1	1 Investigating the Role of Vitamin D in the Prevention	and Control of Dengue Virus Vectors
2	2 and Related Diseases: A Systematic Review Study	
3	3	
4	4	
5	5 Dr. Ebrahim Abbasi ^{1, 2*}	
6	¹ <i>Research Center for Health Sciences, Institute of Health</i>	Shiraz University of Medical Sciences,
7	7 Shiraz, Iran	
8	8 ² Department of Medical Entomology and Vector Control	School of Health, Shiraz University of
9	9 Medical Sciences, Shiraz, Iran	
10	10 Email: <u>abbasie.ebrahim@gmail.com</u> <u>e_abbasie@</u>	<u>sums.ac.ir</u>
11	Mobile: +98912-4338389 ORCID: 0000	-0003-1861-5321
12	12	
13	13	
14	14	
15	15	
16	16	
17	17	
18	18	
19	19	
20	20	
21	21	
22	22	
23	23	

24 ABSTRACT

Introduction: Dengue fever is one of the most common vector-borne diseases in the world, affecting many people annually and causing many deaths. Besides, treating this disease is difficult, and there is no effective vaccine for it. In recent years, attention has been paid to the role of micronutrients, including vitamin D, in the control and treatment of viral diseases, including dengue fever. Accordingly, this study aimed to investigate the role of vitamin D in the treatment and control of dengue fever worldwide using a systematic review method.

Methods: This study was conducted as a systematic review of the role of vitamin D in the prevention and control of dengue fever globally using a systematic review method. Therefore, all relevant articles were extracted and reviewed through a search in the international scientific databases, including PubMed/MEDLINE, WEB OF Science (ISI), and SCOPUS, without a time limit until the end of 2024. The quality of the articles was assessed using the STROB checklist.

Results: Six articles published between 2018 and 2023 were included in the systematic review process. According to the findings, vitamin D affects macrophages that are differentiated from monocytes and increases resistance to dengue virus. Vitamin D also reduces pro-inflammatory cytokines, transcription, and reduction of mRNA receptors, increases the production of interleukins, especially IL-10, and plays a role in reducing viral load, severity of clinical symptoms, and infection control.

42 **Conclusion:** Vitamin D3 can control the disease and decrease viral load and the severity of 43 dengue fever in patients by inhibiting the inflammatory response and enhancing the immune 44 response. However, given the limited number of studies, it is recommended that more studies be 45 conducted in this field so that this can be discussed with more evidence and accuracy.

46 **Keywords:** Dengue virus, vitamin D, vectors, systematic review

47 **INTRODUCTION**

Dengue fever is a disease caused by dengue virus (DENV) transmitted by the Aedes aegypti 48 mosquito¹. This virus is common in tropical and subtropical regions. Given that more than half 49 50 of the world's population lives in these regions, many people are infected with this virus annually. Ninety-six million cases of dengue fever with clinical manifestations and 20,000 deaths 51 occur worldwide annually². Most cases of dengue fever are asymptomatic and do not require 52 medical care. In acute cases, clinical manifestations include high fever, rash, nausea, vomiting, 53 joint and muscle pain. This disease is divided into three categories based on the severity of 54 symptoms and clinical manifestations: dengue with warning signs (DWWS), severity as dengue 55 without warning symptoms (DNWS), and severe dengue (SD)³. Reinfection with other dengue 56 virus strains leads to exacerbation of clinical manifestations in this disease⁴. 57

The Dengvaxia vaccine has been licensed in 20 countries to combat this virus; however, it has not yet been approved as an effective vaccine for widespread immunization ^{5, 6}. Given the difficulty of treating this disease and the lack of an effective vaccine, recent attention has been drawn to the use of micronutrients as adjunctive therapy and their role in strengthening and modulating the immune system. These include vitamins A and D, iron, and proteins ^{5, 7, 8}.

