
1

Supporting Information for2

Glyphosate exposure and GM seed rollout unequally reduced perinatal health3

Emmett Reynier and Edward Rubin1
4

1To whom correspondence should be addressed. E-mail: edwardr@uoregon.edu5

This PDF file includes:6

Supporting text7

Figs. S1 to S388

Tables S1 to S99

SI References10

Emmett Reynier and Edward Rubin1 1 of 55



Supporting Information Text11

A. Background.12

Genetically modified crops Monsanto developed the first genetically modified crops, releasing GM soy, corn, and cotton in13

1996 in the United States. These plants are resistant to glyphosate, allowing farmers to spray their fields with glyphosate to14

kill weeds but not harm their crops. The pairing of GM seeds with glyphosate provides a simple and effective method for15

controlling weeds—previously, farmers had to use different pesticides, each effective on a smaller subset of weeds at different16

points in the cultivation process. This herbicide portfolio was supplemented by mechanical tilling. glyphosate previously had17

to be used sparingly since it would also kill the crops themselves. Farmers adopted GM seeds rapidly in the United States. The18

USDA provides data on national GM adoption rates starting in 1996 and for specific states beginning in 2000. Figure S2a19

shows the time series of adoption rates for the entire country (dark, bold line) and particular states (light, gray lines). In 2000,20

just four years after their release, GM seeds constituted 54 percent of soy acres, 61 percent of cotton acres, and 25 percent of21

corn acres. By 2010, adoption rates were around 90 percent for all three crops. Adoption of GM corn was generally slower and22

more heterogeneous across states than for either soy or cotton. Figure S2b shows spatial variation in adoption rates in 2000,23

2005, and 2010. For corn and soy, states further west adopted slightly faster than states further east. Meanwhile, California24

and Texas adopted GM cotton slower than the Southeast.25

Glyphosate and health Glyphosate is a broad-spectrum herbicide discovered and commercialized by Monsanto in the 1970s. Its26

popularity grew over the next twenty years because of its relatively favorable properties. glyphosate has a low toxicity relative27

to other chemicals used on farms. It breaks down fairly quickly and binds to the soil, decreasing runoff (1). However, it is28

water-soluble, which means that the part that does not bind to soil enters the water supply (2). It is an effective weed killer,29

working on a broad spectrum of plants. However, glyphosate does not just kill weeds, it also kills fungi and microorganisms30

in the soil, which can lead to the crops being susceptible to disease (3). It also breaks the nutrient cycle, forcing farmers to31

increase their dependence on fertilizer to feed their crops (4). Farmers in the US spend nearly $8 billion on pesticides each year32

(5), applying glyphosate to 298 million acres of crops annually (6).33

Regulatory oversight The US EPA’s current approval process for pesticides provides ample opportunities for applicants to steer34

the process toward approval.35

A central critique in the pesticide-regulation literature is the EPA’s tendency to rely upon regulated entities to design, run,36

and analyze non-peer-reviewed experiments to test chemicals’ safety—ignoring clear conflicts of interest (7–9). This approach37

stands in stark contrast to the International Agency for Research on Cancer (IARC)’s reliance on published, peer-reviewed38

research (7, 8).39

EPA’s reliance on applicant-generated tests grants applicants the opportunity to influence evidence in the review process in40

several ways. First, this process places regulated entities in a position to effectively selectively report their way to approval by41

running multiple tests and only reporting studies that show no harm (8). Benbrook (2019) illustrates considerable differences42

between regulatory assays versus assays from peer-reviewed journals (10)—leading the EPA and IARC to conflicting conclusions.43

Several recent reports highlights similar concerns around regulation in the EU—especially in differing conclusions between the44

IARC and the European Food Safety Authority (EFSA) (11, 12).45

Among reported tests, regulated entities may test exposure levels lower than (1) levels encountered in occupational settings46

and (2) levels where adverse health effects may be observed—especially when chemicals may have nonlinear dose-response47

relationships (13). Benbrook (2020) also highlights that the EPA’s approval process focuses more on dietary consumption than48

on occupation exposure—a potentially large shortcoming for Roundup’s high dermal penetration and possible wand application49

(8). Benbrook suggests that the regulatory process surrounding glyphosate has largely failed “to add common-sense worker50

protection provisions” (8).51

Similarly, the review process may conclude with no harm due to flawed research designs (14), implementation (15), and/or52

analyses (9). Despite its potential impacts on public health, the data involved in these studies is often withheld (13)—further53

restricting review and oversight. Compounding the issue: scant post-approval monitoring of chemicals exposure in populations54

or the environment (7). Finally, there is the issue of regulatory capture, which we leave for future research.55

While the conflict of interest is clear, these mistakes may also follow from the studies’ lack of legitimate peer review.56

Ultimately, the EPA’s reliance on industry-conducted studies, in conjunction with the effective null hypothesis of no harm,57

opens the door for avoidable public health risks.58

B. Data.59

Fertilizer data We get fertilizer data from the USGS (16), which estimates county-level nitrogen and phosphorous every five60

years between 1950 and 2017 using data from the USDA Census of Agriculture. They report separate estimates for farm61

commercial fertilizer applications, non-farm commercial fertilizer applications, and nutrient loads from manure. Since the rest62

of our data are annual, we interpolate for the years between the years of the Ag Census. We fit splines separately for each63

county and fertilizer type using all available years of data and then generate annual predictions for each county-year-fertilizer64

type. Figure S3 shows the results for a few example counties, where the points are the actual data and the lines are the fitted65

splines. The raw data only separates farm and non-farm commercial fertilizer use from 1987. Non-farm commercial fertilizer66

use is small, only making less than three percent of commercial fertilizer use. Therefore, we use four variables as controls:67
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phosphorous from commercial uses, nitrogen from commercial uses, phosphorous from manure, and nitrogen from manure. We68

normalize all of these variables by the total size of the county.69

Crop Acreage and Yield Data We get crop acreage and yield data from the USDA NASS. Specifically, we get acres planted and70

yield per acre by county from 1985 to 2017 from their annual survey. These data include barley, several types of beans, canola,71

chickpeas, corn, upland cotton, flaxseed, lentils, mustard, oats, peanuts, peas, peppers, potatoes, rice, safflower, sorghum,72

soybeans, sugarbeets, sweet corn, sweet potatoes, tomatoes, and wheat. We aggregate all crops besides corn, soy, and cotton73

into an “other” category. The USDA masks data for counties where there are small amounts of farms producing a particular74

crop. They report acres and yield from those counties as an aggregate for the agricultural statistical district. To account75

for this, we allocate any production reported at the aggregate district level to counties in that district with missing data76

proportional to the size of the county.77

Accuracy of FAO-GAEZ data New work highlights several issues with the GAEZ suitability data, calling into question the ability78

of the GAEZ suitability measures to predict historical yield for different crops (17). While we share many of the concerns79

raised—notably the lack of clarity around data sources and model validation—we think that the use of the GAEZ data is80

still appropriate in our setting. We are not using the GAEZ data to predict historical yields but rather as an instrument for81

glyphosate use. Thus, we only need the GAEZ suitability to be correlated with increases in glyphosate and for the exclusion82

restriction to hold. See Methods for an in-depth discussion of our identifying assumptions. Table S2 demonstrates that the83

GAEZ suitability measures correlate with observed acreage and yield of corn, soy, and cotton prior to the introduction of GM84

crops.85

Other Data We collect data on county-level, annual estimates of total population by age and race from SEER (18). Age shares86

are done by decade from ages 0 to 70, with everyone older than 70 grouped into the final bin. Race shares are calculated for87

the white, Black, and hispanic populations.88

C. OLS results. Panels A and B of Table S7 contain results for our main specifications, but estimated with OLS rather than89

