68	20	-6.11	5.05			1 **	3.65	2.61; 4.69
LBMD Yan 2009 280 4.87 4.67 280 0.40 302 11.14 [05] Dundar 2009 41 4.42 11.24 20 1.56 505 0.261 0.26 [-0.2] Peng 2022 129 3.52 4.82 130 2.00 5.74 0.26 [-0.2] Recker 2004 1911 4.43 0.59 949 1.01 0.32 0.66 1.66 Greenspan 2016 55 4.50 0.50 67 0.73 6.69 + 7.40 [62 Rhee 2006 102 2.40 0.50 97 0.36 0.49 + 4.10 153 Heterogeneity: l ² 996 4.00 91 4.14 3.39 0.65 10.3 Heterogeneity: l ² 996 4.00 91 4.14 3.39 0.65 10.3 Random effects model 3239 228 5.80 4.97 1.60 1.60 1.50 1.60 1.50 1.50 1.50 1.50 1.50 1.50		Tanakol 2007	30	3.10	3.00	49	-5.40	2.00			Lt	3.47	2.75; 4.19
You 2011 90 3.06 3.68 90 1.56 5.05 0.34 [0.6] Dundar 2009 41 4.22 1.24 20 1.76 7.20 0.23 [0.6] 0.63 [0.5]	LBMD	Yan 2009	280	4.87	4.67	280	0.40	3.02				1.14	[0.96; 1.31
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	LOMD	You 2011	90	3.06	3.68	90	1.56	5.05			60 E	0.34	0.04; 0.63
Peng 2022 129 3.52 4.82 130 2.00 5.74 0.32 Recker 2004 1911 4.43 0.59 949 101 0.32 + 7.40 6.62 16.4 Greenspan 2016 55 4.50 5.00 67 0.73 6.69 - 0.63 102 Leung 2004 31 6.66 3.06 34 0.42 2.76 + 2.12 115 Rhe 2006 102 2.40 0.50 97 0.36 0.49 + 4.10 158 Cheng 3002 28 5.00 4.37 28 -2.58 4.97 + 4.10 158 Hetrogeneity: l ² = 99%<, l ² = 1.115, P = 0 - - - - 0.65 10.3 10 15 Barone 2007 47 2.21 4.25 44 2.16 2.12 0.65 10.3 0.01 - 0.65 10.3 0.75 10.75 0.75		Dundar 2009	41	4.42	11.24	20	1.76	7.20			÷ i	0.26	[-0.28; 0.80
Recker 2004 1911 4.43 0.59 949 1.01 0.32 -5 -6.62 1.64 Adami 2008 50 3.93 0.48 44 0.35 0.48 -4 0.63 10 Carcenspan 2016 55 4.50 0.703 6.69 - - 1.60 0.63 10 Rhee 2006 102 2.40 0.50 97 0.36 0.49 + 4.10 1.80 1.60 1.60 1.65 1.60 1.65 1.60 1.65 1.65 1.60 1.65 1.60 1.65 1.60 1.65 1.60 1.65		Peng 2022	129	3.52	4.82	130	2.00	5.74			(a) E	0.29	[0.04; 0.53
Adami 2008 50 3.93 0.48 44 0.35 0.48 + 7.40 [62] Greenspan 2016 55 4.50 5.00 67 0.73 6.69 0.42 2.76 1.12 2.12 1.15 Rhee 2006 102 2.40 0.50 97 0.36 0.49 2.12 1.16 1.86 1.66 1.08 1.66 1.03 1.16 1.16 1.66 1.03 1.16 1.66 1.03 1.16 1.16 1.16 1.16 1.16 1.02 1.16		Recker 2004	1911	4.43	0.59	949	1.01	0.32				6.62	16.43: 6.81
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Adami 2008	50	3.93	0.48	44	0.35	0.48				7 40	[6 24: 8 55
Cheenspan 2016 33 4.30 300 30 0.40 300 0.40 0.40 0.40 0.40 0.41 15 Rhec 2006 102 2.40 0.50 97 0.36 0.49 + 4.10 15 Cherg 2002 28 5.00 4.77 2.82 4.97 + 1.60 0.65 103 Felsenberg 2011 89 6.57 4.00 91 4.14 339 0.65 103 10 15 Random effects model 3239 2283 - - - - 15 - 0.01 10		Creaman 2016	EE	4 50	5.00	67	0.73	6.60			1	0.63	10.26, 0.00
Letting 2004 31 6.06 3.00 34 0.42 2.76		Greenspan 2016	35	4.50	5.00	0/	0.75	0.09			1.1	0.05	[0.26; 0.99
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Leung 2004	31	0.00	3.06	34	0.42	2.70			- T.	2.12	[1.51; 2.74
$fBMD = \frac{Cheng 2002}{Pelsenberg 2011} 28 5.00 4.37 28 -2.58 4.97 + 1.60 [05] Pelsenberg 2011 89 6.57 4.00 91 4.14 3.39 0.65 [03] Pelsenberg 2011 89 6.57 4.00 91 4.14 3.39 0.65 [03] Pelsenberg 2011 15 P = 0 $		Rhee 2006	102	2.40	0.50	97	0.36	0.49				4.10	3.61; 4.60
Peterberg 2011 89 6.57 4.00 91 4.14 3.39 0.65 [10] Random effects model 3239 2283		Cheng 2002	28	5.00	4.37	28	-2.58	4.97			* :	1.60	[0.99; 2.20
Random effects model 3239 2283 i i 3.02 [1.61] Heterogeneity: l ² = 99% , t ² = 11.15 , p = 0 -15 -10 -5 0 5 10 15 Barone 2007 47 2.21 4.25 44 2.16 2.12 Bell 2002 32 4.50 5.66 33 0.50 6.32 0.66 [0.01] Barone 2007 37 3.34 0.45 19 -0.85 1.08 0.66 [0.01] 0.76 [0.01] 0.76 [0.01] 0.76 [0.01] 0.76 [0.01] 0.76 [0.01] 1.32 [0.01] 0.75 [0.01] 1.32 </td <td></td> <td>Felsenberg 2011</td> <td>89</td> <td>6.57</td> <td>4.00</td> <td>91</td> <td>4.14</td> <td>3.39</td> <td></td> <td></td> <td>P</td> <td>0.65</td> <td>0.35; 0.95</td>		Felsenberg 2011	89	6.57	4.00	91	4.14	3.39			P	0.65	0.35; 0.95
reference generative $T = 2996$, $T = 11.15$, $p = 0$ -15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 Barone 2007 47 2.21 4.25 44 2.16 2.12 Barone 2007 47 2.21 4.25 44 2.16 2.12 Barone 2007 20 4.10 2.15 -10 -5 0 5 10 15 Barone 2007 4.15 -10 -5 0 5 10 15 Barone 2007 4.15 -10 -5 0 5 10 15 Barone 2007 4.15 -10 -5 0 5 10 15 Barone 2007 4.16 -5 0 5 10 15 Barone 2006 3 2.4 5.0 6.40 Dobinig 2006 3 7 3.34 0.45 10.8 Mach cumg 2004 3 11.82 3.76 44 1.11 4.62 Lyrinis 1997 5 0.01		Random effects model	3239			2283					\$	3.02	[1.61; 4.42
$fBMD = \begin{array}{ccccccccccccccccccccccccccccccccccc$		Preterogeneity: $T = 99\%$, t	= 11.1	5, p =0					-15 -1	0 -5	0 5 10 15	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Barone 2007	47	2.21	4.25	44	2.16	2.12			† i	0.01	[-0.40; 0.43
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Bell 2002	32	4.50	5.66	33	0.50	6.32			+ :	0.66	[0.16; 1.16
Braga 2003 39 6.37 5.81 39 -1.80 6.40 Dobnig 2006 37 3.34 0.45 19 -0.85 1.08 Greenspan 2016 54 0.10 4.95 63 -2.88 5.68 Leung 2004 31 1.82 3.76 34 1.11 4.62 Masud 2015 24 5.22 0.87 20 -5.06 0.71 Maclung 2009 77 1.09 2.87 83 -0.75 4.16 Dundar 2009 280 2.47 4.45 280 0.31 3.32 1.28 Masud 2017 30 3.20 2.90 49 -6.00 2.70 3.28 12.21 Yan 2009 280 2.47 4.45 280 0.31 3.73 0.53 10.3 Dundar 2009 41 3.90 12.21 20 1.33 11.20 -5 0.5 -0.5 Reader 2004 1911 0.96 0.68 </td <td></td> <td>Cascella 2005</td> <td>20</td> <td>4.10</td> <td>2.30</td> <td>20</td> <td>2.40</td> <td>2.10</td> <td></td> <td></td> <td>-+- i</td> <td>0.76</td> <td>0.11; 1.40</td>		Cascella 2005	20	4.10	2.30	20	2.40	2.10			-+- i	0.76	0.11; 1.40
$fBMD = \begin{array}{ccccccccccccccccccccccccccccccccccc$		Braga 2003	39	6.37	5.81	39	-1.80	6.40			+	1.32	0.83; 1.82
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Dobnig 2006	37	3.34	0.45	19	-0.85	1.08				5.71	[4.48; 6.93
Image: Head of the second s		Greenspan 2016	54	0.10	4.95	63	-2.88	5.68			*	0.55	[0.18: 0.92
Ipritis 1997 50 1.85 0.87 50 -5.06 0.71 Masud 2015 24 5.22 0.87 23 2.72 0.71 Masud 2015 24 5.22 0.87 23 2.72 0.71 Masud 2009 77 1.09 2.87 83 -0.75 4.16 Tanakol 2007 30 3.20 2.90 49 -6.00 2.70 Yan 2009 2.80 2.47 4.45 2.80 0.31 3.73 Cheng 2002 28 1.65 6.77 28 -2.85 6.10 Dundar 2009 41 3.90 12.21 20 1.33 11.20 Recker 2004 1911 0.96 0.68 949 -1.15 0.36 Barone 2007 47 3.31 4.02 44 2.33 1.80 Bel 2002 33 -1.10 3.96 32 4.10 4.03 4.11 Bel 2002 33 -1.10 3.96 32 4.10 4.03 4.01 4.03 4.14 4.69		Leung 2004	31	1.82	3.76	34	1.11	4.62			+ :	0.17	[-0.32:0.6
fBMD Masud 2015 24 5.22 0.87 23 2.72 0.71 Masud 2015 24 5.22 0.87 23 2.72 0.71 Masud 2015 24 5.22 0.87 23 2.72 0.71 Maculung 2009 77 1.09 2.87 83 -0.75 4.16 Tanakol 2007 30 3.20 2.90 49 -6.00 2.70 + 3.28 [2. Yan 2009 280 2.47 4.45 280 0.31 3.73 - 0.53 [0. Dundar 2009 41 3.90 12.21 20 1.33 11.20 - - 3.56 [3.3 Readom effects model 2701 1734 - - - - - - 0.31 [-0.11] Barone 2007 47 3.31 4.02 44 2.33 1.80 - - - - 0.31 [-0.11] Bell 2002 33 -1.10 3.96 32 4.10 4.03 4.10 4.02		Lyritis 1997	50	1.85	0.87	50	-5.06	0.71			<u></u>	8 64	17 35 9 97
fBMD Maska 2015 24 2.22 0.39 23 2.72 0.71 Mcclung 2009 77 1.09 2.87 83 -0.75 4.16 Tanakol 2007 30 3.20 2.90 49 -6.00 2.70 Yan 2009 280 2.47 4.45 280 0.31 3.73 Cheng 2002 28 1.65 6.77 28 -2.85 6.10 Dundar 2009 41 3.90 12.21 20 1.33 11.20 Recker 2004 1911 0.96 0.68 949 -1.15 0.36 Heterogeneity: l^2 =99% \tilde{t} 5.62 p <0.01		Maguel 2015	24	5 22	0.97	23	2 72	0.71			1	3.00	1 2 22 3 06