Micronutrient deficiencies affect host immune system activity; for example, iron deficiency affects T-cell proliferation, phagocyte function, and cytokine activity during pathogenesis ^{9, 10}, vitamin A deficiency affects phagocyte numbers and cellular immunity in viral diseases ^{11, 12}, and vitamin D deficiency affects phagocytosis, macrophage maturation, cellular immunity, and the synthesis of pro-inflammatory cytokines ^{11, 13}. Beyond its role in calcium and phosphorus metabolism, which is essential for bone growth and strength, vitamin D also functions as an immunomodulator, influencing the activity of immune cells such as macrophages, monocytes,

and both T and B lymphocytes ^{14, 15}. As a result, vitamin D deficiency can impair immune function and be a risk factor for the spread of infection ¹⁶. Recently, experts have recommended the use of vitamin D to combat viral diseases, including dengue fever. However, the results reported in studies are contradictory. Thus, this study aimed to investigate the effectiveness of vitamin D as an adjunct to the control and treatment of dengue fever worldwide using a systematic review method to achieve a comprehensive result.

76

77 MATERIAL AND METHODS

This study was conducted as a systematic review of the role of vitamin D in the treatment and control of dengue fever worldwide according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines ¹⁷. This research has been registered in the International Prospective Register of Systematic Review (PROSPERO) with the code CRD42021231605

83 **1. Search strategy**

Articles were searched in the international databases of PubMed/Medline, Web of Science, and Scopus using the keywords dengue virus, dengue fever, dengue virus infection, DENV-2 infection, dengue hemorrhagic fever, dengue shock syndrome, vitamin D3, vitamin D, and DENV, both individually and in combination, with the use of OR and AND operators. The title, abstract, and full text were searched without a time limit up until the end of 2024, and all relevant articles were retrieved.

90

2. Inclusion and exclusion criteria

Articles with the following criteria were included in the study: 1- A study was conducted on the
dengue virus or disease, 2- The use of vitamin D supplementation was investigated, 3- The

93 treatment and clinical outcomes of dengue fever were investigated, 4- The effect of vitamin D supplementation on the disease and virus was investigated, and 6- They were of satisfactory 94 quality. Articles that did not meet the inclusion criteria were excluded. 95

3. Quality assessment 96

Article quality assessment was performed using the STROBE (Strengthening the Reporting of 97 Observational Studies in Epidemiology) checklist according to the guidelines. The maximum 98 score achievable was 33, and in this study, a score of more than 20 was acceptable 18 . 99

4. Study Selection 100

101 A total of 25,570 articles were extracted in the initial search. Then, the articles were entered into the Endnote software, duplicates were identified, and 1,945 articles were excluded due to 102 duplication. In the next step, by carefully studying the titles and abstracts of the articles, 23,587 103 104 articles were excluded due to their irrelevance to the study. Subsequently, the full text of 38 articles was reviewed, of which 32 articles were excluded from the study due to the lack of clear 105 106 investigation of the type of effect and outcome of vitamin D on dengue fever. Finally, six articles 107 were included in the systematic review process (Figure 1).

108

5. Data extraction

Data extraction was performed independently by two researchers. Accordingly, the full text of 109 110 the articles that met the inclusion criteria was first reviewed. If the articles were rejected by the two researchers, the reason was stated, and in case of disagreement between them, the article was 111 112 reviewed by a third person. Data extraction was performed using a checklist that included the 113 characteristics of the first author, the study author, the publication date of the article, the sample size, the type of intervention, the outcome measured, and the duration of follow-up. 114

116 **RESULTS**

Six articles that were conducted between 2018 and 2023 were included in the systematic review process. The characteristics of the articles included in the systematic review are presented in Table 1.