2SLS. We find precise null effects across all outcomes, demonstrating the importance of isolating exogenous varaiation in90

glyphosate using our instruments.91

D. Comparing rescaled reduced-form DID results with 2SLS results. Our reduced-form DID results effectively provide estimates92

of 2SLS’s first stage and reduced form—just in a DID framework without interacting the instrument with indicators for year.93

By dividing the reduced-form DID results for health outcomes by the results, we can get comparable estimates for the health94

effects due to glyphosate exposure. Table S4 provides these calculations—first repeating the results from the main text in95

Figure 3 and then rescaling the reduced-form DID health effects by the reduced-form DID glyphosate effect. The resulting96

estimates are very close to the 2SLS estimates.97

E. Shift-share specification. We can recast our identifying variation to be used similarly to that of a traditional “shift-share”98

specification, where the “shift” is national glyphosate use and the “share” is attainable yield in each county. Thus, the99

identifying variation is very similar to our main results—we get temporal variation driven by the nation-wide increase in100

glyphosate use after the release of GM crops, and we get spatial variation from the suitability of the land in each county101

for corn, soy, and cotton. In the shift-share specification, our instruments are national glyphosate and national glyphosate102

interacted with the attainable yield percentile for corn, soy, and cotton. Thus, the difference between this specification and our103

main specification is that the first stage uses the national glyphosate trend directly, rather than interacting attainable yield104

with year dummies. When calculating the national glyphosate for each county, we exclude glyphosate applied within 100km of105

the county and any glyphosate applied upstream of the county to ensure that the national glyphosate instrument satisfies the106

exclusion restriction—that national glyphosate only affects perinatal health through its effect on local glyphosate. Table ??107

shows the results, which are generally similar, but smaller in magnitude than our main results.108

F. Robustness of first-stage and reduced form results. Figure S18 estimates our model for births to mothers with rural and109

non-rural residences separately. There is a small but largely insignificant decrease in birthweight after the release of GM seeds110

in 1996 in high GM attainable yield counties relative to low GM attainable yield counties. However, this effect is gone by111

2010. We attribute this difference largely to measurement error in exposure—we do not think that exposure is very high for112

urban mothers, who are unlikely to be in contact with drift, dust, or water contaminated with glyphosate applied within that113

county. The lack of direct measurement of exposure to glyphosate is a weakness of our study, as all we know is the amount of114

glyphosate used in a county each year.115

G. Robustness of 2SLS results for other outcomes. We provide specification charts for non-birthweight outcomes in Figures S19116

and S20. Additionally, we test robustness to various spatial subsets in Figure S21.117

H. Prediction performance. Figure S8 depicts how predicted birthweight percentiles maps to predicted (dark blue) and actual118

(light orange) birthweight. Given a predicted percentile, the mean predicted birthweight is, on average, quite close to the true119

mean birthweight—suggesting the ML approach indeed captures informative variation in birthweight.120

Table S6 describes the performance of the random-forest model for predicting birthweight (the outcome for which the model121

trained) and birthweight percentile, decile, and quintile. Panel A evaluates predictions’ performances on two metrics—mean122
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absolute error (MAE: |y − ŷ|) and mean absolute percent error (MAPE: MAE/y). All results in the table focus on the set123

of infants born to rural-residence mothers, as this group matches the population of interest in the paper. The three rows of124

Panel A use this full sample of rural-residence mothers and then drop 1% and 5% of the top and bottom birthweights. Finally,125

Panel B provides two null models for comparison. The Means model always predicts the sample mean; the At random model126

predicts at random.127

For predicting birthweight, the ML predictions offer improvements over both null models on both metrics (error level and128

percentage), and this dominance is even stronger when not evaluating the tails of the distribution. While the Means null model129

slightly edges out the full-sample model in terms of MAE for the percentile-based outcomes, the ML-based model is much130

stronger in terms of percent error. Percentage error is an important metric in our application, as we want match births to131

expected birthweight groups (as in Fig S8) rather than simply a low-error on-average prediction.132

I. 2SLS results and the shape of the glyphosate damage function. Our estimates for the effect of glyphosate exposure on133

perinatal health make comparisons between communities with higher and lower levels of glyphosate exposure (instrumented134

communities’ GM-crop suitability, compared to pre-GM-rollout comparisons, and conditional on fixed effects). Following135

the GM rollout, many low-suitability communities also experienced increased glyphosate exposure (for example, as shown in136

Figure 1c). As a result, our estimates for glyphosate’s health damages compare infants with higher glyhposate exposure to137

infants with lower glyphosate exposure. Generally, infatns with lower levels of glyphosate exposure are generally still exposed138

to some non-zero amount glyphosate. How this non-zero exposure for the lower group affects our 2SLS estimates depends upon139

two items: the shape of glyphosate’s damage function and the interpretation of the 2SLS estimates.140

For the moment, ignore the temporal variation in our instrument and estimation. The reduced-form results from our 2SLS141

estimates effectively compare glyphosate’s damages between in high and low GM-suitability areas, i.e., D(gh) − D(gℓ). The142

first stage estimates the difference in glyphosate intensity between these areas, i.e., gh − gℓ. Finally, second-stage scales these143

differences by the differences in glyphosate intensity.144

Reduced form: Damages from high vs. low glyphosate =D(gh) − D(gℓ)145

First stage: Differences in glyphosate intensity =gh − gℓ146

Second stage: Scaling damage difference by glyphosate difference =D(gh) − D(gℓ)
gh − gℓ

147

There are three main cases to consider for the shape of the damage function (with respect to its second derivative).148

• Linear damages If glyphosate’s damages for perinatal health are approximately linear/affine in glyphosate (i.e., α + βg),149

then our second-stage estimates are unaffected by whether low-suitability areas have zero or non-zero levels of glyphosate—150

as long as low-suitability areas apply less glyphosate than high suitability areas (our first-stage estimates and event151

studies confirm this requirement is satisfied).152

D(gh) − D(gℓ)
gh − gℓ

= α + βgh − α − βgℓ

gh − gℓ
= β(gh − gℓ)

gh − gℓ
= β153

Accordingly, if the damage function is linear, our second-stage will recover the marginal damages from a one-unit increase154

regardless of the level of glyphosate in low-suitability counties.155

• Concave damages For concave damage functions, as gℓ increases from zero and approaches gh from below, the156

reduced-form difference D(gh) − D(gℓ) shrinks faster relative to the first-stage difference gh − gℓ. Consequently, higher157

levels of gℓ will generate lower second-stage (and reduced-form) estimates. If the parameter of interest is the average158

per-unit health damages due to moving from g = 0 to g = gh, then the 2SLS will understate the actual damages. However,159

2SLS estimates the (weighted) average marginal damage of increasing glyphosate from concentrations found in the US.160

More formally,161

d

dgℓ

D(gh) − D(gℓ)
gh − gℓ

=
[

D(gh) − D(gℓ)
gh − gℓ

− D′(gℓ)
]

1
(gh − gℓ)2 ≤ 0162

due to D being concave (strict inequality will follow from strict concavity).163

• Convex damages Convex damage functions simply ‘reverse’ the results of concave functions: 2SLS will overstate the164

average damage of moving from g = 0 to g = gh when gℓ > 0 but will provide a (weighted) average marginal damage for165

glyphosate concentrations common in US counties.166

Because we are not in a position to take a strong stand on the shape of glyphosate’s damage function, it likely makes more167

sense to consider our estimates as the marginal damages relative to glyphosate concentrations commonly encountered in the168