ThipBMD Rectang 2007 17 1.09 2.00 49 -6.00 2.70 Tanakol 2007 30 3.20 2.90 49 -6.00 2.70 Yan 2009 2.80 2.47 4.45 2.80 0.31 3.73 Cheng 2002 2.8 1.65 6.77 2.8 -2.85 6.10 Dundar 2009 41 3.90 12.21 20 1.33 11.20 Recker 2004 1911 0.96 0.68 949 -1.15 0.36 Random effects model 2701 1734 Heterogeneity: $l^2 = 99\%$, $\vec{t} = 5.62$, $p < 0.01$ Adami 2008 50 2.15 0.48 44 0.03 0.41 Barone 2007 47 3.31 4.02 44 2.33 1.80 Barone 2007 47 3.31 4.02 44 2.33 1.80 Barone 2007 47 3.31 4.02 44 2.33 1.80 Recker 2004 31 2.71 2.18 34 0.33 4.77 Mcclung 2009 77 1.49 2.35 83 -0.93 2.07 Rhee 2006 102 0.29 0.05 97 -0.27 0.15 Yan 2009 2.80 2.56 4.01 280 0.28 3.25 You 2011 90 1.91 4.01 90 0.78 3.25	fBMD	Meelung 2000	41 77	1.00	2.67	63	-0.75	4.16				0.51	10.10.0.97
ThipBMD ThipBMD $I_{AC} = 000 + 200$		Tanakal 2007	11	1.09	2.8/	40	-6.00	1.10				2.00	1 0.19; 0.82
ThipBMD $P_{1} = 2009 = 280 = 2.47 = 4.45 = 280 = 0.31 = 3.73 = 0.53 = [0.72] = 0.51 = 0.52 = 0.51 $		Tanakoi 2007	30	5.20	2.90	49	-6.00	2.70			1	5.28	[2.59; 5.97
$\begin{array}{c} \mbox{Cheng 2002} & 28 & 1.65 & 6.77 & 28 & -2.85 & 6.10 \\ \mbox{Dundar 2009} & 41 & 3.90 & 12.21 & 20 & 1.33 & 11.20 \\ \mbox{Recker 2004} & 1911 & 0.96 & 0.68 & 949 & -1.15 & 0.36 \\ \hline \mbox{Random effects model 2701} & 1734 \\ \mbox{Heterogeneity: } l^2 = 99\%, \ \boldsymbol{\hat{t}} = 5.62, \ \boldsymbol{p} < 0.01 \\ \hline \mbox{Barone 2007} & 47 & 3.31 & 4.02 & 44 & 2.33 & 1.80 \\ \mbox{Barone 2007} & 47 & 3.31 & 4.02 & 44 & 2.33 & 1.80 \\ \mbox{Barone 2007} & 47 & 3.31 & 4.02 & 44 & 2.33 & 1.80 \\ \mbox{Greenspan 2016} & 54 & 2.44 & 3.98 & 63 & -1.34 & 5.00 \\ \mbox{Greenspan 2016} & 54 & 2.44 & 3.98 & 63 & -1.34 & 5.00 \\ \mbox{Leung 2004} & 31 & 2.71 & 2.18 & 34 & 0.33 & 4.77 \\ \mbox{Mcclung 2009} & 77 & 1.49 & 2.35 & 83 & -0.93 & 2.07 \\ \mbox{Mhee 2006} & 102 & 0.29 & 0.05 & 97 & -0.27 & 0.15 \\ \mbox{Yan 2009} & 280 & 2.56 & 4.01 & 280 & 0.28 & 3.25 \\ \mbox{You 2011} & 90 & 1.91 & 4.01 & 90 & 0.78 & 3.25 \end{array}$		ran 2009	280	2.47	4.45	280	0.31	3.73			(C)	0.53	0.36; 0.69
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Cheng 2002	28	1.65	6.77	28	-2.85	6.10			1 · · ·	0.69	0.15; 1.23
Recker 2004 1911 0.68 949 -1.15 0.36 Random effects model 2701 1734 Heterogeneity: $l^2 = 99\%$, $\vec{t} = 5.62$, $p < 0.01$ 1734 Adami 2008 50 2.15 0.48 44 0.30 1.93 [0.72 Adami 2008 50 2.15 0.48 44 0.31 [-0.1] Madami 2007 47 3.35 2.469 [3.89 Barone 2007 47 3.33 -1.10 3.96 3.27 Meclung 2004 31 2.15 0.48 4.03 4.69 [3.89 0.31 [-0.11 Meclung 2004 31 2.15 4.109 0.76 -1.09 [0.72 Meclung 2009 77		Dundar 2009	41	3.90	12.21	20	1.33	11.20			T = _	0.21	[-0.32; 0.75
Random effects model 2701 1734 Heterogeneity: $l^2 = 99\%$, $\hat{t} = 5.62$, $p < 0.01$ 1.93 [0.72] Adami 2008 50 2.15 0.48 44 0.03 0.41 Barone 2007 47 3.31 4.02 44 2.33 1.80 -5 0 5 Bell 2002 33 -1.10 3.96 52 4.10 4.69 [3.89] Greenspan 2016 54 2.44 3.98 63 -1.34 500 0.31 [-0.11] Mcclung 2009 77 1.49 2.35 83 -0.93 2.07 0.82 [0.44] Mcclung 2009 77 1.49 2.35 83 -0.93 2.07 0.62 [0.41] Machani 2009 2.80 2.56 4.01 280 2.85 0.32 0.34 0.76 0.62 [0.47] ThipBMD Res 2006 102 0.29 0.05 97 0.28 3.25		Recker 2004	1911	0.96	0.68	949	-1.15	0.36				3.56	[3.43; 3.68
Adami 2008 50 2.15 0.48 44 0.03 0.41 Barone 2007 47 3.31 4.02 44 2.33 1.80 Bal 2002 33 -1.10 3.96 32 4.10 4.02		Random effects model Heterogeneity: $J^2 = 900\%$	2701 = 5.62	p < 0.01		1734				r	\$	1.93	[0.72; 3.15
Adami 2008 50 2.15 0.48 44 0.03 0.41 4.69 [3.89 Barone 2007 47 3.31 4.02 44 2.33 1.80 4.69 [3.89 Bell 2002 33 -1.10 3.96 32 4.10 4.02 + -1.29 [-1.82; Greenspan 2016 54 2.44 3.98 63 -1.34 5.00 + 0.82 [0.41 Leung 2004 31 2.71 2.18 34 0.33 4.77 - 0.62 [0.13 Mcclung 2009 77 1.49 2.35 83 -0.93 2.07 + 1.09 [0.76 ThipBMD Rhee 2006 102 0.29 0.55 97 -0.27 0.15 + 5.04 [4.47 Yan 2009 280 2.56 4.01 280 0.28 3.25 + 0.31 [0.01 You 2011 90 1.91 <td< td=""><td></td><td></td><td>- 35337</td><td>••</td><td></td><td></td><td></td><td></td><td></td><td>-5</td><td>0 5</td><td></td><td></td></td<>			- 35337	••						-5	0 5		
Barone 2007 47 3.31 4.02 44 2.33 1.80 + 0.31 [-0.11] Bell 2002 33 -1.10 3.96 32 4.10 4.02 + -1.29 [-1.12] [-1.12] [-1.82] Greenspan 2016 54 2.44 3.98 63 -1.34 5.00 + 0.82 [0.44] Leung 2004 31 2.71 2.18 34 0.33 4.77 - 0.62 [0.13] Mcchung 2009 77 1.49 2.35 83 -0.93 2.07 + 1.09 [0.76] Yan 2009 102 0.29 0.05 97 -0.27 0.15 + 5.04 [4.47] You 2011 90 1.91 4.01 90 0.78 3.25 + 0.62 [0.41]		Adami 2008	50	2,15	0.48	44	0.03	0.41				4.69	[3.89; 5.48]
Bell 2002 33 -1.10 3.96 32 4.10 4.02 + -1.29 [-1.82; Greenspan 2016 54 2.44 3.98 63 -1.34 5.00 + 0.82 [0.44] Leung 2004 31 2.71 2.18 34 0.33 4.77 + 0.62 [0.13] Mcclung 2009 77 1.49 2.35 83 -0.93 2.07 + 1.09 [0.76] Mcclung 2009 280 2.56 4.01 280 0.28 3.25 = 0.62 [0.41] Yau 2009 280 2.56 4.01 90 0.28 3.25 = 0.62 [0.41] You 2011 90 1.91 4.01 90 0.78 3.25 = 0.31 [0.01]		Barone 2007	47	3.31	4.02	44	2.33	1.80			·	0.31	[-0.11; 0.72
Greenspan 2016 54 2.44 3.98 63 -1.34 5.00 + 0.82 [0.44] Leung 2004 31 2.71 2.18 34 0.33 4.77 + 0.62 [0.13] Mcclung 2009 77 1.49 2.35 83 -0.93 2.07 + 1.09 [0.76] Machang 2009 77 1.49 2.35 83 -0.27 0.15 + 5.04 [4.47] Yan 2009 280 2.56 4.01 280 3.25 - 0.62 [0.01] You 2011 90 1.91 4.01 90 0.78 3.25 + 0.31 [0.01]		Bell 2002	33	-1.10	3.96	32	4.10	4.02		-+-		-1.29	[-1.82; -0.75
Leung 2004 31 2.71 2.18 34 0.33 4.77 + 0.62 [0.13] Mcclung 2009 77 1.49 2.35 83 -0.93 2.07 + 1.09 [0.76] Mhee 2006 102 0.29 0.05 97 -0.27 0.15 + 5.04 [4.47] Yan 2009 280 2.56 4.01 280 0.28 3.25 - 0.62 [0.43] You 2011 90 1.91 4.01 90 0.78 3.25 - 0.31 [0.01]		Greenspan 2016	54	2.44	3.98	63	-1.34	5.00			+	0.82	[0.44; 1.20]
Mcclung 2009 77 1.49 2.35 83 -0.93 2.07 + 1.09 [0.76] ThipBMD Rhee 2006 102 0.29 0.05 97 -0.27 0.15 + - 5.04 [4.47] Yan 2009 280 2.56 4.01 280 0.28 3.25 Image: Constraint of the constrated of the constraint of the constraint of the constraint of the		Leung 2004	31	2.71	2.18	34	0.33	4.77				0.62	[0.13; 1.12]
ThipBMD Rhee 2006 102 0.29 0.05 97 -0.27 0.15		Mcclung 2009	77	1.49	2 35	83	-0.93	2.07			+	1.09	0.76: 1.42
Yan 2009 280 2.56 4.01 280 0.28 3.25 0.62 0.42 [147] Yan 2009 280 2.56 4.01 280 0.28 3.25 0.62 [0.45] You 2011 90 1.91 4.01 90 0.78 3.25 0.31 [0.01]	ThinBMD	Rhee 2006	102	0.29	0.05	07	-0.27	0.15				5.04	447 561
You 2011 90 1.91 4.01 90 0.78 3.25 • 0.31 [0.01	mpomo	Van 2000	200	3 54	4.03	200	0.27	3.35			100	0.62	[0.45, 0.70]
TOU 2011 90 1.91 4.01 90 0.78 3.25 . 0.31 [0.01		1an 2009	280	2.56	4.01	280	0.28	3.25			Ball.	0.62	[0.45; 0.79]
Recker 2004 1911 1.82 0.81 949 -1.35 0.30 :		rou 2011 Recker 2004	90	1.91	4.01	90 949	0.78	3.25				0.31	[0.01; 0.60]
Pandom effecte model 2675 1740 4.00 1949		Pandom effects made	1 267	1.02	0.01	4740	1.55	0.50			i nd	1 60	[1.12; 1.77]
Return effects model 26/5 1/16 1.68 [0.30; Heterogeneity: $l^2 = 100\%$, $\tilde{t} = 4.90$, $p = 0$ 1.68 [0.30;		Heterogeneity: $I^2 = 100\%$	$t^2 = 4.$	90, p = 0		1/16			1	-	\rightarrow	1.68	[0.50; 3.06
-4 -2 0 2 4		saatemaaanii Mii Shikaasii	-633 - 84	1992 - 19					-4	-2	0 2 4		