In a study by Giraldo et al. (2018), monocyte-differentiated macrophages (MDMs) exposed to 120 higher doses of vitamin D (4000 IU/day) showed greater resistance to DENV-2 infection. Also, 121 increasing vitamin D intake in MDMs significantly reduced pro-inflammatory cytokines, 122 intracellular toll-like receptor (TLR), and CAMP mRNA. It increased interleukin 10 (IL-10) 123 124 production, which may play a role in controlling viral infection. Finally, it was noted that highdose vitamin D intake could be effective in controlling the progression of dengue fever and 125 DENV replication ¹⁹. In a study by Mirza et al. (2022) investigating vitamin D deficiency in 126 127 patients with dengue fever, it was reported that those with co-infection of Helicobacter pylori (which can cause vitamin D deficiency) had a high prevalence of vitamin D deficiency. Also, 128 clinical symptoms of dengue disease, including dizziness, shortness of breath, persistent 129 130 vomiting, diarrhea, abdominal pain, headache, gingival bleeding, heart rate, and blood pressure fluctuations, were significantly more severe in patients with dengue fever co-infection with H. 131 pylori who were vitamin D deficient ²⁰. 132

In another study, Iqtadar et al. (2023) examined the association between serum vitamin D levels with dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). The findings showed that among patients with vitamin D deficiency, 73% had DF, 78.8% had DHF, and 87.5% had DSS, indicating that vitamin D deficiency is associated with dengue fever severity ³. Castillo et al. (2021) noted that macrophages, as the main cellular targets for DENV replication, had lower viral replication and produced lower levels of pro-inflammatory cytokines

139 in the presence of vitamin D3. MDMs also expressed lower levels of RIG I, Toll-like receptor 140 (TLR) 3, and TLR7, and higher levels of SOCS-1 against DENV-2 infection in the presence of vitamin D. In general, vitamin D3 modulates the innate immune responses of macrophages by 141 142 reducing ROS production, downregulating TLRs, and upregulating SOCS 1 and IFN-stimulated genes such as PKR and OAS. Accordingly, they noted that vitamin D3 could have antiviral and 143 anti-inflammatory effects in DENV-2-infected macrophages and could ultimately be a candidate 144 for anti-DENV therapy ²¹. In another study by Castillo et al. (2023), it was shown that inhibition 145 146 of miR-155-5p, miR-130a-3p, miR-182-5p, and miR-125b-5p resulted in decreased production of TNF- α and TLR9 and increased SOCS-1, IFN- β , and OAS1; however, it did not affect DENV 147 proliferation. Conversely, overexpression of miR-155-5p, miR-130a-3p, miR-182-5p, and miR-148 125b-5p significantly reduced the infection and proliferation rate of DENV-2 in MDMs. Given 149 150 that vitamin D3 supplementation differentially regulates the expression of inflammatory 151 microRNAs and can modulate the immune system, vitamin D3 may play a key role in the inflammatory response to DENV infection²². Also, Castillo et al. (2022) showed in another 152 153 study that simultaneous exposure of LL-37 with DENV-2 during entry into the body leads to a decrease in virus replication in MDMs, but the addition of LL-37 after exposure to DENV-2 has 154 no effect on it. Under conditions of simultaneous exposure, IL-6 production is reduced, and the 155 156 expression of genes involved in the antiviral response is increased. Considering the low endogenous levels and limited production of LL-37 in MDMs in response to DENV-2 infection, 157 the presence of vitamin D3, which leads to increased differentiation of MDMs, can raise its 158 levels and modulate the strength of the immune system in exposure to DENV²³. In general, 159 160 based on the findings of the present study, vitamin D can play a role in reducing DENV

infections, reducing proliferation and burden by affecting immune system mechanisms, andreducing the severity of the disease caused by DENV.