United States—a policy-relevant parameter requiring weaker assumptions.169
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J. Demographic trends. One concern for identification in our model is that the underlying composition of the population is170

changing in high vs. low GM attainable yield counties during the period of our study. Figure S22 shows event studies where we171

use demographics of the mother as outcomes with county and year-by-month fixed effects and no other controls to test whether172

demographics are changing over time. We find that births in high-yield counties are less likely to come from black mothers173

after the release of GM crops—this would otherwise be concerning for our main estimates, however, we (1) control for race and174

other demographics in our main estimation and they do not meaningfully impact the results, (2) predicted birthweight does not175

change over the time period of the study, and (3) we find significant effects of glyphosate on birthweight for babies with both176

white and non-white mothers.177

K. Other forms of heterogeneity.178

Mother’s race Based on heterogeneity in predicted birthweight, we expect there to be differences in effect by mother’s race.179

Fig S23 shows reduced from event studies for different outcomes by mother’s race. Births to non-white mothers have a noisy,180

but generally larger effect than briths to white mothers.181

Heterogeneity by month of birth These results do not exhibit consistent heterogeneity by month of birth, as seen in Figure S25.182

There are slightly higher effects during the first months of the year—which means that their gestational period began in the183

spring and early summer the time when the most glyphosate is applied.184

Rural vs urban We compare results for rural and non-rural counties in SI Figure S18. As expected, the first stage is much185

weaker in non-rural than for rural counties since non-rural counties have more land uses competing with agriculture. We note186

that non-rural counties still grow GM crops and apply glyphosate—30% of corn, soy, and cotton acres and 29% of glyphosate187

applications are in non-rural counties. However, the mismeasurement of glyphosate exposure for infants in non-rural counties is188

likely to be considerably worse than in rural counties. Mothers residing in urban portions of a non-rural county will have lower189

glyphosate exposure than mothers residing near that same county’s agricultural production. Yet, data constraints force us to190

assign all infants in a county the same level of glyphosate exposure. We estimate the effect of GM suitability in non-rural191

counties to be attenuated relative to rural counties, consistent with the non-rural counties having more measurement error in192

exposure.193

L. Effect of GM on acreage and yield. Changes in agricultural activity unrelated to glyphosate that result from GM seed194

adoption could also affect infant health, threatening our identified effect of glyphosate on birth weight. For example, GM195

technology could lead farmers to bring marginal, not previously farmed land into agricultural production. This additional196

production could be associated with increased runoff into water or air pollution from dust or drift. Additionally, if yield197

increased with GM seeds, farmers could see an economic boost that could affect infant health. In order to rule out these as198

mechanisms for the observed effect of GM attainable yield on birth weight, we explore the effect of GM attainable yield on199

crop acreage and actual yield.200

We use USDA NASS data on annual, county-level crop acreage and yield, regressing these variables on the max GM201

attainable yield percentile interacted with year. Figure S26a shows reduced-form event study results regressing our suitability202

measure on total crop acreage as a share of the county area. Unfortunately, 1995 seems to be a low outlier year, making the203

event study more challenging to interpret—however, total acreage appears to stay around the same level after 1995 as it was204

prior to 1995. We estimate a difference-in-difference model comparing before vs after 1995 that results in a small and not205

statistically significant difference in total acreage.206

Figure S26b shows corn acreage as a percent of the county area. As with total acreage, the effect of GM suitability is noisy207

in the pre-period and seems unchanged until around 2007, at which point there does seem to be an increase in corn acreage208

for high-suitability counties relative to low-suitability counties. This timing coincides with when the renewable fuel standard209

increased incentives for farmers to plant corn (19). Figure S26c shows the results for soy acres as a percent of the county area.210

There was an initial bump in soy acreage after 1995, followed by a return to pre-1995 averages, consistent with the fact that211

GM seed varieties were available for soy before corn.212

Meanwhile, Figure S26d shows the effect of GM suitability on cotton acreage. Cotton seems to have had a high outlier213

year in 1995 but remains consistent with the other pre-period years until 2006, after which it decreases in high relative to low214

suitability counties. In summary, we find that there does not seem to be an effect of GM suitability on total acreage, but this215

masks some substitution between crops.216

We estimated models adding both fertilizers and acreage as controls. Figure S13 shows both the first stage and reduced217

form event studies under various iterations of controls—adding fertilizer and/or acreage controls does not result in meaningful218

or statistically significant differences of estimates in either the first stage or reduced form. Notably, adding acreage controls to219

all of the other controls does flatten out the upward pre-period trend in the first stage. The spec charts in Figures S6, S19, and220

S20 show our estimated coefficient on glyphosate from 2SLS on birthweight, gestation length, and the health index. Adding221

fertilizer controls slightly increases the magnitude of glyphosate’s effect on birthweight, but by considerably less than when we222

add pesticide controls. This is true when adding just fertilizers as controls relative to no additional controls and when adding223

fertilizers to a specification with pesticides and unemployment as controls.224

M. Other socioeconomic outcomes. Here, we explore the relationship between our attainable yield instrument and some225

socioeconomic outcomes in order to rule them out as mechanisms for the measured birth weight effect. We regress the226
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socioeconomic variables on GM attainable yield interacted with year dummies with county and year fixed effects. The sample227

is a county-year panel of rural counties in the US between 1990 and 2013. Figure S28 shows the results. There is no change228

in farm or non-farm income, however there do appear to be changes in employment. The unemployment rate jumps after229

2000—thus, we control for unemployment in our main regression, but note that this is four years after the release of GM seeds,230

thus the timing does not align to have been caused by GM. Meanwhile, farm employment is also declining, however there is a231

clear pre-trend. The release of GM seeds does not appear to affect this trend.232

N. Effects of upstream glyphosate in water.233

N.1. Predicting glyphosate in water with machine learning. To measure spillover effects from glyphosate applied upstream, we must234

have some measure of glyphosate exposure in water. Ideally, this would come from extensive monitoring, which consistently235

reports pesticide concentrations in water for a comprehensive set of water sources. Unfortunately, such a monitoring network236

does not exist, so we must create an alternative methodology to estimate glyphosate exposure from upstream spraying. We237

train a machine learning model to predict glyphosate concentrations using the limited glyphosate monitoring in water, along238

with water flow and other environmental characteristics.239

Data preparation Our training data come from recent work by Medalie et al. (20), who took 3204 samples of glyphosate and its240

main degradate AMPA from 70 sites in the National Water Quality Network (NWQN), a nationally representative set of water241

bodies, between 2015 and 2017. Both chemicals are nearly omnipresent, with glyphosate detected in 75 percent of samples and242

AMPA detected in 90 percent. We link these measurements to data on glyphosate use, soil type, slope, and rainfall upstream243

from the sampling location.244

We use a spatial water model to aggregate the amount of glyphosate applied upstream and downstream of each sampling245

location. Specifically, we use the level 8 HydroBASINS product from HydroSHEDS (21). These data are watershed polygons246

that delineate water basins across the globe in a standardized way. Importantly, they are assigned codes in a way that makes it247

possible to find all watersheds upstream and downstream from any given watershed.248

We begin with the pesticide data. As in our local analysis, one may be concerned with the endogeneity of glyphosate use.249

Our estimates will be biased if spraying upstream of a sampling location correlates with other factors affecting health outcomes.250