in osteocalcin (I² = 90.70%, p = 0.01; random effects model; SMD [95% CI] = -1.81 [-3.03, -0.59], p = 0.01,Low GRADE). The results indicated that although the combination of the two drugs was superior to monotherapy in terms of average changes in

osteocalcin levels, the SMD was limited. The analysis of percentage changes in osteocalcin, which included more participants, suggests that monotherapy was superior to combined therapy, indicating that the combined treatment of

	0 1-1-1	Ex	perimen	tal		Contro	4	Standardised Mean	SMD	95%-01
1	Study	Total	Mean	SD	Total	Mean	SD	Difference	SMD	5576-01
	Cascalla 2005	20	-4.86	4.16	20	1.00	3.90	<u></u> :]	-1.42	[-2 13: -0 72]
	Cascella 2005	50	-20.10	17.00	46	-17 70	18.00		-0.13	[-0.53: 0.27]
	Iwamoto 2014	50	-20.10	17.90	10	1.70	10.00		0.09	[-0.31, 0.49]
ALP	Lyritis 1997	50	-0.80	14.02	50	-1.70	5.77		0.08	[-0.01; 0.40]
	Tanakol 2007	30	8.10	30.20	49	37.00	68.69		-0.50	[-0.98; -0.04]
	Dundar 2009	41	-58.02	55.19	20	-8.63	58.37		-0.87	[-1.42, -0.51]
	Random effects mo	del 191			185				-0.52	[-1.02; -0.02]
	Heterogeneity: 1 ² = 78%	, τ ² = 0.26	, p < 0.	01				-2 -1 0 1 2	3	
	Cascella 2005	20	-3.90	2 01	20	-0.20	3.15	- 1	-1.16	[-1.84: -0.49]
	Cesareo 2014	15	-11.00	4 36	15	0.00	2.00		-3.16	[-4.27; -2.04]
	Leung 2004	31	4.02	3.20	34	1.13	5.92		0.59	[0.09; 1.09]
	Lyritis 1997	50	2.95	0.10	50	1.67	0.18	Ē	8.72	[7.43; 10.02]
steocalcin	Tanakol 2007	30	1.20	3.12	49	7.50	11.46		-0.67	[-1.14; -0.21]
(abs)	Dundar 2009	41	-1.21	1.47	20	0.05	0.82		-0.96	[-1.52; -0.40]
	Random effects mo	del 187			188				0.54	[-2.76; 3.84
	Heterogeneity: $I^2 = 9$	8%, τ²= 1	6.85,P<	0.01				-10 -5 0 5 10		
	Dobnig 2006	37	-23.10	3.80	19	-10.80	6.50	[-2.49	[-3.22; -1.76]
steocalcin	Matsumoto 2009	343	-51.22	30.74	331	-10.29	35.11	E	-1.24	[-1.41; -1.08]
(per)	Random effects mo	del 380			350				-1.81	[-3.03; -0.5
	Heterogeneity:12=91	$1\%, \tau^2 = 0.3$	71,p<0	0.01				-3 -2 -1 0 1 2 3	8	
	Yan 2009 Felsenberg 2011	280 140	-4.50 -3.50	5.29 4.20	280 139	-0.77 -1.75	5.03 4.87		-0.72 -0.38	[-0.89; -0.55 [-0.62; -0.15
sBALP (abs)	Nenonen 2002	75	-6.68	4.84	73	-2.07	6.03		-0.84	[-1.18; -0.50
	Random effects mo	del 495			492			\diamond	-0.64	[-0.90; -0.3
	Heterogeneity: $I^2 = 70$	%, τ ² = 0.0	4 , p=0.0	03				-1 -0.5 0 0.5 1		
	Recker 2006	360	-26.34	22.01	357	-23.84	21.92			[=0.26: 0.03]
	Rossini 2000	83	-26.52	15.99	41	-4.00	11.00		-0.11	[0.20, 0.05]
	Bell 2002	20	-46.30	9.24	22	-13.60	8.85		-3 55	[-1.90, -1.12]
	Recker 2006	360	-26.34	22.01	357	-23.84	21.92	- ∔ T	-0.11	[-0.26; 0.03]
SBALP	Rossini 2000	83	-26.52	15.99	41	-4.00	11.00	i	-1.54	[-1.96; -1.12]
(per)	Bell 2002	20	-46.30	9.24	22	-13.60	8.85	-	-3.55	[-4.55; -2.55]
(1)	Adami 2008	50	8.29	4.79	44	10.36	3.40		-0.49	[-0.90; -0.08]
	Braga 2003	39	-15.21	28.48	39	-5.43	41.88		-0.27	[-0.72; 0.18]
	Matsumoto 2009	343	-52.12	35.19	331	-15.85	34.93	-	-1.03	[-1.19; -0.87]
	You 2011	90	-16.20	4.20	90	-6.20	4.87		-2.19	[-2.56; -1.82]
	Random effects mo	del 1448	10. (C. 1990)		1344				-1.38	[-2.15; -0.61]
	Heterogeneity: $I^2 = 970$	%, T= 1.48	3, p < 0.0)1				-4 -2 0 2 4		

Forest plot for ALP,Osteocalcin (abs),Osteocalcin (per),sBALP (abs) and sBALP (per) changes.

VitD and bisphosphonates may not bring positive effects in improving patients' osteocalcin levels (Figure 4).

3.5.2 Pooled analysis for the changes in ALP and sBALP

In the analysis of ALP, five articles with a total of 376 patients were included. The results indicated that the combination of bisphosphonates and VitD was more effective than monotherapy with a significant difference ($I^2 = 78.40\%$, p = 0.01; random effects model; SMD [95% CI] = -0.52 [-1.02, -0.02], p = 0.04; as shown in Figure 5. Low GRADE). Similarly, three studies with a total of 987 patients provided data on the changes in mean sBSAP values ($I^2 = 70.30\%$, p = 0.03; random effects model; SMD [95% CI] = -0.64 [-0.90, -0.38], p < 0.01; as shown in Figure 5. Moderate GRADE). Two studies with a total of 750 patients provided data on the percentage change in sBALP ($I^2 = 97.00\%$,