163

164 **DISCUSSION**

The present study was conducted to investigate the relationship between vitamin D3 and dengue 165 fever virus and disease, and the findings demonstrated that the use of vitamin D3 can be effective 166 in reducing viral replication and in improving and reducing clinical symptoms of patients. 167 Various studies have been performed on the effect of vitamin D3 on viral diseases in the world, 168 indicating that vitamin D3 can be useful in controlling the disease and its clinical symptoms ^{24, 25}. 169 170 Schneider et al. (2014) mentioned that vitamin D in rhinovirus infection increases the secretion of pro-inflammatory chemokines CXCL8 and CXCL10, which play a role in attracting immune 171 172 cells, including neutrophils, macrophages, and T cells, to the site of infection and induces an antiviral response against HRV infection ²⁶. Other studies have shown that vitamin D deficiency 173 is associated with increased susceptibility to respiratory syncytial virus (RSV) in the first year of 174 life of infants²⁷. Treatment with vitamin D, through inhibition or activation of inflammatory 175 markers, increases the level of $I\kappa B\alpha$, reduces the inflammatory response to RSV infection, 176 177 increases the antiviral response, and ultimately reduces the severity of complications and mortality from this infection ^{28, 29}. Besides, other studies have indicated that vitamin D, as an 178 immunomodulator, plays an important role in inflammatory responses, fibrosis caused by HCV 179 infection, and the development of a persistent viral response ³⁰. It also improves the immune 180 response in Peg- α -2b/ribavirin and Peg/RBV treatments ^{31, 32}. It indicates that the use of vitamin 181 D supplementation is helpful in the treatment, control, and reduction of the severity and clinical 182 183 symptoms of viral diseases.

Various mechanisms have been mentioned in the field of the effect of vitamin D on viral diseases. Teymoori □Rad et al. (2018) reviewed that vitamin D3 may affect viruses and their associated diseases by inducing an antiviral state, interacting with cellular and viral factors, causing apoptosis and autophagy, genetic and epigenetic changes, functional immunoregulatory properties, and modulating effects on gene transcription ³³.

Other studies have shown that vitamin D is associated with monocyte function, which is 189 mediated by the CYP27B1 enzyme ^{34, 35}. Monocytes use various receptors, including Toll like 190 receptors (TLRs), to recognize foreign bodies and perform phagocytosis. Evidence has shown 191 that CYP27B1 activity is enhanced during this process 36 . It has also been observed that 1. 192 (OH)2D. 25 is increased during this enhancement and controls gene expression in monocytes 37 . 193 Following increased gene transcription, it encodes the antibiotic protein LL37³⁸. Increased LL37 194 195 levels lead to improved monocyte function. Finally, it can be noted that vitamin D leads to increased monocyte activity, and vitamin D deficiency can reduce monocyte potency. Other 196 197 evidence is the role of calcitriol in inhibiting inflammatory T cell cytokines such as IL-2 and IL-17³⁹. Studies have shown that high doses of calcitriol supplementation in healthy individuals 198 199 lead to a decrease in the level of the pro-inflammatory cytokine IL-6. The combination of the above-mentioned effects can lead to the induction of regulatory T cells, which are important for 200 regulating immune responses ⁴⁰. So, based on the findings of the present study, it was found that 201 Vitamin D3 can be used as a supplement to treat dengue fever and reduce the severity, clinical 202 203 symptoms, and viral load.

204 CONCLUSION

The present systematic review showed that vitamin D3, through its effect on pro-inflammatory and inflammatory mechanisms, including cytokines, mRNA receptors, and interleukins, can

- 207 reduce viral load, control disease, and decrease the severity of dengue fever in patients by
- 208 inhibiting the inflammatory response and enhancing the immune response. However, more
- studies are required in different regions of the world to discuss this issue with more evidence and
- 210 accuracy.
- 211 **DECLARATION**
- 212 Ethics approval and consent to participate
- 213 Not applicable.
- 214 Data Availability Statement
- All data generated or analysed during this study are included in this published article.

216 **Competing interests**

- 217 The authors declare no competing interests.
- 218 **Consent for publication**
- 219 Not applicable
- 220 **Funding**
- 221 This research received no specific grant from any funding agency in the public, commercial, or
- 222 not-for-profit sectors.

223 Authors' contributions

EA determined the title, wrote and registered the protocol, and submitted the article. EA extracted the files from the databases. EA, screening, and selection of final reports. EA, data extraction. EA wrote the article. All authors read and approved the final manuscript.

227 Acknowledgments

228 The authors thank the Research Vice-chancellor of Shiraz University of Medical Sciences. A

229 preprint has previously been published.