We deal with this issue by using only exogenous variation in glyphosate use driven by the same instruments from our local251

analysis, namely that driven by the timing of the release of GM seeds and the suitability of a county for corn, soy, and cotton.252

We regress glyphosate on the GM attainable yield percentile interacted with year dummies, with year and county fixed effects253

to generate county-year level predictions of glyphosate. To disaggregate these county-level predictions into watersheds, we254

assume that spraying is uniform across the county and multiply the glyphosate prediction for each county by the portion of the255

county’s total area covered by the watershed. Figure S29 shows the spatial distribution of predicted glyphosate by watershed256

across the United States in 2004.257

Additionally, we collect several other variables that affect the runoff of glyphosate in a method loosely following the commonly258

used universal soil loss equation (USLE). This soil loss equation multiplies the erodibility of the soil, the slope of the land,259

rainfall, and two measures associated with land use. We aggregate soil erodibility and slope from the gridded soil survey to260

the watershed level by taking the average over all 30-meter cells in each watershed (22). Similarly, we use gridded, monthly261

precipitation from PRISM to help inform the potential for glyphosate to run into water (23). We aggregate the 4-kilometer262

cells to the watershed level by taking the simple average of cells within a watershed. Additionally, we aggregate to the annual263

level by taking the sum over the growing season, April through September, when most glyphosate is applied. Figure S30 shows264

national percentiles of soil erodibility, slope, and precipitation by watershed.265

We then utilize the “Pfafstetter” watershed coding system used by the HydroBASINS data to find all watersheds upstream266

from each watershed. We have selected an example watershed in Washington County, Illinois, just east of St. Louis, for267

demonstration purposes. Figure S31 shows the example watershed in red and then highlights all of the watersheds upstream,268

which reach further north into Illinois, and all of the watersheds downstream, which follow the Mississippi River to the Gulf of269

Mexico.270

When linking upstream and downstream watersheds, we calculate the distance between any two watersheds by summing the271

distance between centroids of each watershed that lies along the water flow between the two watersheds. We then aggregate the272

variables described above into 50-kilometer distance bins from −100 to 350, where negative values denote values for downstream273

watersheds. Figure S31 demonstrates the distance bins for our example watershed. The final dataset contains 2,142 water274

samples, where we removed 1064 samples from sites with no upstream watersheds entirely outside the site’s county. We remove275

these to ensure that our measure of upstream spraying does not capture non-water mechanisms of glyphosate exposure, such as276

dust, drift, or direct contact.277

Training the water concentration ML model We train LASSO and Random Forest (RF) models using the above mentioned dataset.278

We generate a fully saturated set of interaction terms between glyphosate, soil erodibility, slope, and rainfall as predictors279

in the LASSO model. The month of the sample is the only other predictor variable. Since the model’s primary goal is to280

predict glyphosate concentrations back in time, we train the model on 1,385 observations from after October 2015 and validate281

performance with 757 observations from before October 2015. Within the training set, we tune parameters using 4-fold282

cross-validation, where each fold trains on 15 months of data and then tests performance on the preceding six months of data.283

Then, we select the parameter with the lowest average RMSE across folds to estimate the model on the entire training set.284

Figure S32 shows the cross-validation results.285
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We then assess performance of the tuned models using the 757 held out observations. Figure S33 shows the out-of-sample286

predictions versus their actual values. Both models predict AMPA concentrations much better than glyphosate concentrations,287

with an R-squared of 0.59 and 0.31 for the random forest and LASSO models respectively. Figure S34 shows the density of the288

out-of-sample predictions for each model, as well as actual values. Generally, the models slightly over-predict at low values,289

moreso for glyphosate than AMPA.290

Generating predictions We use the model to predict county-month-level glyphosate and AMPA concentrations. We do this by291

making predictions for every watershed for each month between January of 1992 and December of 2017. We then take the292

weighted average of the predictions, where the weights are the proportion of the county’s population that lives in the watershed.293

Our population estimates come from SEDAC’s 2010 population grid (24). This grid estimates the population for one square294

kilometer pixels across the United States. We add the population counts for pixels within each watershed and then divide by295

the total population count for cells within the county to obtain the population weights. Figure S35 shows predicted AMPA in296

July of 2004 from the LASSO model from each watershed touching Washington County on the right and the population weight297

for those watersheds on the left. Figure S36 shows predicted AMPA in water for each county in July of 2004. We can then link298

the county-month-level predictions of glyphosate and AMPA to the birth certificate data.299

N.2. Results: Effect from upstream glyphosate in water. Before using the machine learning predictions of glyphosate and AMPA in300

water, we first regress perinatal health outcomes on aggregate suitability over distance bins upstream or downstream from the301

mother’s county of residence. These are of the form,302

Healthijt =
∑

τ ̸=1995

γl
τ GMl

j × 1(t = τ) +
∑

τ ̸=1995

∑
d

γu
τdGMu

jd × 1(t = τ) + ΓXijt + αj + λt + εijt,303

where GMu
jd is the average GM suitability percentile in distance bin d upstream (or downstream) from county j. We now use304

GM l
j to denote local GM suitability.305

Figure S37 displays event study plots illustrating the effect of max GM attainable yield in upstream watersheds on birthweight,306

categorized into 50-kilometer distance bins. These results suggest that having land more suitable for GM crops upstream of a307

county does not lead to a change in birthweight after the release of GM seeds in 1996.308

As Dias, Rocha, and Soares (25) emphasize, the potential effects of upstream glyphosate spraying would be strongest in309

places where there is more runoff from farms. We estimate the event study allowing for heterogeneity by high-soil-erodibility310

and high-precipitation, two factors that could increase runoff of glyphosate into surface water. Figure S38 shows the results for311

both high- and low-erodibility and precipitation. Neither demonstrate a consistent effect on birthweight.312

Finally, we estimate the effect of predicted glyphosate and AMPA in water. We do this by running regressions of the form,313

Healthijt = βlĜLY
l

jt + βuĜLY
u

jt + ΓXijt + αj + λt + εijt, [1]314

where ĜLY
l

jt represents local glyphosate exposure, predicted from the first stage Eq. (2). ĜLY
u

jt denotes predicted exposure to315

glyphosate or AMPA from glyphosate applied upstream of county j in year t, where we generate predictions from the machine316

learning model described above. These predictions are plausibly exogenous, as the models are trained only on exogenous data.317

Table S9 shows the results of regressing these predictions of glyphosate or AMPA in water on birthweight. All four estimates,318

coming from either a LASSO or random forest model predicting either AMPA or glyphosate concentrations demonstrate a null319

effect of glyphosate or AMPA on birthweight.320

We approach these findings cautiously; however, they suggest the absence of substantial downstream health spillovers321

resulting from glyphosate runoff. The lack of effect may be reasonably expected in the US relative to Brazil, as drinking water322

treatment in the US is more robust than that in Brazil (26). However, we cannot definitively exclude water exposure as a323

potential mechanism driving the local results. glyphosate runoff into the water could be causing issues within a county but324

not downstream of a county if the chemicals degrade quickly enough. Additionally, given the inherent measurement error in325

this process and the absence of a more refined chemical transport model, we refrain from making definitive claims about the326

existence of downstream spillovers from glyphosate use.327
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Rural counties Non-rural counties

High GM yield Low GM yield

Variable Mean Stnd. Dev. Mean Stnd. Dev. Mean Stnd. Dev.