	Study	E Total	Experime Mean	ntal SD	Total	Control Mean	SD	Standardised Me Difference	an	SMD	95%-CI
	C	20	1.24	1.0	20	0.04	1.50				
	Cascella 2005	20	-1.34	1.64	20	0.04	1.50	Ĩ		-0.86	[-1.51; -0.21]
	Cesareo 2014	15	-0.33	0.08	15	0.03	0.11	ing .		-3.64	[-4.86; -2.42]
	Greenspan 2016	71	-144.23	176.19	61	64.81	263.73			-0.94	[-1.30; -0.58]
sCTX	Olmos 2012	73	-0.41	0.27	67	-0.35	0.27	-		-0.22	[-0.55; 0.11]
(abs)	Dundar 2009	41	-0.28	0.32	20	0.05	0.09	*		-1.21	[-1.79; -0.63]
	Nenonen 2002	75	-0.36	0.16	73	-0.07	0.19	-		-1.64	[-2.02; -1.27]
	Karadag-saygi 2011	37	-1.80	1.31	34	-0.90	1.10			-0.73	[-1.22; -0.25]
	Random effects model	332		290				\diamond		-1 22	[-1 90· -0 54]
	Heterogeneity: $I^2 = 88\%$, τ^2	= 0.76 ,	p < 0.01							-1.22	1
	Adami 2008	50	4 42	3 39	44	11.66	3 54	-4 -2 0	2 .	-2.07	[_2 591 57]
	Braga 2003	30	-13 10	30.06	30	-4.85	24.48	→:		-0.20	[2.30, 1.37]
	Diaga 2000	27	10.19	30.00	10	4.05	12.20	-		-0.30	[-0.75; 0.15]
	Dobnig 2006	57	-42.70	5.10	19	-12.50	12.20			-4.00	[-4.95; -3.06]
SCTX	Mcclung 2009	77	-56.77	34.00	83	-6.75	48.09	+		-1.19	[-1.52; -0.85]
SCTX				2100	00	17.90	48.09	1. Sec. 1. Sec		-1.18	[-1.50; -0.86]
sCTX (per)	You 2011	90	-31.40	54.00	20	17120		+		1110	
sCTX (per)	You 2011 Recker 2004	90 1911	-31.40 -42.57	34.00 34.00	949	-33.06	48.09	Ē		-0.24	[-0.32; -0.16]
sCTX (per)	You 2011 Recker 2004	90 1911	-31.40 -42.57	34.00 34.00	949	-33.06	48.09			-0.24	[-0.32; -0.16]
sCTX (per)	You 2011 Recker 2004 Random effects model	90 1911 2204	-31.40 -42.57	34.00 34.00	949 1224	-33.06	48.09			-0.24	[-0.32; -0.16] [-2.52; -0.38
sCTX (per)	You 2011 Recker 2004 Random effects model Heterogeneity: $I^2 = 97\%$, $\tau^2 =$	90 1911 2204 1.71 , <i>p</i>	-31.40 -42.57	34.00 34.00	949 1224	-33.06	48.09		2 4	-0.24 -1.45	[-0.32; -0.16] [-2.52; -0.38
sCTX (per) JriNTX (abs)	You 2011 Recker 2004 Random effects model Heterogeneity: $I^2 = 97\%$, $\tau^2 =$ Felsenberg 2011	90 1911 2204 1.71 , p 140	-31.40 -42.57 <0.01 -4.76	34.00 34.00 3.75	949 1224 139	-33.06	48.09		2 4	-0.24 -1.45	[-0.32; -0.16] [-2.52; -0.38 [-0.47; 0.01]
sCTX (per) (riNTX (abs)	You 2011 Recker 2004 Random effects model Heterogeneity: $I^2 = 97\%$, $r^2 =$ Felsenberg 2011	90 1911 2204 1.71 , <i>p</i> 140	-31.40 -42.57 <<0.01 -4.76	34.00 34.00 3.75	949 1224 139	-33.06	48.09		1 2 4 0.2 0.	-0.24 -1.45 -0.23	[-0.32; -0.16] [-2.52; -0.38
sCTX (per) IriNTX (abs)	You 2011 Recker 2004 Random effects model Heterogeneity: $I^2 = 97\%$, $\tau^2 =$ Felsenberg 2011 Iwamoto 2014	90 1911 2204 1.71 , p 140 50	-31.40 -42.57 -4.76 -33.10	34.00 34.00 3.75 28.70	949 1224 139 46	-33.06 -3.79 -40.00	48.09 4.61 20.40		1 2 4 0.2 0.	-0.24 -1.45 -0.23	[-0.32; -0.16] [-2.52; -0.38 [-0.47; 0.01] [-0.13; 0.68]
sCTX (per) (riNTX (abs)	You 2011 Recker 2004 Random effects model Heterogeneity: $I^2 = 97\%$, $\tau^2 =$ Felsenberg 2011 Iwamoto 2014 Iwamoto 2002	90 1911 2204 1.71 , p 140 50 40	-31.40 -42.57 -4.76 -33.10 -38.10	34.00 34.00 3.75 28.70 21.09	949 1224 139 46 40	-33.06 -3.79 -40.00 -27.10	48.09 4.61 20.40 19.02		1 2 4 0.2 0.	-0.24 -1.45 -0.23 -0.23	[-0.32; -0.16] [-2.52; -0.38 [-0.47; 0.01] [-0.13; 0.68] [-0.99; -0.10]
sCTX (per) riNTX (abs)	You 2011 Recker 2004 Random effects model Heterogeneity: $I^2 = 97\%$, $\tau^2 =$ Felsenberg 2011 Iwamoto 2014 Iwamoto 2002 Leung 2004	90 1911 2204 1.71 , p 140 50 40 31	-31.40 -42.57 -4.76 -33.10 -38.10 -27.80	34.00 34.00 3.75 28.70 21.09 35.23	949 1224 139 46 40 34	-33.06 -3.79 -40.00 -27.10 5.65	48.09 4.61 20.40 19.02 51.08		1 2 4 0.2 0.	-0.24 -1.45 -0.23 4 -0.27 -0.54 -0.75	[-0.32; -0.16] [-2.52; -0.38 [-0.47; 0.01] [-0.13; 0.68] [-0.99; -0.10] [-1.25; -0.24]
sCTX (per) (riNTX (abs)	You 2011 Recker 2004 Random effects model Heterogeneity: $I^2 = 97\%$, $\tau^2 =$ Felsenberg 2011 Iwamoto 2014 Iwamoto 2002 Leung 2004 Matsumoto 2009	90 1911 2204 1.71 , p 140 50 40 31 343	-31.40 -42.57 -4.76 -33.10 -38.10 -27.80 -57.14	34.00 34.00 3.75 28.70 21.09 35.23 35.74	949 1224 139 46 40 34 331	-33.06 -3.79 -40.00 -27.10 5.65 -8.02	48.09 4.61 20.40 19.02 51.08 38.02		1 2 4 0.2 0.	-0.24 -1.45 -0.23 4 -0.27 -0.54 -0.75 -1.33	[-0.32; -0.16] [-2.52; -0.38 [-0.47; 0.01] [-0.13; 0.68] [-0.99; -0.10] [-1.25; -0.24] [-1.50; -1.16]
sCTX (per) (riNTX (abs)	You 2011 Recker 2004 Random effects model Heterogeneity: $I^2 = 97\%$, $\tau^2 =$ Felsenberg 2011 Iwamoto 2014 Iwamoto 2002 Leung 2004 Matsumoto 2009 Recker 2006	90 1911 2204 1.71 , p 140 50 40 31 343 360	-31.40 -42.57 -4.76 -33.10 -38.10 -27.80 -57.14 -52.28	34.00 34.00 3.75 28.70 21.09 35.23 35.74 27.13	949 1224 139 46 40 34 331 357	-33.06 -3.79 -40.00 -27.10 5.65 -8.02 -51.66	48.09 48.09 4.61 19.02 51.08 38.02 25.30		1 2 4 0.2 0.	-0.24 -1.45 -0.23 -0.23 -0.27 -0.54 -0.75 -1.33 -0.02	[-0.32; -0.16] [-2.52; -0.38 [-0.47; 0.01] [-0.47; 0.01] [-0.99; -0.10] [-1.25; -0.24] [-1.50; -1.16] [-0.17; 0.12]
sCTX (per) (riNTX (abs)	You 2011 Recker 2004 Random effects model Heterogeneity: $I^2 = 97\%$, $\tau^2 =$ Felsenberg 2011 Iwamoto 2014 Iwamoto 2002 Leung 2004 Matsumoto 2009 Recker 2006 Rhee 2006	90 1911 2204 1.71 , <i>p</i> 140 50 40 31 343 360 102	-31.40 -42.57 -4.76 -33.10 -38.10 -27.80 -57.14 -52.28 -25.44	34.00 34.00 3.75 28.70 21.09 35.23 35.74 27.13 5.17	949 1224 139 46 40 34 331 357 97	-33.06 -3.79 -40.00 -27.10 5.65 -8.02 -51.66 1.35	48.09 4.61 20.40 19.02 51.08 38.02 25.30 0.41		1 2 4 0.2 0.	-0.24 -0.24 -0.23 -0.23 -0.27 -0.54 -0.75 -1.33 -0.02 -7.19	[-0.32; -0.16] [-2.52; -0.38 [-0.47; 0.01] [-0.47; 0.01] [-1.25; -0.24] [-1.50; -1.16] [-0.17; 0.12] [-7.95; -6.42]
sCTX (per) (iNTX (abs) (per)	You 2011 Recker 2004 Random effects model Heterogeneity: $\int_{0}^{2} = 97\%$, $\tau^{2} =$ Felsenberg 2011 Iwamoto 2014 Iwamoto 2002 Leung 2004 Matsumoto 2009 Recker 2006 Rhee 2006 Rossini 2000	90 1911 2204 1.71 , <i>p</i> 140 50 40 31 343 360 102 83	-31.40 -42.57 -4.76 -33.10 -38.10 -27.80 -57.14 -52.28 -25.44 -34.94	34.00 34.00 34.00 3.75 28.70 21.09 35.23 35.74 27.13 5.17 21.16	949 1224 139 46 40 34 331 357 97 41	-33.06 -3.79 -40.00 -27.10 5.65 -8.02 -51.66 1.35 -8.00	48.09 4.61 20.40 19.02 51.08 38.02 25.30 0.41 31.00		1 2 4 0.2 0.	-0.24 -0.24 -0.23 -0.23 -0.23 -0.23 -0.23 -0.25 -1.33 -0.02 -7.19 -1.08	[-0.32; -0.16] [-2.52; -0.38 [-0.47; 0.01] [-0.47; 0.01] [-1.25; -0.24] [-1.50; -1.16] [-0.17; 0.12] [-7.95; -6.42] [-1.48; -0.68]
sCTX (per) (riNTX (abs) (riNTX (per)	You 2011 Recker 2004 Random effects model Heterogeneity: $I^2 = 97\%$, $\tau^2 =$ Felsenberg 2011 Iwamoto 2014 Iwamoto 2002 Leung 2004 Matsumoto 2009 Recker 2006 Rhee 2006 Rossini 2000 Yan 2009	90 1911 2204 1.71 , <i>p</i> 140 50 40 31 343 360 102 83 280	-31.40 -42.57 -42.57 -4.76 -33.10 -38.10 -27.80 -57.14 -52.28 -25.44 -34.94 -34.38	34.00 34.00 34.00 3.75 28.70 21.09 35.23 35.74 27.13 5.17 21.16 29.50	949 1224 139 46 40 34 331 357 97 41 280	-33.06 -3.79 -40.00 -27.10 5.65 -8.02 -51.66 1.35 -8.00 0.34	48.09 4.61 20.40 19.02 51.08 38.02 25.30 0.41 31.00 30.07		1 2 4 0.2 0.	-0.24 -0.24 -0.23 -0.23 -0.23 -0.23 -0.27 -0.54 -0.75 -1.33 -0.02 -7.19 -1.08 -1.16	[-0.32; -0.16] [-2.52; -0.38 [-0.47; 0.01] [-0.47; 0.01] [-1.25; -0.24] [-1.50; -1.16] [-0.17; 0.12] [-7.95; -6.42] [-1.48; -0.68] [-1.34; -0.98] [-1.34; -0.98]
sCTX (per) (riNTX (abs)	You 2011 Recker 2004 Random effects model Heterogeneity: $I^2 = 97\%$, $\tau^2 =$ Felsenberg 2011 Iwamoto 2014 Iwamoto 2002 Leung 2004 Matsumoto 2009 Recker 2006 Rhee 2006 Rossini 2000 Yan 2009 Bell 2002	90 1911 2204 1.71 , <i>p</i> 140 50 40 31 343 360 102 83 280 19	-31.40 -42.57 -42.57 -4.76 -33.10 -27.80 -57.14 -52.28 -25.44 -34.94 -34.38 -70.50	34.00 34.00 34.00 3.75 28.70 21.09 35.23 35.74 27.13 5.17 21.16 29.50 6.89	949 1224 139 46 40 34 331 357 97 41 280 20	-33.06 -3.79 -40.00 -27.10 5.65 -8.02 -51.66 1.35 -8.00 0.34 -6.70	48.09 4.61 20.40 19.02 51.08 38.02 25.30 0.41 31.00 30.07 19.96		1 2 4 0.2 0.	-0.24 -0.24 -0.23 -0.23 -0.27 -0.54 -0.75 -1.33 -0.02 -7.19 -1.08 -1.16 -4.14	[-0.32; -0.16] [-2.52; -0.38 [-0.47; 0.01] [-0.47; 0.01] [-1.25; -0.03 [-1.25; -0.10] [-1.25; -0.12] [-7.95; -6.42] [-1.48; -0.68] [-1.34; -0.98] [-5.29; -2.99]
sCTX (per) /riNTX (abs)	You 2011 Recker 2004 Random effects model Heterogeneity: $I^2 = 97\%$, $\tau^2 =$ Felsenberg 2011 Iwamoto 2014 Iwamoto 2002 Leung 2004 Matsumoto 2009 Recker 2006 Rhee 2006 Rhee 2006 Rossini 2000 Yan 2009 Bell 2002 Random effects model	90 1911 2204 1.71 , <i>p</i> 140 50 40 31 343 360 102 83 280 19 1308	-31.40 -42.57 -4.76 -33.10 -38.10 -27.80 -57.14 -52.28 -25.44 -34.94 -34.38 -70.50	34.00 34.00 34.00 3.75 28.70 21.09 35.23 35.74 27.13 5.17 21.16 29.50 6.89 1246	949 1224 139 46 40 34 331 357 97 41 280 20	-33.06 -3.79 -40.00 -27.10 5.65 -8.02 -51.66 1.35 -8.00 0.34 -6.70	48.09 4.61 20.40 19.02 51.08 38.02 25.30 0.41 31.00 30.07 19.96		1 1 2 4 1 0.2 0.	-0.24 -0.24 -0.23 -0.23 -0.23 -0.23 -0.23 -0.25 -1.33 -0.02 -7.19 -1.08 -1.16 -4.14 -1.74	[-0.32; -0.16] [-0.32; -0.16] [-2.52; -0.38 [-0.47; 0.01] [-0.47; 0.01] [-1.25; -0.24] [-1.50; -1.16] [-0.17; 0.12] [-7.95; -6.42] [-1.48; -0.68] [-1.34; -0.98] [-5.29; -2.99] [-3.29; -0.20

p < 0.01; random effects model; SMD [95% CI] = -1.38 [-2.15, -0.61], p = 0.01, Very low GRADE). The results indicated that bisphosphonates combined with VitD was superior to monotherapy with a significant difference (Figure 4).