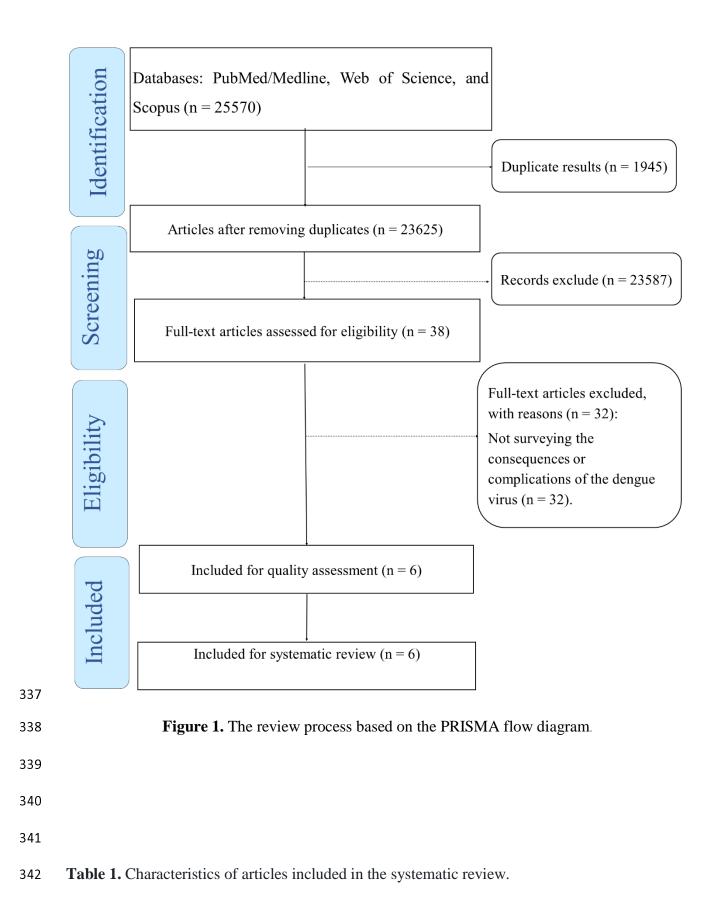
230 **REFERENCES**

231	1.	Bhatt S. <i>et al.</i>	The global distribu	tion and burden of	of dengue. <i>Nature</i>	496 , 504-507 (2013)	Ι.

- 232 2. Castro MC, Wilson ME, Bloom DE. Disease and economic burdens of dengue. *The*
- 233 *Lancet Infectious Diseases* **17**, e70-e78 (2017).
- 3. Iqtadar S, *et al.* Vitamin D Deficiency (VDD) and Susceptibility towards Severe Dengue
- Fever—A Prospective Cross-Sectional Study of Hospitalized Dengue Fever Patients from
- Lahore, Pakistan. *Tropical medicine and infectious disease* **8**, 43 (2023).
- 4. Khetarpal N, Khanna I. Dengue fever: causes, complications, and vaccine strategies.
- 238 *Journal of immunology research* **2016**, 6803098 (2016).
- 239 5. mondiale de la Santé O, Organization WH. Meeting of the Strategic Advisory Group of
- Experts on immunization, April 2018–conclusions and recommendations–Réunion du
- 241 Groupe stratégique consultative d'experts sur la vaccination, avril 2018–conclusions et
- 242 recommandations. *Weekly Epidemiological Record= Relevé épidémiologique*
- 243 *hebdomadaire* **93**, 329-343 (2018).
- Fatima K, Syed NI. Dengvaxia controversy: impact on vaccine hesitancy. *Journal of global health* 8, (2018).
- 7. Bresnahan KA, Tanumihardjo SA. Undernutrition, the acute phase response to infection,
 and its effects on micronutrient status indicators. *Advances in nutrition* 5, 702-711
 (2014).
- 249 8. Thurnham DI, McCabe LD, Haldar S, Wieringa FT, Northrop-Clewes CA, McCabe GP.
- Adjusting plasma ferritin concentrations to remove the effects of subclinical

251	inflammation in the assessment of iron deficiency: a meta-analysis. The American journal
252	of clinical nutrition 92 , 546-555 (2010).