Infant characteristics
Female infant 0.488 0.500 0.488 0.500 0.488 0.500
Birthweight (g) 3,327.0 610.1 3,360.1 583.8 3,333.5 604.5
Gestation (wk) 39.050 2.788 39.180 2.565 39.015 2.660
Preterm 0.185 0.388 0.166 0.373 0.178 0.383
C-section 0.243 0.429 0.223 0.416 0.217 0.412
Health index 0.029 0.251 0.031 0.244 0.021 0.242
Low birthweight 0.075 0.263 0.063 0.243 0.072 0.258
Very low birthweight 0.013 0.115 0.010 0.099 0.013 0.114

Maternal characteristics
Black 0.199 0.400 0.024 0.152 0.172 0.378
Non-White 0.217 0.412 0.074 0.262 0.217 0.412
Hispanic 0.030 0.171 0.103 0.304 0.179 0.383
Married 0.683 0.465 0.746 0.435 0.692 0.462
High-school grad. 0.749 0.433 0.763 0.425 0.769 0.421
College grad. 0.115 0.319 0.131 0.337 0.207 0.405

Local agriculture
Glyphosate (kg/km2) 0.003 0.004 0.001 0.002 0.002 0.004
Max. GM crop suit. pctl. 0.759 0.144 0.248 0.138 0.494 0.285
Corn acres/km2 24.303 31.789 8.586 20.261 7.774 17.128
Soy acres/km2 25.314 30.369 4.019 12.280 6.105 14.826
Cotton acres/km2 3.872 11.910 1.258 8.937 1.199 6.268
Other acres/km2 15.015 22.160 11.386 23.691 6.156 13.409

Local economy
Unemployment rate 0.070 0.026 0.079 0.041 0.066 0.027
Pct. farm employment 0.078 0.057 0.077 0.071 0.014 0.027
Farm employment per capita 0.036 0.027 0.037 0.036 0.006 0.011
Total population 43,742 28,666 41,164 31,005 1,347,402 2,122,955
Farm income per capita 0.491 0.592 0.600 1.236 0.104 0.257
Non-farm income per capita 15.843 2.580 15.884 3.313 22.165 5.312
Employment rate 0.480 0.092 0.486 0.117 0.559 0.167

Totals
Number of births 1,981,619 1,734,005 20,031,928
Number of counties 898 1,125 1,085

Table S1. Summary statistics for high- and low-yield rural counties and urban counties. Means and standard deviations are calculated at the
birth level for the county group in the years 1992–1995. GM yield grouping is based upon being above or below the 50th percentile of maximum
attainable yield for GM crops. Rural/non-rural split uses USDA rural-urban continuum codes from 2003.
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Table S2. Correlation between GAEZ suitability measures and pre-period acerage for GM crops.

Acreage Percentiles Yield Percentiles

Dep Var: GM Corn Soy Cotton GM Corn Soy Cotton
Model: (1) (2) (3) (4) (5) (6) (7) (8)

Constant 0.227 0.240 0.141 0.263 0.214 0.326 0.178 0.264
(0.009) (0.009) (0.007) (0.008) (0.009) (0.010) (0.008) (0.008)

GM GAEZ Yield Percentile 0.546 0.571
(0.015) (0.015)

Corn GAEZ Yield Percentile 0.521 0.348
(0.015) (0.017)

Soy GAEZ Yield Percentile 0.719 0.643
(0.012) (0.014)

Cotton GAEZ Yield Percentile 0.474 0.472
(0.013) (0.013)

Fit statistics
Observations 3,109 3,109 3,109 3,109 3,109 3,109 3,109 3,109
R2 0.30 0.27 0.52 0.29 0.33 0.12 0.42 0.28

IID standard-errors in parentheses

We first calculate the county-level 1990 to 1995 average planted acreage and yield for each of
corn, soy, cotton, and the aggregate of all three for GM. We divide the acreage values by the
total size of the county. We then convert the acreage share and yield values into a percentile
relative to all counties in the continental US. The GAEZ yield percentiles are calculated as
described in Methods.
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(a) Rural vs non-rural counties

(b) GM crop suitability, Max GM attainable yield pctl in rural counties

(c) Increase in glyphosate, 1995–2012 (kg/km2) in rural counties

Fig. S1. GM crop suitability and increases in glyphosate for rural counties. (a) Rural counties using 2003 Rural-Urban Continuum codes from the US Department of
Agriculture (USDA) to classify counties as rural. A rural county is any non-metro county, where the USDA defines a metro county as, “broad labor-market areas that include
central counties with one or more urban areas with populations of 50,000 or more people. (b) Percentile of attainable yield for GM crops equals the difference in attainable yield
between high- and low-input scenarios from FAO GAEZ (27) for corn, soy, and cotton. We rescale each crop to be a national percentile, take the maximum over the three crops,
and finally scaling again to be a national percentile. Here we filter to only rural counties. (c) Change in glyphosate censored at the 1st and 99th percentiles and then filtered to
only rural counties.
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(a) Time series of GM crop adoption.

(b) Spatial variation in GM crop adoption.

Fig. S2. GM seeds were rapidly adopted after their 1996 release. (a) Shows the percent of crops with any GM technology by year. The bold line is the entire United States
and the grey lines are specific states. (b) Shows spatial variation across states in GM adoption rates in 2000, 2005, and 2010. Data from the USDA (28).
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Fig. S3. Interpolation of fertilizer data. This figure shows the fitted spline values and raw data for seven example counties. The dots are raw data and lines
are the fitted spline functions. We fit a separate spline for each county and fertilizer type, using all data available—a value every five years between 1950
and 2017 from USGS (16). We then generate annual-county-fertilizer type predictions to use with the rest of our data.

12 of 55 Emmett Reynier and Edward Rubin1



Fig. S4. Counties with high suitability for GM crops increased glyphosate intensity and reduced non-glyphosate pesticides with the introduction of glyphosate-
resistant seeds. Each event study come from separate regressions where the given pesticide is regressed on local GM max attainable yield percentile
interacted with year dummies with year and county fixed effects. All coefficients are scaled by the standard deviation of their respective variables.
Herbicide and Insecticide each aggregate all other herbicides and insecticides not individually analyzed. Results from rural US counties. Standard errors
are clustered by state and year. A unit of observation is county by year; regressions are weighted by total number of births.
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Fig. S5. Perinatal health declined in GM-crop suitable counties after the introduction of glyphosate-resistant seeds The subfigures extend Figure 2b to additional
health outcomes—i.e., the estimated effect of local GM max attainable yield percentile on perinatal health outcomes relative to 1995. All regressions
include county and year by month fixed effects and cluster errors by state and year. All regressions also control for family demographics, including
mother’s age, race, education, marital status, birth facility, resident status, previous births, sex of infant, and father’s age and race. Sample restricted to
births occurring in rural counties or to mothers residing in rural counties.
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BW LBW VLBW Gestation Preterm C-section Health Index

Panel A: Policy effect
GLY/km2 -843.5 0.167 0.047 -6.13 0.606 0.324 -0.398

(329.8) (0.079) (0.017) (1.73) (0.223) (0.208) (0.119)
Controls

(No additional controls)

Panel B: GLY effect
GLY/km2 -1,280.7 0.279 0.087 -9.14 0.920 0.375 -0.549

(496.5) (0.103) (0.029) (2.47) (0.309) (0.374) (0.195)
Controls

Pesticides Y Y Y Y Y Y Y
Fertilizers Y Y Y Y Y Y Y
Employment Y Y Y Y Y Y Y
Income Y Y Y Y Y Y Y
Age Shares Y Y Y Y Y Y Y
Race Shares Y Y Y Y Y Y Y
Population Y Y Y Y Y Y Y