3.6 Results of bone resorption marker analysis

3.6.1 Pooled analysis for the changes in sCTX and uriNTX

In the analysis of the mean change in sCTX, seven studies with a total of 622 patients were included. The results indicated that the combination of bisphosphonates and VitD was more significantly effective than monotherapy ($l^2 = 88.50\%$, p < 0.01; random effects model; SMD [95% CI] = -1.22 [-1.90, -0.54], p = 0.01; as shown in Figure 6. Low GRADE). In the analysis of the percentage change in sCTX, six articles with a total of 3428 patients were included. The results indicated that the combination of bisphosphonates and VitD was superior to monotherapy with a significant difference ($I^2 = 88.50\%$, p < 0.01; random effects model; SMD [95% CI] = -1.22 [-1.90, -0.54], p = 0.0; as shown in Figure 5.Low GRADE). Similarly, in the analysis of the mean change in UriNTX (random effects model; SMD [95% CI] = -0.23 [-0.47, 0.01], p = 0.06, High GRADE) and the percentage change in UriNTX ($I^2 = 98.40\%$, p < 0.01; random effects model; SMD [95% CI] = -1.74 [-3.29, 0.20], p = 0.03, Low GRADE), we also found that combination of bisphosphonates and VitD has an advantage over monotherapy. However, there was no statistical difference in the mean change in UriNTX (p > 0.05) (Figure 5).

	Study	E Total	xperime Mean	ental SD	Total	Control Mean	SD	Standardised Mean Difference	SMD	95%-CI
	Iwamoto 2014	50	0.37	3.82	46	0.56	5.63		-0.04	[-0.44:0.36]
	I writie 1997	50	0.14	0.30	50	-0.16	0.20	辛し	1.01	[0.59.1.43]
	Rhee 2006	102	-0.10	0.50	07	-0.10	0.46	1.*	0.00	[-0.28:0.28]
sCa	Tanakol 2007	30	0.00	0.50	40	-0.10	0.40	100 E	0.20	[-0.26; 0.65]
(abs)	Frediani 1998	30	0.39	0.22	30	-0.45	0.23		3.68	[2.84; 4.53]
	Random effects	s model 262			272				0.94	[-0.40; 2.27
	Heterogeneity: I^2	$=95\%$, $\hat{\tau}=2.25$,	P < 0.01					-4 -2 0 2 4		10 H C
sCa (per)	You 2011	90	1.60	0.50	90	0.10	0.50	· · · · · · · · · · · · · · · · · · ·	2.99	[2.56; 3.41]
			10.041				-	3 -2 -1 0 1 2 3		
	Cesareo 2014	15	4.00	5.00	15	1.00	6.08	+- i	0.52	[-0.21; 1.25]
	Kim 2014	136	11.48	6.20	132	-1.09	6.30		2.01	[1.71; 2.30]
25-OH-VD	Olmos 2012	73	61.00	27.07	67	-1.00	9.00		3.01	[2.52; 3.49]
(abs)	Recker 2006	360	0.86	5.92	357	-3.79	4.99		0.85	[0.70; 1.00]
	Random effects	s model 584	18 Sec. 1		571				1.61	[0.51; 2.70]
	Heterogeneity: 1 ⁻ :	$= 97\%$, $\tau = 1.20$, F	0 < 0.01					3 -2 -1 0 1 2 3		
	Dobnig 2006	37	34.60	8.80	19	25.90	10.60		0.91	[0.33; 1.49]
25-OH-VD (per)	You 2011	90	54.20	5.87	90	43.70	6.04		1.76	[1.41; 2.10]
	Random effects	model 127	0.01		109				1.37	[0.54; 2.19]
	Heterogeneity: 7	= 83%, $t = 0.50$, p	0.01				- Contraction of the second se	2 -1 0 1 2	-	
	Dobnig 2006	37	-8.90	3.80	19	-7.70	5.00		-0.28	[-0.83; 0.28]
	Olmos 2012	73	-3.00	22.00	67	14.00	35.59		-0.58	[-0.92; -0.24]
	Tanakol 2007	30	-6.50	14.11	49	7.00	15.72		-0.88	[-1.36; -0.41]
PTH (abs)	Felsenberg 2011	140	-1.63	13.34	139	17.44	22.34		-1.03	[-1.28; -0.78]
	Random effects Heterogeneity: I^2 =	model 280 = 65%, $\hat{\tau} = 0.06$, μ	9 =0.04		274			-1 -0.5 0 0.5 1	-0.74	[-1.05; -0.42]
	Cesareo 2014	15	-2.00	18.36	15	4.00	13.53	+ +	-0.36	[-1.08: 0.36]
	Kim 2014	136	5.80	4.84	132	32.58	7.63		-4.19	[-4.62: -3.76]
PTH	Recker 2006	360	10.68	47.05	357	20.22	52.15	1	-0.10	[-0.34:-0.05]
	Bell 2002	20	7.00	19.67	21	12.70	28.06		-0.19	[-0.94; -0.05]
(per)									-0.40	1-0.04; 0.20
(per)	Dondors offer t	e medal - 594			FOF				4.05	1 2 40- 0.00

FIGURE 6

Forest plot for sCa (abs), sCa (per),25-OH-VD (abs),25-OH-VD (per),PTH(abs) and PTH(per) changes.

3.7 Results of bone calcium metabolism marker analysis

We conducted a meta-analysis of sCa (six studies), 25-OH-VD (six studies), and PTH (eight studies). The results are as follows:

The sCa mean change was reported in five studies with a total of 534 participants ($I^2 = 94.90\%$, p < 0.01; random effects model; SMD [95% CI] = 0.94 [-0.40; 2.27], p = 0.17, Low GRADE). Since the *p*-value

of the SMD was greater than 0.05, indicating no statistical significance, this result should be interpreted with caution. sCa percentage change was reported in one study with a total of 180 participants (SMD [95% CI] = 2.99 [2.56, 3.41], p < 0.01, High GRADE).

25-OH-VD mean change was analyzed in four studies with a total of 1155 participants ($I^2 = 97.10\%$, p < 0.01; random effects model; SMD [95% CI] = 1.61 [0.51, 2.70], p = 0.01, Low GRADE). 25-OH-VD percentage change was reported in two studies with a

	Study	Exper	imental	Co	ontrol	Odds Ratio	OR	95%-CI
	0.55577 7 17	Events	Total	Events	Total		504530900	0202307 2223
	Adami 2008	47	50	37	44	+	2.96	[0.72; 12.26]
	Bell 2002	30	32	29	32		1.55	[0.24; 9.97]
	Braga 2003	5	39	0	39		12.59	[0.67; 236.06]
	Felsenberg 2011	74	140	63	139		1.35	[0.84; 2.17]
	Frediani 1998	3	30	10	30	 ,	0.22	[0.05; 0.91]
	Greenspan 2016	70	71	59	61		2.37	[0.21; 26.83]
	Cascella 2005	11	20	0	20		49.63	[2.64; 933.26]
	Masud 2015	4	24	3	23		1.33	[0.26; 6.74]
E	Matsumoto 2009	36	343	79	331	-	0.37	[0.24; 0.57]
NE.	Mcclung 2009	60	77	64	83	613	1.05	[0.50; 2.20]
	Peng 2022	92	129	101	130	63	0.71	[0.41; 1.25]
	Recker 2004	1811	1911	893	949		1.14	[0.81; 1.59]
	Recker 2006	212	360	211	357		0.99	[0.74; 1.33]
	Rhee 2006	15	102	16	97		0.87	[0.41; 1.88]
	Rossini 2000	4	83	1	41		2.03	[0.22; 18.72]
	Tanakol 2007	4	30	6	49		1.10	[0.28; 4.28]
	Yan 2009	121	280	103	280	¢	1.31	[0.93; 1.84]
	You 2011	5	90	4	90		1.26	[0.33; 4.87]
	Random effects model Heterogeneity: $l^2 = 61\%$, τ^2	3811 = 0.16 , <i>p</i> < 0.0	2975	1		0.01 0.1 1 10 100	1.03	[0.77; 1.37
	Bell 2002	3	32	5	32		0.56	[0.12; 2.57]
	Felsenberg 2011	1	140	2	139		0.49	[0.04; 5.50]
	Greenspan 2016	48	71	37	61	- <u>}</u>	1.35	[0.66; 2.77]
	Mcclung 2009	3	77	1	83		3.32	[0.34; 32.66]
	Recker 2004	510	1911	231	949		1.13	[0.95; 1.35]
AE	Recker 2006	7	360	15	357	5	0.45	[0.18; 1.12]
	Rhee 2006	1	102	1	97		0.95	[0.06; 15.41]
	Common effects model	2693	1718	3		0.1 0.5 1 2 10	1.10	[0.93; 1.30

Forest plot for AE and SAE with combination treatment versus monotherapy

total of 236 participants ($I^2 = 83.50\%$, p = 0.01; random effects model; SMD [95% CI] = 1.37 [0.54, 2.19], *p* = 0.01, Low GRADE).

PTH mean change was reported in four studies with a total of 554 participants ($I^2 = 64.70\%$, p = 0.04; random effects model; SMD [95% CI] = -0.74 [-1.05, -0.42], *p* < 0.01, Moderate GRADE). PTH percentage change was discussed in four studies with a total of 1056 participants. ($I^2 =$ 99.00%, *p* < 0.01; random effects model; SMD [95% CI] = -1.25 [-3.19, 0.69], p = 0.21, Low GRADE). The results indicated (Figure 6) that these three indicators in the combined therapy group were superior to those in the monotherapy group, and except for the percentage change in PTH (p > 0.05), all had statistical significance.