- 253 9. Brock JH. Iron and the immune system. In: *Iron and human disease*). CRC Press (2018).
- 10. Nairz M, Weiss G. Iron in infection and immunity. *Molecular Aspects of Medicine* 75, 100864 (2020).
- Ao T, Kikuta J, Ishii M. The effects of vitamin D on immune system and inflammatory
 diseases. *Biomolecules* 11, 1624 (2021).
- Bae M, Kim H. The role of vitamin C, vitamin D, and selenium in immune system
 against COVID-19. *Molecules* 25, 5346 (2020).
- Ismailova A, White JH. Vitamin D, infections and immunity. *Reviews in Endocrine and Metabolic Disorders*, 1-13 (2022).
- 262 14. Calton EK, Keane KN, Newsholme P, Soares MJ. The impact of vitamin D levels on
- 263 inflammatory status: a systematic review of immune cell studies. *PloS one* 10, e0141770
 264 (2015).
- 265 15. De Martinis M, *et al.* Vitamin D deficiency, osteoporosis and effect on autoimmune
 266 diseases and hematopoiesis: a review. *International journal of molecular sciences* 22,
 267 8855 (2021).
- 268 16. Cantorna MT, Snyder L, Lin Y-D, Yang L. Vitamin D and 1, 25 (OH) 2D regulation of T
 269 cells. *Nutrients* 7, 3011-3021 (2015).


270	17.	Salameh J-P, et al. Preferred reporting items for systematic review and meta-analysis of
271		diagnostic test accuracy studies (PRISMA-DTA): explanation, elaboration, and checklist.
272		<i>bmj</i> 370 , (2020).
273	18.	Von Elm E, et al. The Strengthening the Reporting of Observational Studies in
274		Epidemiology (STROBE) Statement: guidelines for reporting observational studies.
275		International journal of surgery 12, 1495-1499 (2014).
276	19.	Giraldo DM, Cardona A, Urcuqui-Inchima S. High-dose of vitamin D supplement is
277		associated with reduced susceptibility of monocyte-derived macrophages to dengue virus
278		infection and pro-inflammatory cytokine production: An exploratory study. Clinica
279		<i>Chimica Acta</i> 478 , 140-151 (2018).
280	20.	Mirza WA, Zhang K, Zhang R, Duan G, Khan MSN, Ni P. Vitamin D deficiency in
281		dengue fever patients' coinfected with H. pylori in Pakistan. A case-control study.
282		Frontiers in Public Health 10, 1035560 (2022).
283	21.	Castillo JA, Giraldo DM, Hernandez JC, Smit JM, Rodenhuis-Zybert IA, Urcuqui-
284		Inchima S. Regulation of innate immune responses in macrophages differentiated in the
285		presence of vitamin D and infected with dengue virus 2. PLOS Neglected Tropical
286		<i>Diseases</i> 15 , e0009873 (2021).
287	22.	Castillo JA, Urcuqui-Inchima S. Vitamin D modulates inflammatory response of DENV-
288		2-infected macrophages by inhibiting the expression of inflammatory-liked miRNAs.
289		Pathogens and Global Health 117, 167-180 (2023).