Fixed-effects (Both panels)
Family Demog. Y Y Y Y Y Y Y
County Y Y Y Y Y Y Y
Yr × Mo Y Y Y Y Y Y Y

Summaries (Both panels)
N (millions) 10.73 10.73 10.73 10.71 10.71 9.510 10.71
2012 mean 3,271.1 0.081 0.014 38.6 0.207 0.278

Table S3. 2SLS estimates of the policy and direct GLY effects on perinatal health. Each coefficient estimate (column-panel combination)
provides results from a separate 2SLS regression. The six outcomes are birthweight (BW), the probabilities of low birthweight (LBW; BW <
2500g) and very low birthweight (VLBW; BW < 2500g), gestation length, and the probability of a preterm birth (gestation < 37 weeks). Both
panels include family demographic, county, and year by month fixed effects. GLY effect (Panel B) additionally controls for other pesticides and
unemployment. Sample restricted to births occurring in rural counties or to mothers residing in rural counties. Instruments are the attainable
yield percentile for GM crops in each county interacted with year. Family demographic controls include mother’s age, mother’s race, mother’s
origin, mother’s education, sex of child, total birth order, mother’s residence status, and birth facility. Pesticide controls include alachlor,
atrazine, cyanizine, fluazifop, metolachlor, metribuzin, and nicosulfuron. GLY/km2 is kg/km2. Standard errors in parentheses. We two-way
cluster errors by year and state.
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Reduced-form DID results Two-stage results

Raw reduced form (1–2) scaled by gly.

Outcome (unit) (1) (2) (3) (4) (5) (6)

Panel A: Health outcomes
Birthweight (g) −29.42 −23.79 −29.2 −48.9 −19.6 −29.8
Gestation (wk ) −.148 −.119 −.146 −.244 −.143 −.213
LBW (%pt) .507 .469 .502 .964 .399 .650
VLBW (%pt) .111 .085 .110 .176 .110 .204
Preterm (%pt) 1.64 1.07 1.62 2.19 1.41 2.14
Health index −.011 −.010 −.011 −.020 −.009 −.013

Panel B: Glyphosate
Glyphosate (kg/km2) .024 .011

Controls
Ag. and econ. Yes Yes Yes
Family demog. Yes Yes Yes Yes Yes Yes
County Yes Yes Yes Yes Yes Yes
Yr. × Mo. Yes Yes Yes Yes Yes Yes

Table S4. Comparing difference-in-differences and 2SLS results Sample restricts to births from mothers residing in a rural county. Instruments
are the maximum attainable yield percentile for GM crops in each county (interacted with year in the 2SLS results in columns 5-6). All
regressions include county and month-of-sample fixed effects and control for family and infant demographic controls (mother’s age, mother’s
race, mother’s origin, mother’s education, sex of child, total birth order, mother’s residence status, and birth facility). Glyphosate effect include
additional Ag. and econ. controls (unemployment rate, employment rate, percent farm employment, and farm employment per capita, non-farm
income per capita and farm income per capita, population, age shares, race/ethnicity shares, non-glyphosate pesticides, and fertilizer).
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Fig. S6. The estimated effect of glyphosate on birthweight is robust to alternative specifications. Coefficients are the estimated marginal effect of glyphosate
(kg/km2) on birthweight. Our main specifications are highlighted. All regressions include county of residence, county of occurrence, and family
demographic fixed effects, standard errors are clustered by state and year. Pesticide controls include alachlor, atrazine, cyanazine, fluazifop, metolachlor,
metribuzin, and nicosulfuron. Employment controls include unemployment rate, employment rate, farm employment per capita, and farm employment
share. Income controls include farm and nonfarm income per capita. Age shares controls are share of population in seven decade wide bins from ages
0 to 70, with over 70 as the omitted category. Race share controls are proportion of the population white, Black, and Hispanic. Fertilizer controls are
commercial nitrogen, commercial phosphorous, manure nitrogen, and manure phosphorous. Acre controls are corn, soy, and cotton acres, as well as an
aggregate of all other crop acreage. Family demographic FEs include mother’s age, race, education, marital status, birth facility, resident status, previous
births, sex of infant, and father’s age and race. We vary the construction of GM attainable yield: “GM Max Percentile” is our main specification, “GM Avg
Percentile” takes the average standardized attainable yield among corn, soy, and cotton (rather than the average) before re-scaling into a percentile, “GM
Average, Split at Median” uses a binary high vs low attainable yield, where a county is high attainable yield if they are above the median attainable yield,
“GM Max Top vs Bottom Quartile” is also binary, but only compares the top and bottom quartiles, omitting the middle group, and “1990-1995 GM Max Yield
Percentile” is the percentile of observed yield in each county for corn, soy, and cotton between 1990 and 1995 using data from USDA NASS. “Eastern US”
measures filter to counties east of the 100th meridian then calculate percentiles. Sample restricted to births occurring in rural counties or to mothers
residing in rural counties.
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Fig. S7. glyphosate effects for infants born to non-white mothers are larger for birthweight and for the probabilities of preterm birth, LBW, and VLBW. Policy and
Elyphosate effects for all outcomes at the mean level of glyphosate in 2012, estimated separately by mother’s race. All regressions include county and
year by month fixed effects, and control for family demographics. Standard errors are clustered by state and year. The Glyphosate Effect adds controls for
other pesticides, employment, income, population, age and race shares, and fertilizers. The sample is restricted to births occurring in rural counties or to
mothers residing in rural counties.
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(1) (2) (3)

Panel A: Birthweight
Glyphosate/km2 −843.5 −885.4 −855.0

(329.8) (324.8) (323.2)

Panel B: Gestation
Glyphosate/km2 −6.13 −5.69 −5.65

(1.73) (1.67) (1.66)

Panel C: Health index
Glyphosate/km2 −0.398 −0.361 −0.347

(0.119) (0.118) (0.116)

Control sets
Age Shares Yes Yes
Race Shares Yes

Fixed-effects
Family demog. Yes Yes Yes
County Yes Yes Yes
Yr. × Mo. Yes Yes Yes

Table S5. Effect of glyphosate on birthweight, gestation, and health index: Robustness to age and race share controls Sample restricted to
births from mothers residing in a rural county. Instruments are the maximum attainable yield percentile for GM crops in each county interacted
with year. Family demographic controls include mother’s age, mother’s race, mother’s origin, mother’s education, sex of child, total birth order,
mother’s residence status, and birth facility. Age shares include the share of population in each county in seven 10 year age bins from age 0 to
70. We omit the over 70 category. Race shares include the share of the population in each county that is black, share white, and share hispanic.
Glyphosate/km2 is kg/km2.
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Fig. S8. Predicted birthweights closely match actual birthweights across the predicted birthweight distribution. At each predicted birthweight percentile (x-axis),
we take the average actual birthwight and average predicted birthweight, which are both plotted in the y-axis. Sample includes births to mothers with rural
residences from 1990 to 2013.
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(1) (2) (3) (4) (5) (6) (7) (8)
Outcome (units): Birthweight (g) Percentile (pp) Decile (1–10) Quntile (1–5)

Metric: MAE MAPE MAE MAPE MAE MAPE MAE MAPE

Panel A: Actual predictions (across three samples)
Sample
Full 406.7 15.7 26.1 290.7 2.58 79.0 1.25 59.1
1–99 pctl. 381.0 12.6 26.1 127.9 2.58 78.3 1.26 59.2
5–95 pctl. 329.0 10.3 26.1 91.7 2.59 73.0 1.27 58.8