3.8 Safety

In the analysis of adverse events (AEs), a total of 18 studies involving 6606 patients were included. The results indicated that the occurrence of AEs with bisphosphonate combination therapy in conjunction with Vitamin D does not statistically significantly differ from monotherapy ($I^2 = 61.00\%$, p < 0.01; random effects model; OR [95% CI] = 1.03 [0.77, 1.37], p = 0.85, see Figure 7. Moderate GRADE). In the analysis of serious adverse events (SAEs), seven studies encompassing 4411 patients were included. The findings showed no statistically significant difference in the occurrence of SAEs between bisphosphonate plus Vitamin D therapy and monotherapy ($I^2 = 3.00\%$, p = 0.40; fixed effects model; OR [95% CI] = 1.10 [0.93, 1.30], *p* = 0.28; Figure 7. High GRADE). To clarify the specific differences between combination therapy and each individual component of Vitamin D or bisphosphonates, we conducted a subgroup analysis with different monotherapy comparisons within the control group, and found no significant difference in the subgroup analysis regarding both adverse reactions and serious adverse reactions (p > 0.05, detailed in the attachment). The most commonly reported adverse reactions were: 1) acutephase reactions following drug infusion: local pain, fever; 2) gastrointestinal adverse events; 3) influenza-like symptoms, etc.

We observed that the rate of adverse events might increase with higher doses of bisphosphonates in combination therapy. For instance, in the study by Adami et al. (to be cited), the incidence rate of moderate to severe local pain was lower in the placebo group (27.8%) compared to the three active groups: 50 mg group 77.8%, 25 mg group 71.9%, and 12.5 mg group 57.4%. Therefore, a more comprehensive safety assessment may be necessary when using relatively higher doses of bisphosphonate therapy. Detailed in the Supplementary Table S1 Specific adverse effects of the included studies.

3.9 Subgroup analysis

Additionally, to clarify the specific differences between combined treatment and VitD or bisphosphonates, we conducted subgroup analyses of different monotherapy indicators in the control group. We found that there were no significant differences between the bisphosphonate monotherapy group and the VitD monotherapy group in subgroup analyses of LBMD, fBMD, ThipBMD, ALP, PTH(abs), PTH(per), 25-OH-VD (abs), and sCa (abs) (p > 0.05). However, in the subgroup analyses of sBALP (per), sCTX (abs), and Uri (per), the group treated with bisphosphonate monotherapy showed significant differences compared to the group treated with vitD monotherapy (p < 0.05). Detailed results of the subgroup analyses are shown in the attachment.

3.10 Sensitivity analysis

To test the robustness of the results, we performed sensitivity analyses on the above indicators. In this meta-analysis, each sensitivity analysis showed that the results did not change with the exclusion of any single study (attachment).

3.11 Publication bias

For the meta-analyses of LBMD, fBMD, ThipBMD, and sBALP, which all included 10 or more studies, we performed Egger's test for publication bias. The results showed that significant publication bias was detected for sBALP (Egger p = 0.02), but not for the other indicators (Egger p > 0.05). Therefore, we applied the trim-and-fill method to correct the results for sBALP. The corrected SMD [95% CI] was -0.50 [-1.49; 0.49], p = 0.32, which differed significantly from the unadjusted result. This suggests that the unadjusted result was not reliable due to the presence of publication bias. The meta-analysis results for this outcome measure need to be handled with great caution (attachment).

4 Discussion

VitD plays a crucial role in regulating the homeostasis of calcium and phosphorus metabolism and optimizing osteoblast activity. In mature osteoblasts, the $1,25(OH)_2D3$ signaling pathway can promote osteoblast differentiation and the expression of osteocalcin (OCN), thereby facilitating bone mineralization (Morris et al., 2012). It also decreases the expression of the receptor activator of nuclear factor- κB ligand (RANKL), which is a key factor in osteoclast differentiation, and enhances the expression of its antagonist, osteoprotegerin (OPG), thereby indirectly inhibiting bone resorption (Horwood et al., 1998). Additionally, VitD can enhance bone mineralization by promoting the maturation of osteoblasts, regulating their activity, and inducing the expression of bone formation-related genes (CYP-24) (van Driel et al., 2006). Bisphosphonates, as inhibitors of bone resorption, have a structure where the R1 group determines the rapid and selective binding of bisphosphonates to the surface of bone minerals, while the R2 group plays a decisive role in countering bone resorption (Diel et al., 1998). The R2 group can directly act on osteoblasts, promoting osteoblast differentiation through the JNK (N-terminal kinases) and ERK (Extracellular signal-regulated kinases) signaling pathways (Fu et al., 2008). It also secretes osteoclast inhibitory factors to inhibit the activity of osteoclasts (Rogers et al., 2020). As a result, bone metabolic markers such as β-isomerized C-terminal telopeptides (β-CTX), procollagen type I N-propeptide (PINP), Human N-terminal middle osteocalcin (N-MID-OT) are reduced (Bell et al., 2016; Tan et al., 2016; Lipton et al., 2016; Nishimukai et al., 2017). Furthermore, nitrogen-containing bisphosphonates can inhibit the enzyme systems in the Mevalonate pathway, suppress the biosynthesis of isoprenoids, and induce osteoclast apoptosis (Compston, 1994). Therefore, VitD and bisphosphonates can act synergistically through different signaling pathways to regulate calcium-phosphorus homeostasis and exert antifracture effects. Additionally, in endocrine pathways, high concentrations of PTH can reduce the anti-resorptive effects of bisphosphonates, while VitD coordinates with fibroblast growth factor 23 (FGF23) produced by PTH, resulting in a balance between them. Consequently, the combination of VitD and bisphosphonate therapy can significantly enhance the efficacy against osteoporosis (Mosali et al., 2014).

The results of this study indicate that there were no significant statistical differences in the mean changes of Osteocalcin, UriNTX, and sCa indicators, as well as the percentage change of PTH (p >005). This result may be due to the insufficient sample size of the studies included. However, changes in other indicators before and after treatment were statistically significant. In terms of improving bone density, the combination therapy group of VitD and bisphosphonates showed a more significant advantage over the monotherapy groups, particularly in LBMD and froBMD. In terms of regulating serum biomarker concentrations, the combination group showed more pronounced effects on increasing levels of ALP, 25-OH-VD, and sCa, as well as on reducing levels of sBALP, sCTX, and UriNTX. Although there were differences in the SMDs between the average change group and the percentage change group for sCa, sBALP, and UriNTX, with the percentage change group showing more prominent effects, this phenomenon may be related to the different forms of representation for the chosen endpoint variables. It is noteworthy that the effects of VitD combined with bisphosphonates on increasing Osteocalcin levels were not superior to those of monotherapy groups, solely based on the average value changes. Additionally, the percentage change of Osteocalcin also failed to demonstrate statistical significance, suggesting that there may be no additional advantages of combined therapy in improving Osteocalcin levels. Considering the above results, the combination of VitD and bisphosphonates appears to be more effective than monotherapy in the overall treatment of osteoporosis. The potential mechanisms may include the modulation of calcium-phosphorus homeostasis by adequate VitD,

which participates in the regulation of bone metabolism and maximizes the therapeutic effects of bisphosphonates through different signaling pathways (Nishimukai et al., 2017; Compston, 1994; Mosali et al., 2014). Furthermore, secondary hyperparathyroidism induced by VitD deficiency and the accompanying increase in PTH levels can diminish the efficacy of bisphosphonates. The combined therapy may optimize treatment outcomes indirectly by regulating PTH levels (Mosali et al., 2014).

Research by Andrew C Karaplis and others found that the most common drug-related adverse events during the combination therapy of vitamin D3 and alendronate for osteoporosis were gastrointestinal disorders (Karaplis et al., 2011). Thawee Songpatanasilp and others reported that adverse reactions such as dyspepsia, myalgia, and headache were associated with the combined use of alendronate and vitamin D3 (Songpatanasilp et al., 2018). The study by You and others found no significant difference in the incidence of adverse reactions between the combination therapy of alendronate and alfacalcidol for osteoporosis and the monotherapy with alfacalcidol alone (You et al., 2011). Kim and others also supported this view, with no statistically significant difference in the incidence of drug-related adverse events between combined therapy and monotherapy (Kim et al., 2014). Additionally, studies have suggested that reducing the dose or frequency of alendronate during combination therapy can reduce the occurrence of symptoms (Bone et al., 2000; Schnitzer et al., 2000). From a mechanism of action perspective, bisphosphonates do have some factors that may contribute to the occurrence of adverse events. Nitrogen-containing bisphosphonates like alendronate and zoledronate inhibit key enzymes in the mevalonate pathway, such as farnesyl pyrophosphate synthase (FPP), leading to the accumulation of isopentenyl pyrophosphate (IPP) within cells. This blocks the isoprenylation of small GTPases, thereby affecting various cellular functions. The accumulated IPP in monocytes and macrophages activates and proliferates vo T cells, causing the release of pro-inflammatory cytokines TNFa and IL6, which can lead to an acute systemic inflammatory response, manifested as headaches, myalgia, flu-like symptoms (Roelofs et al., 2006). Additionally, the gastrointestinal tract is a major repository for $\gamma\delta$ T cells (Hewitt et al., 2005), which may explain the gastrointestinal disorders like dyspepsia associated with oral bisphosphonate use. A study by R E Hewitt and others found that pretreatment with antipyretics or histamine receptor antagonists can reduce the incidence of these symptoms (Hewitt et al., 2005).

Our meta-analysis is the first to systematically evaluate and quantitatively analyze the effects of combined treatment with VitD and bisphosphonates on postmenopausal women with osteoporosis. The number of studies included is abundant, and the participants are well-matched, which enhances the comparability of the results. We have separately merged studies reporting numerical changes and percentage changes for the same endpoint measures, improving the comprehensiveness of the data analysis. This study also has certain limitations: although the results are robust after sensitivity analysis, there is considerable heterogeneity among the included studies, which may be due to differences in baseline characteristics of the patients included in each study, variations in regions, different drug dosages and frequencies, varying study observation periods, different ages of patients, and inconsistent efficacy of the same treatment regimen, leading to different amounts of change in endpoint measures and increased heterogeneity in results. In conducting this study, we acknowledge that the scope of the literature and data included is finite, which may limit our in-depth analysis of the details of medication use. The inherent limitations of the data make it challenging to explore all sources of potential heterogeneity exhaustively. The sources of heterogeneity in the analysis may be multifaceted, such as differences in the comorbidities across different populations, basic medications or supplements, the types and manufacturing of vitamin D and bisphosphonates of interest, and the methods for measuring results by different institutions. Although we ensured that the PICOS background of different groups in the same study was consistent during literature screening, to ensure that the differences between groups can be fully explained by the intervention of interest, the above-mentioned differences between studies may still lead to unknown biases. Although our analysis results were proven to be robust by subgroup analysis and sensitivity analysis, necessary caution is still needed. Furthermore, our literature search was confined to a few databases in both Chinese and English, which may lead to the omission of certain studies and introduce the potential for publication bias. Whether used alone or in combination, different treatment courses or drug doses can lead to different risks of adverse events, highlighting the urgency of finding the optimal dosage, frequency, and course of medication. Additionally, older individuals often have multiple coexisting diseases (Hu et al., 2015), so attention must be paid to interactions between different types of drugs during use. In recent years, with the rapid development of molecular biology, immunology, pharmacology, and other fields, there has been significant progress in understanding the pathogenesis of osteoporosis. The development of new drugs and the use of different drugs in combination have provided clinicians with diverse treatment options for osteoporosis.