290	23.	Castillo JA, Giraldo DM, Smit JM, Rodenhuis-Zybert IA, Urcuqui-Inchima S. Vitamin
291		D-induced LL-37 modulates innate immune responses of human primary macrophages
292		during DENV-2 infection. Pathogens and Disease 80, ftac014 (2022).
293	24.	Aranow C. Vitamin D and the immune system. Journal of investigative medicine 59, 881-
294		886 (2011).
295	25.	Medrano M, Carrillo-Cruz E, Montero I, Perez-Simon JA. Vitamin D: effect on
296		haematopoiesis and immune system and clinical applications. International journal of
297		molecular sciences 19 , 2663 (2018).
298	26.	Brockman-Schneider RA, Pickles RJ, Gern JE. Effects of vitamin D on airway epithelial
299		cell morphology and rhinovirus replication. <i>PloS one</i> 9, e86755 (2014).
300	27.	Drysdale SB, et al. Genetic predisposition of RSV infection-related respiratory morbidity
301		in preterm infants. European journal of pediatrics 173, 905-912 (2014).
302	28.	McNally JD, Sampson M, Matheson LA, Hutton B, Little J. Vitamin D receptor (VDR)
303		polymorphisms and severe RSV bronchiolitis: a systematic review and meta analysis.
304		<i>Pediatric pulmonology</i> 49 , 790-799 (2014).
305	29.	Currie SM, et al. The human cathelicidin LL-37 has antiviral activity against respiratory
306		syncytial virus. <i>PloS one</i> 8 , e73659 (2013).
307	30.	Mohamed AA, Abd Almonaem ER, Mansour AI, Algebaly HF, Khattab RA, El Abd YS.
308		Importance of studying the levels of hepcidin and vitamin D in Egyptian children with
309		chronic hepatitis C. Journal of Translational Internal Medicine 7, 15-21 (2019).

310	31.	Nimer A, Mouch A. Vitamin D improves viral response in hepatitis C genotype 2-3 naïve
311		patients. World journal of gastroenterology: WJG 18, 800 (2012).
312	32.	Abu-Mouch S, Fireman Z, Jarchovsky J, Zeina A-R, Assy N. Vitamin D supplementation
313		improves sustained virologic response in chronic hepatitis C (genotype 1)-naïve patients.
314		World journal of gastroenterology: WJG 17, 5184 (2011).
315	33.	Teymoori 🗆 Rad M, Shokri F, Salimi V, Marashi SM. The interplay between vitamin D
316		and viral infections. Reviews in medical virology 29, e2032 (2019).
317	34.	Zhang Y, et al. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine
318		production by targeting MAPK phosphatase-1. The Journal of Immunology 188, 2127-
319		2135 (2012).
320	35.	Adams JS, et al. Vitamin d-directed rheostatic regulation of monocyte antibacterial
321		responses. The Journal of Immunology 182, 4289-4295 (2009).
322	36.	Prietl B, Treiber G, Pieber TR, Amrein K. Vitamin D and immune function. Nutrients 5,
323		2502-2521 (2013).
324	37.	Nurminen V, Seuter S, Carlberg C. Primary vitamin D target genes of human monocytes.
325		Frontiers in physiology 10, 194 (2019).
326	38.	Gombart AF. The vitamin D-antimicrobial peptide pathway and its role in protection
327		against infection. Future microbiology 4, 1151-1165 (2009).
328	39.	Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modulator of the
329		immune system. Current opinion in pharmacology 10, 482-496 (2010).

- 330 40. Siddiqui M, et al. Immune Modulatory Effects of Vitamin D on Viral Infections.
- 331 *Nutrients* **12**, 2879 (2020).
- 332
- 333
- 334
- 335

336 Figure legend

Author	Year of	Place of	Exposure	Outcome	Quality
	study	study			assessment
Castillo JA ²¹	2021	Colombia	1α,25 dihydroxy vitamin D3 at a concentration of 0.1 nM	Reducing viral replication and the production of pro-inflammatory cytokines	High

Giraldo DM ¹⁹	2018	Colombia	1000 or 4000 international units (IU)/day of vitamin D during 10 days	Decreased pro-inflammatory cytokines, intracellular toll-like receptor (TLR), and CAMP mRNA, and increased interleukin 10 (IL-10) production	Mild
Mirza WA ²⁰	2022	Pakistan	Coinfection H. pylori and dengue fever	Vitamin D deficiency	High
Iqtadar S ³	2023	Pakistan	Vitamin D deficiency	Severe dengue fever	High
Castillo JA ²³	2022	Colombia	LL-37	Reduced replication of the virus and production of IL-6 increased the expression of genes involved in virus sensing and antiviral response	High
Castillo JA ²²	2023	Colombia	Vitamin D3	Expression of inflammatory-liked miR-182-5p, miR-130a-3p, miR125b-5p, miR146a-5p, and miR-155-5p	High