Panel B: Null models (on the full sample)
Approach
Means 443.4 17.2 24.8 488.3 2.48 93.3 1.19 64.2
At random 643.6 23.4 33.3 324.5 3.30 106.1 1.60 77.0

Table S6. ML prediction performance Panel A describes the performance of the random-forest model across three samples—the full sample,
births in percentiles 1–99, and births in percentiles 5–95. We evaluate the predictions on two metrics: mean absolute error (MAE: |y − ŷ|) and
mean absolute percent error (MAPE: MAE/y). The model trained to predict birthweight (columns 1–2). We also evaluate the performance for
predicting birthweight percentile (3–4), decile (5–6), and quintile (7–8). Panel B provides two null models that (1) predict the sample means or
(2) predict at random. The table uses births to rural-residence mothers to match the main analyses throughout the paper.
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(a) First-stage effect of GM suitability on glyphosate intensity by predicted birthweight quintile

(b) Reduced-form effect of GM suitability on birthweight by predicted birthweight quintile

Fig. S9. First-stage event study coefficients are similar across predicted BW quintiles, reduced form shows larger effects in lower quintiles. (a) Estimated
event-study coefficients for the effect of local GM max attainable yield percentile on glyphosate by year relative to 1995 by predicted birthweight quintile.
Pesticide data only go back to 1992—there are no coefficients in 1990–1991. (b) Similar event study but with birthweight as outcome. Estimates from
each predicted birthweight quintile come from separate regressions. All regressions include county, year by month, and family demographic fixed effects.
Standard errors are clustered by state and year. Family demographics include mother’s age, race, education, marital status, birth facility, resident status,
previous births, sex of infant, and father’s age and race. Sample restricted to births occurring in rural counties or to mothers residing in rural counties.
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Fig. S10. Heterogeneity in Glyphosate Effect is consistent across various predicted birthweight bin sizes, greater disparities among birthweight outcomes.
Estimated Glyphosate Effect at mean of glyphosate/km2 on various perinatal health outcomes instrumented with GM attainable yield interacted with year.
All regressions include county, year by month, and family demographic fixed effects, and control for other pesticides, employment, income, population, age
and race shares, and fertilizers. Standard errors are clustered by state and year. Family demographics include mother’s age, race, education, marital
status, birth facility, resident status, previous births, sex of infant, and father’s age and race. Sample restricted to births occurring in rural counties or to
mothers residing in rural counties.
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Fig. S11. Limited evidence of heterogeneous marginal effects by sex within predicted BW quintile. Estimated marginal effect of glyphosate/km2 on various
perinatal health outcomes instrumented with GM max attainable yield interacted with year. All regressions include county, year by month, and family
demographic fixed effects and control for other pesticides, employment, income, population, age and race shares, and fertilizers. Standard errors are
clustered by state and year. Family demographics include mother’s age, race, education, marital status, birth facility, resident status, previous births, sex
of infant, and father’s age and race. Sample restricted to births occurring in rural counties or to mothers residing in rural counties.
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BW LBW VLBW Gestation Preterm C-section Health Index

Panel A: Policy effect
GLY/km2 24.6 -0.023 -0.003 -0.511 0.030 0.021 -0.047

(75.9) (0.022) (0.006) (0.373) (0.050) (0.068) (0.029)
Controls

(No additional controls)

Panel B: GLY effect
GLY/km2 19.9 0.005 -0.002 -0.368 0.046 -0.011 -0.006

(60.2) (0.015) (0.006) (0.328) (0.040) (0.071) (0.028)
Controls

Pesticides Y Y Y Y Y Y Y
Fertilizers Y Y Y Y Y Y Y
Employment Y Y Y Y Y Y Y
Income Y Y Y Y Y Y Y
Age Shares Y Y Y Y Y Y Y
Race Shares Y Y Y Y Y Y Y
Population Y Y Y Y Y Y Y

Fixed-effects (Both panels)
Family Demog Y Y Y Y Y Y Y
County Y Y Y Y Y Y Y
Yr × Mo Y Y Y Y Y Y Y

Summaries (Both panels)
N obs. (millions) 10.73 10.73 10.73 10.71 10.71 9.51 10.73

Table S7. OLS estimates of the policy and direct GLY effects on perinatal health. Each coefficient estimate (column-panel combination)
provides results from a separate OLS regression. Both panels include family demographic, county, and year by month fixed effects. GLY effect
(Panel B) additionally controls for other pesticides, employment, income, population, age and race shares, and fertilizers. Sample restricted to
births occurring in rural countries or from mothers residing in rural counties. Family demographic controls include mother’s age, mother’s
race, mother’s origin, mother’s education, sex of child, total birth order, mother’s residence status, and birth facility. Pesticide controls include
alachlor, atrazine, cyanizine, fluazifop, metolachlor, metribuzin, and nicosulfuron. GLY/km2 is kg/km2. Standard errors in parentheses. We
two-way cluster errors by year and state.
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BW LBW VLBW Gestation Preterm C-section Health Index

Panel A: Policy effect
GLY/km2 -545.3 0.112 0.032 -4.06 0.418 0.174 -0.247

(206.0) (0.052) (0.012) (1.00) (0.142) (0.149) (0.069)
Controls

(No additional controls)

Panel B: GLY effect
GLY/km2 -933.3 0.212 0.062 -6.21 0.664 0.100 -0.353

(329.1) (0.082) (0.024) (1.61) (0.213) (0.268) (0.119)
Controls

Pesticides Y Y Y Y Y Y Y
Fertilizers Y Y Y Y Y Y Y
Employment Y Y Y Y Y Y Y
Income Y Y Y Y Y Y Y
Age Shares Y Y Y Y Y Y Y
Race Shares Y Y Y Y Y Y Y
Population Y Y Y Y Y Y Y

Fixed-effects (Both panels)
Family Demog Y Y Y Y Y Y Y
County Y Y Y Y Y Y Y
Yr × Mo Y Y Y Y Y Y Y

Summaries (Both panels)
N obs. (millions) 10.73 10.73 10.73 10.71 10.71 9.51 10.73

Table S8. Effect of GLY on perinatal health estimated with 2SLS shift-share instrument. Each coefficient estimate (column-panel combination)
provides results from a separate 2SLS regression. Instruments are the measure of suitability in each county interacted with national glyphosate
usage, excluding glyphosate from counties within 100km or upstream. The six outcomes are birthweight (BW), the probabilities of low
birthweight (LBW; BW < 2500g) and very low birthweight (VLBW; BW < 2500g), gestation length, and the probability of a preterm birth
(gestation < 37 weeks). Both panels include family demographic, county, and year by month fixed effects. GLY effect (Panel B) additionally
controls for other pesticides and unemployment. Sample restricted to births occurring in rural counties or to mothers residing in rural counties.
Instruments are the attainable yield percentile for GM crops in each county interacted with year. Family demographic controls include mother’s
age, mother’s race, mother’s origin, mother’s education, sex of child, total birth order, mother’s residence status, and birth facility. Pesticide
controls include alachlor, atrazine, cyanizine, fluazifop, metolachlor, metribuzin, and nicosulfuron. GLY/km2 is kg/km2. Standard errors in
parentheses. We two-way cluster errors by year and state.
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(a) First-stage effect of local GM attainable yield on glyphosate