5 Conclusion

Our analysis suggests that the combination therapy of VitD and bisphosphonates is more effective than monotherapy for treating osteoporosis in postmenopausal women, providing a scientific basis for the better treatment of osteoporosis. However, due to the limitations of this study, further and more in-depth research on this topic is needed in the future.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

Author contributions

YY: Conceptualization, Formal Analysis, Investigation, Methodology, Resources, Supervision, Writing–original draft, Writing–review and editing. MY: Conceptualization, Formal Analysis, Investigation, Methodology, Resources, Writing–original draft. XS: Conceptualization, Formal Analysis, Investigation, Methodology, Resources, Writing–original draft. FX: Funding acquisition, Supervision, Writing–original draft, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This work was supported by Xiamen Municipal Bureau of Science and Technology, China (3502Z20184034).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

Adami, S., Gatti, D., Bertoldo, F., Sartori, L., Di Munno, O., Filipponi, P., et al. (2008). Intramuscular neridronate in postmenopausal women with low bone mineral density. *Calcif. Tissue Int.* 83, 301–307. doi:10.1007/s00223-008-9179-5

Barone, A., Giusti, A., Pioli, G., Girasole, G., Razzano, M., Pizzonia, M., et al. (2007). Secondary hyperparathyroidism due to hypovitaminosis D affects bone mineral density response to alendronate in elderly women with osteoporosis: a randomized controlled trial. *J. Am. Geriatr. Soc.* 55, 752–757. doi:10.1111/j.1532-5415.2007.01161.x

Barrionuevo, P., Kapoor, E., Asi, N., Alahdab, F., Mohammed, K., Benkhadra, K., et al. (2019). Efficacy of pharmacological therapies for the prevention of fractures in postmenopausal women: a network meta-analysis. *J. Clin. Endocrinol. Metab.* 104, 1623–1630. doi:10.1210/jc.2019-00192

Bell, K. J., Hayen, A., Glasziou, P., Irwig, L., Eastell, R., Harrison, S. L., et al. (2016). Potential usefulness of BMD and bone turnover monitoring of zoledronic acid therapy among women with osteoporosis: secondary analysis of randomized controlled trial data. *J. Bone Min. Res.* 31, 1767–1773. doi:10.1002/jbmr.2847

Bell, N. H., Bilezikian, J. P., Bone, H. G., 3rd, Kaur, A., Maragoto, A., Santora, A. C., et al. (2002). Alendronate increases bone mass and reduces bone markers in postmenopausal African-American women. *J. Clin. Endocrinol. Metab.* 87, 2792–2797. doi:10.1210/jcem.87.6.8575

Bone, H. G., Adami, S., Rizzoli, R., Favus, M., Ross, P. D., Santora, A., et al. (2000). Weekly administration of alendronate: rationale and plan for clinical assessment. *Clin. Ther.* 22, 15–28. doi:10.1016/s0149-2918(00)87974-6

Braga, V., Gatti, D., Colapietro, F., Battaglia, E., Righetti, D., Prizzi, R., et al. (2003). Intravenous intermittent neridronate in the treatment of postmenopausal osteoporosis. *Bone* 33, 342–345. doi:10.1016/s8756-3282(03)00084-x

Cascella, T., Musella, T., Orio, F., Palomba, S., Bifulco, G., Nappi, C., et al. (2005). Effects of neridronate treatment in elderly women with osteoporosis. *J. Endocrinol. Investig.* 28, 202–208. doi:10.1007/BF03345373

Cesareo, R., Di Stasio, E., Vescini, F., Campagna, G., Cianni, R., Pasqualini, V., et al. (2015). Effects of alendronate and vitamin D in patients with normocalcemic primary hyperparathyroidism. *Osteoporos. Int.* 26, 1295–1302. doi:10.1007/s00198-014-3000-2

Cheng, Z. QIANG, Yin, W., Fan, J. y., and Ma, T. j. (2002). The efficacy of alendronate in the prevention and treatment of postmenopausal osteoporosis, *efficacy alendronate Prev. Treat. postmenopausal Osteoporos.* 24, 306–309.

Compston, J. E. (1994). Fortnightly Review: the therapeutic use of bisphosphonates. *Bmj Clin. Res.* 309, 711–715. doi:10.1136/bmj.309.6956.711

Diel, I. J., Solomayer, E. F., Costa, S. D., Gollan, C., Goerner, R., Wallwiener, D., et al. (1998). Reduction in new metastases in breast cancer with adjuvant clodronate treatment. *N. Engl. J. Med.* 339, 357–363. doi:10.1056/NEJM199808063390601

Dobnig, H., Hofbauer, L. C., Viereck, V., Obermayer-Pietsch, B., and Fahrleitner-Pammer, A. (2006). Changes in the RANK ligand/osteoprotegerin system are correlated to changes in bone mineral density in bisphosphonate-treated osteoporotic patients. *Osteoporos. Int.* 17, 693–703. doi:10.1007/s00198-005-0035-4

Dundar, U., Kavuncu, V., Ciftci, I. H., Evcik, D., Solak, O., and Cakir, T. (2009). The effect of risedronate treatment on serum cytokines in postmenopausal osteoporosis: a 6-month randomized and controlled study. *J. Bone Min. Metab.* 27, 464–470. doi:10.1007/s00774-009-0055-9

Felsenberg, D., Bock, O., Börst, H., Armbrecht, G., Beller, G., Degner, C., et al. (2011). Additive impact of alfacalcidol on bone mineral density and bone strength in alendronate treated postmenopausal women with reduced bone mass. J. Musculoskelet. Neuronal Interact. 11, 34–45.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2024.1422062/ full#supplementary-material

Finkelstein, J. S., Wyland, J. J., Lee, H., and Neer, R. M. (2010). Effects of teriparatide, alendronate, or both in women with postmenopausal osteoporosis. *J. Clin. Endocrinol. Metab.* 95, 1838–1845. doi:10.1210/jc.2009-1703

Frediani, B., Allegri, A., Bisogno, S., and Marcolongo, R. (1998). Effects of combined treatment with calcitriol plus alendronate on bone mass and bone turnover in postmenopausal OsteoporosisTwo years of continuous treatment. *Clin. drug Investig.* 15, 235–244. doi:10.2165/00044011-199815030-00008

F, L., Tang, T., Miao, Y., Zhang, S., Qu, Z., and Dai, K. (2008). Stimulation of osteogenic differentiation and inhibition of adipogenic differentiation in bone marrow stromal cells by alendronate via ERK and JNK activation. *Bone* 43, 40–47. doi:10.1016/j. bone.2008.03.008

Greenspan, S. L., Perera, S., Ferchak, M. A., Nace, D. A., and Resnick, N. M. (2015). Efficacy and safety of single-dose zoledronic acid for osteoporosis in frail elderly women: a randomized clinical trial. *JAMA Intern Med.* 175, 913–921. doi:10.1001/jamainternmed.2015.0747

Hewitt, R. E., Lissina, A., Green, A. E., Slay, E. S., Price, D. A., and Sewell, A. K. (2005). The bisphosphonate acute phase response: rapid and copious production of proinflammatory cytokines by peripheral blood gd T cells in response to aminobisphosphonates is inhibited by statins. *Clin. Exp. Immunol.* 139, 101–111. doi:10.1111/j.1365-2249.2005.02665.x

Horwood, N. J., Elliott, J., Martin, T. J., and Gillespie, M. T. (1998). Orthotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. *Endocrinology* 139, 4743–4746. doi:10.1210/endo.139. 11.6433

Huang, C. F., Chen, J. F., Reid, I. R., Chan, W. P., Ebeling, P. R., Langdahl, B., et al. (2023). Asia-pacific consensus on osteoporotic fracture prevention in postmenopausal women with low bone mass or osteoporosis but no fragility fractures. *J. Formos. Med. Assoc.* 122 (Suppl. 1), S14–s20. doi:10.1016/j.jfma.2023.01.013

Hu, X., Huang, J., Lv, Y., Li, G., and Peng, X. (2015). Status of prevalence study on multimorbidity of chronic disease in China: systematic review. *Geriatr. Gerontol. Int.* 15, 1–10. doi:10.1111/ggi.12340

Inc, M. U. A. E. P. (2021). GRADE your evidence and improve your guideline development in health care. *GRADEpro GDT*. Available at: https://www.gradepro.org/.

Iwamoto, J., and Sato, Y. (2014). Eldecalcitol improves chair-rising time in postmenopausal osteoporotic women treated with bisphosphonates. *Ther. Clin. Risk Manag.* 10, 51–59. doi:10.2147/TCRM.S54772

Iwamoto, J., Takeda, T., Ichimura, S., Matsu, K., and Uzawa, M. (2003). Effects of cyclical etidronate with alfacalcidol on lumbar bone mineral density, bone resorption, and back pain in postmenopausal women with osteoporosis. *J. Orthop. Sci.* 8, 532–537. doi:10.1007/s00776-003-0655-5

Karadag-Saygi, E., Akyuz, G., Bizargity, P., and Ay, P. (2011). The effect of risedronate treatment on serum osteoprotegerin and bone marker levels in postmenopausal women with osteoporosis. *Gynecol. Endocrinol.* 27, 1033–1036. doi:10.3109/09513590.2011. 579657

Karaplis, A. C., Chouha, F., Djandji, M., Sampalis, J. S., and Hanley, D. A. (2011). Vitamin D status and response to daily 400 IU vitamin D3 and weekly alendronate 70 mg in men and women with osteoporosis. *Ann. Pharmacother.* 45, 561–568. doi:10. 1345/aph.1P439

Kim, K. J., Min, Y. -K., Koh, J. -M., Chung, Y. -S., Kim, K. M., and Byun, D. -W. (2014). Efficacy and safety of weekly alendronate plus vitamin D_3 5600 IU versus weekly alendronate alone in Korean osteoporotic women: 16-week randomized trial. *Yonsei Med. J.* 55, 715–724. doi:10.3349/ymj.2014.55.3.715

Leung, J. Y., Ho, A. Y. Y., Lee, G., and Kung, A. W. C. (2005). The efficacy and tolerability of risedronate on bone mineral density and bone turnover markers in osteoporotic Chinese women: a randomized placebo-controlled study. *Bone* 36, 358–364. doi:10.1016/j.bone.2004.10.014

Lips, P. (2001). Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. *Endocr. Rev.* 22, 477–501. doi:10.1210/edrv.22.4.0437

Lips, P., and VAN Schoor, N. M. (2011). The effect of vitamin D on bone and osteoporosis. *Best. Pract. Res. Clin. Endocrinol. Metab.* 25, 585–591. doi:10.1016/j.beem. 2011.05.002

Lipton, A., Smith, M. R., Fizazi, K., Stopeck, A. T., Henry, D., Brown, J. E., et al. (2016). Changes in bone turnover marker levels and clinical outcomes in patients with advanced cancer and bone metastases treated with bone antiresorptive agents. *Clin. Cancer Res.* 22, 5713–5721. doi:10.1158/1078-0432.CCR-15-3086

Lyritis, G. P., Tsakalakos, N., Paspati, I., Skarantavos, G., Galanos, A., and Androulakis, C. (1997). The effect of a modified etidronate cyclical regimen on postmenopausal osteoporosis: a four-year study. *Clin. Rheumatol.* 16, 354–360. doi:10.1007/BF02242451

Masud, T., Mulcahy, B., Thompson, A. V., Donnelly, S., Keen, R. W., Doyle, D. V., et al. (1998). Effects of cyclical etidronate combined with calcitriol versus cyclical etidronate alone on spine and femoral neck bone mineral density in postmenopausal osteoporotic women. *Ann. Rheum. Dis.* 57, 346–349. doi:10.1136/ard.57.6.346

Matsumoto, T., Hagino, H., Shiraki, M., Fukunaga, M., Nakano, T., Takaoka, K., et al. (2009). Effect of daily oral mindoroate on vertebral fractures in Japanese postmenopausal women with established osteoporosis: a randomized placebocontrolled double-blind study. *Osteoporos. Int.* 20, 1429–1437. doi:10.1007/s00198-008-0816-7

Mcclung, M. R., Bolognese, M. A., Sedarati, F., Recker, R. R., and Miller, P. D. (2009). Efficacy and safety of monthly oral ibandronate in the prevention of postmenopausal bone loss. *Bone* 44, 418–422. doi:10.1016/j.bone.2008.09.011

Mcclung, M., Harris, S. T., Miller, P. D., Bauer, D. C., Davison, K. S., Dian, L., et al. (2013). Bisphosphonate therapy for osteoporosis: benefits, risks, and drug holiday. *Am. J. Med.* 126, 13–20. doi:10.1016/j.amjmed.2012.06.023

Morris, H. A., Turner, A. G., and Anderson, P. H. (2012). Vitamin-D regulation of bone mineralization and remodelling during growth. *Front. Biosci. Elite Ed.* 4, 677–689. doi:10.2741/409

Mosali, P., Bernard, L., Wajed, J., Mohamed, Z., Ewang, M., Moore, A., et al. (2014). Vitamin D status and parathyroid hormone concentrations influence the skeletal response to zoledronate and denosumab. *Calcif. Tissue Int.* 94, 553–559. doi:10. 1007/s00223-014-9840-0

Nenonen, A., Cheng, S., Ivaska, K. K., Alatalo, S. L., Lehtimäki, T., Schmidt-Gayk, H., et al. (2005). Serum TRACP 5b is a useful marker for monitoring alendronate treatment: comparison with other markers of bone turnover. J. Bone Min. Res. 20, 1804–1812. doi:10.1359/IBMR.050403

Nishimukai, A., Higuchi, T., Ozawa, H., Yanai, A., Miyagawa, Y., Murase, K., et al. (2017). Different patterns of change in bone turnover markers during treatment with bone-modifying agents for breast cancer patients with bone metastases. *Breast Cancer* 24, 245–253. doi:10.1007/s12282-016-0695-2

Olmos, J. M., Hernández, J. L., Llorca, J., Nan, D., Valero, C., and González-Macías, J. (2005). Effects of 25-hydroxyvitamin D3 therapy on bone turnover markers and PTH levels in postmenopausal osteoporotic women treated with alendronate. *J. Clin. Endocrinol. Metab.* 97, 4491–4497. doi:10.1210/jc.2012-2999

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *Bmj* 372, n71. doi:10.1136/bmj.n71

Peng, C., Tian, R., Li, L., Zhu, Y. K., Li, S. Y., Ye, S. D., et al. (2022). A randomized double-blinded placebo-controlled clinical trial of mindoroate tablet in postmenopausal Chinese women with osteoporosis. *Zhonghua Fu Chan Ke Za Zhi* 57, 346–351. doi:10. 3760/cma.j.cn112141-20220220-00108

Pinkerton, J. V., and Dalkin, A. C. (2007). Combination therapy for treatment of osteoporosis: a review. Am. J. Obstet. Gynecol. 197, 559–565. doi:10.1016/j.ajog.2007. 07.022

Popp, A. W., Guler, S., Lamy, O., Senn, C., Buffat, H., Perrelet, R., et al. (2013). Effects of zoledronate versus placebo on spine bone mineral density and microarchitecture assessed by the trabecular bone score in postmenopausal women with osteoporosis: a three-year study. *J. Bone Min. Res.* 28, 449–454. doi:10.1002/jbmr.1775

Rachner, T. D., Khosla, S., and Hofbauer, L. C. (2011). Osteoporosis: now and the future. *Lancet* 377, 1276–1287. doi:10.1016/S0140-6736(10)62349-5

Recker, R., Lips, P., Felsenberg, D., Lippuner, K., Benhamou, L., Hawkins, F., et al. (2006). Alendronate with and without cholecalciferol for osteoporosis: results of a 15-

week randomized controlled trial. Curr. Med. Res. Opin. 22, 1745–1755. doi:10.1185/030079906x120913

Recker, R., Stakkestad, J. A., Chesnut, C. H., Christiansen, C., Skag, A., Hoiseth, A., et al. (2004). Insufficiently dosed intravenous ibandronate injections are associated with suboptimal antifracture efficacy in postmenopausal osteoporosis. *Bone* 34, 890–899. doi:10.1016/j.bone.2004.01.008

Rhee, Y., Kang, M., Min, Y., Byun, D., Chung, Y., Ahn, C., et al. (2006). Effects of a combined alendronate and calcitriol agent (Maxmarvil) on bone metabolism in Korean postmenopausal women: a multicenter, double-blind, randomized, placebo-controlled study. *Osteoporos. Int.* 17, 1801–1807. doi:10.1007/s00198-006-0200-4

Roelofs, A. J., Thompson, K., Gordon, S., and Rogers, M. J. (2006). Molecular mechanisms of action of bisphosphonates: current status. *Clin. Cancer Res.* 12, 6222s-6230s. doi:10.1158/1078-0432.CCR-06-0843

Rogers, M. J., Mönkkönen, J., and Munoz, M. A. (2020). Molecular mechanisms of action of bisphosphonates and new insights into their effects outside the skeleton. *Bone* 139, 115493. doi:10.1016/j.bone.2020.115493

Rossini, M., Gatti, D., Girardello, S., Braga, V., James, G., and Adami, S. (2000). Effects of two intermittent alendronate regimens in the prevention or treatment of postmenopausal osteoporosis. *Bone* 27, 119–122. doi:10.1016/s8756-3282(00) 00291-x

Saul, D., and Drake, M. T. (2021). Update on approved osteoporosis therapies including combination and sequential use of agents. *Endocrinol. Metab. Clin. North* Am. 50, 179–191. doi:10.1016/j.ecl.2021.03.010

Schnitzer, T., Bone, H. G., Crepaldi, G., Adami, S., McClung, M., Kiel, D., et al. (2000). Therapeutic equivalence of alendronate 70 mg once-weekly and alendronate 10 mg daily in the treatment of osteoporosis. Alendronate Once-Weekly Study Group. *Aging* (*Milano*) 12, 1–12.

Shiota, E., Tsuchiya, K., Yamaoka, K., and Kawano, O. (2001). Effect of intermittent cyclical treatment with etidronate disodium (HEBP) and calcium plus alphacalcidol in postmenopausal osteoporosis. *J. Orthop. Sci.* 6, 133–136. doi:10.1007/s007760100060

Songpatanasilp, T., Rojanasthien, S., Sugkraroek, P., Ongphiphadhanakul, B., Robert, L., Robert, C. S., et al. (2018). Open-label study of treatment with alendronate sodium plus vitamin D in men and women with osteoporosis in Thailand. *BMC Musculoskelet. Disord.* 19, 392. doi:10.1186/s12891-018-2309-y

Tanakol, R., Yarman, S., Bayraktaroglu, T., Boztepe, H., and Alagöl, F. (2007). Clodronic acid in the treatment of postmenopausal osteoporosis. *Clin. Drug Investig.* 27, 419–433. doi:10.2165/00044011-200727060-00005

Tan, W., Sun, J., Zhou, L., Li, Y., and Wu, X. (2016). Randomized trial comparing efficacies of zoledronate and alendronate for improving bone mineral density and inhibiting bone remodelling in women with post-menopausal osteoporosis. *J. Clin. Pharm. Ther.* 41, 519–523. doi:10.1111/jcpt.12429

VAN Driel, M., Koedam, M., Buurman, C. J., Hewison, M., Chiba, H., Uitterlinden, A. G., et al. (2006). Evidence for auto/paracrine actions of vitamin D in bone: 1alphahydroxylase expression and activity in human bone cells. *Faseb J.* 20, 2417–2419. doi:10. 1096/fj.06-6374fje

Vannala, V., Palaian, S., and Shankar, P. R. (2020). Therapeutic dimensions of bisphosphonates: a clinical update. *Int. J. Prev. Med.* 11, 166. doi:10.4103/ijpvm.IJPVM_33_19

Vilaca, T., Eastell, R., and Schini, M. (2022). Osteoporosis in men. Lancet Diabetes Endocrinol. 10, 273–283. doi:10.1016/S2213-8587(22)00012-2

Wu, J., Niu, L., Yang, K., Xu, J., Zhang, D., Ling, J., et al. (2024). The role and mechanism of RNA-binding proteins in bone metabolism and osteoporosis. *Ageing Res. Rev.* 96, 102234. doi:10.1016/j.arr.2024.102234

Yan, Y., Wang, W., Zhu, H., Li, M., Liu, J., Luo, B., et al. (2009). The efficacy and tolerability of once-weekly alendronate 70 mg on bone mineral density and bone turnover markers in postmenopausal Chinese women with osteoporosis. *J. Bone Min. Metab.* 27, 471–478. doi:10.1007/s00774-009-0057-7

You, L., Sheng, Z. Y., Chen, J. Y., Pan, L., and Chen, L. (2011). The safety and efficacy of early-stage bi-weekly alendronate to improve bone mineral density and bone turnover in Chinese post-menopausal women at risk of osteoporosis. *J. Int. Med. Res.* 39, 302–310. doi:10.1177/147323001103900133

Zhang, J. Y., Zhong, Y. H., Chen, L. M., Zhuo, X. L., Zhao, L. J., and Wang, Y. T. (2023). Recent advance of small-molecule drugs for clinical treatment of osteoporosis: a review. *Eur. J. Med. Chem.* 259, 115654. doi:10.1016/j.ejmech.2023.115654

Zhang, Z. L., Liao, E. Y., Xia, W. B., Lin, H., Cheng, Q., Wang, L., et al. (2015). Alendronate sodium/vitamin D3 combination tablet versus calcitriol for osteoporosis in Chinese postmenopausal women: a 6-month, randomized, open-label, activecomparator-controlled study with a 6-month extension. *Osteoporos. Int.* 26, 2365–2374. doi:10.1007/s00198-015-3141-y