(b) Reduced-form effect of local GM attainable yield on birthweight

Fig. S12. Robustness of birthweight effect to alternative economic controls. Estimated effect of local GM max attainable yield percentile on birthweight relative
to 1995. Employment controls include the unemployment rate, employment rate, farm employment per capita, and farm employment share. Income
controls include farm and nonfarm income per capita. Age share controls are the share of population in seven decade wide age bins, with the over
70-population as the reference group. Race shares are the proportion of the population white, Hispanic, and Black. All regressions include fixed effects for
family demographics, county, and year-month and standard errors are clustered by state and year. Family demographics include mother’s age, race,
education, marital status, birth facility, resident status, previous births, sex of infant, and father’s age and race. Sample restricted to births occurring in
rural counties or to mothers residing in rural counties.
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(a) First-stage effect of local GM attainable yield on glyphosate

(b) Reduced-form effect of local GM attainable yield on birthweight

Fig. S13. Robustness of birthweight effect to alternative farm controls. Estimated effect of local GM max attainable yield percentile on birthweights relative
to 1995. Fertilizer controls include commerical nitrogen, commercial phosphorous, manure nitrogen, and manure phosphorous. Acre controls include
soy, corn, and cotton acres, as well as an aggregate of total acreage from other crops. “Acres and all others” specification uses all of the economic
controls—pesticides, fertilizers, acres, employment, income, age and race shares, and population. All regressions include fixed effects for family
demographics, county, and year-month and standard errors are clustered by state and year. Family demographics include mother’s age, race, education,
marital status, birth facility, resident status, previous births, sex of infant, and father’s age and race. Sample restricted to births occurring in rural counties
or to mothers residing in rural counties.
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(a) First-stage effect of various instruments on glyphosate/km2

(b) Reduced-form effect of various instruments on birthweight

Fig. S14. Robustness of birthweight effect to alternative instruments. We vary the construction of our GM suitability measure: “GM Max Percentile” is
our main specification, “GM Avg Percentile” takes the average standardized attainable yield among corn, soy, and cotton (rather than the max) before
re-scaling into a percentile, “1990-1995 GM Max Yield Percentile” is constructed using pre-period realized yields for corn, soy, and cotton, “GM Average,
Split at Median” uses a binary high vs low attainable yield, where a county is high attainable yield if they are above the median attainable yield, and
“GM Max Top vs Bottom Quartile” is another binary treatment definition that compares just the top and bottom quartiles in GM Max Percentile, omitting
the middle group. All regressions include family demographics, county, and year by month fixed effects and standard errors are clustered by state and
year. The regressions control for fertilizers, other pesticides, employment, income, age and race shares, and population. Family demographic fixed
effects include mother’s age, race, education, marital status, birth facility, resident status, previous births, sex of infant, and father’s age and race. Sample
restricted to births occurring in rural counties or to mothers residing in rural counties.
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(a) First-stage effect of various instruments on glyphosate kg/km2

(b) Reduced-form effect of various instruments on birthweight

Fig. S15. Robustness of birthweight effect to alternative fixed effects. We vary the fixed effects included. All regressions include family demographics, county,
and year by month fixed effects and standard errors are clustered by state and year. The regressions control for fertilizers, other pesticides, employment,
income, age and race shares, and population. Family demographic fixed effects include mother’s age, race, education, marital status, birth facility, resident
status, previous births, sex of infant, and father’s age and race. Sample restricted to births occurring in rural counties or to mothers residing in rural
counties.
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(a) First-stage effect of various instruments on glyphosate kg/km2

(b) Reduced-form effect of various instruments on birthweight

Fig. S16. Robustness of birthweight effect to alternative fixed effects—within state. We vary the fixed effects included. All regressions include family
demographics, county, and year by month fixed effects and standard errors are clustered by state and year. The regressions control for fertilizers, other
pesticides, employment, income, age and race shares, and population. Family demographic fixed effects include mother’s age, race, education, marital
status, birth facility, resident status, previous births, sex of infant, and father’s age and race. Sample restricted to births occurring in rural counties or to
mothers residing in rural counties.
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(a) First-stage effect on glyphosate kg/km2

(b) Reduced-form effect on birthweight

Fig. S17. Heterogeneity in Birthweight Effect by Geographic Subsets. Estimated effect of local max GM attainable yield percentile on birthweight relative to
1995. The geographic subsets are primarily defined using census regions (Midwest, Northeast, or South). Fig S14 shows results with just the eastern US.
All regressions include county and year by month fixed effects and standard errors are clustered by state and year. All regressions also control for other
pesticides, employment, income, population, age and race shares, fertilizers and family demographics, including mother’s age, race, education, marital
status, birth facility, resident status, previous births, sex of infant, and father’s age and race. Sample restricted to births occurring in rural counties or to
mothers residing in rural counties.
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(a) First-stage effect on glyphosate kg/km2, rural and non-rural counties.

(b) Reduced-form effect on birthweight, rural and non-rural counties.

Fig. S18. Birthweight event studies by rural and non-rural counties. Estimated effect of local max GM attainable yield percentile on birthweight relative to
1995 for births to mothers residing and occurring in rural and non-rural counties. All regressions include county and year by month fixed effects and
standard errors are clustered by state and year. All regressions also control for other pesticides, employment, income, population, age and race shares,
and fertilizers, and family demographics, including mother’s age, race, education, marital status, birth facility, resident status, previous births, sex of infant,
and father’s age and race.
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Fig. S19. The estimated effect of glyphosate on gestation is robust to alternative specifications. Coefficients are the estimated marginal effect of glyphosate
(kg/km2) on gestation. Our main specifications are highlighted. All regressions include county of residence, county of occurrence, and family demographic
fixed effects, standard errors are clustered by state and year. Pesticide controls include alachlor, atrazine, cyanazine, fluazifop, metolachlor, metribuzin,
and nicosulfuron. Employment controls include unemployment rate, employment rate, farm employment per capita, and farm employment share. Income
controls include farm and nonfarm income per capita. Age shares controls are share of population in seven decade wide bins from ages 0 to 70, with over
70 as the omitted category. Race share controls are proportion of the population white, Black, and Hispanic. Fertilizer controls are commercial nitrogen,
commercial phosphorous, manure nitrogen, and manure phosphorous. Acre controls are corn, soy, and cotton acres, as well as an aggregate of all other
crop acreage. Family demographic FEs include mother’s age, race, education, marital status, birth facility, resident status, previous births, sex of infant,
and father’s age and race. We vary the construction of GM attainable yield: “GM Max Percentile” is our main specification, “GM Avg Percentile” takes the
average standardized attainable yield among corn, soy, and cotton (rather than the average) before re-scaling into a percentile, “GM Average, Split at
Median” uses a binary high vs low attainable yield, where a county is high attainable yield if they are above the median attainable yield, “GM Max Top vs
Bottom Quartile” is also binary, but only compares the top and bottom quartiles, omitting the middle group, and “1990-1995 GM Max Yield Percentile” is
the percentile of observed yield in each county for corn, soy, and cotton between 1990 and 1995 using data from USDA NASS. “Eastern US” measures
filter to counties east of the 100th meridian then calculate percentiles. Sample restricted to births occurring in rural counties or to mothers residing in rural
counties.
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Fig. S20. The estimated effect of glyphosate on the health index is robust to alternative specifications. Coefficients are the estimated marginal effect of
glyphosate (kg/km2) on the health index. Our main specifications are highlighted. All regressions include county of residence, county of occurrence,
and family demographic fixed effects, standard errors are clustered by state and year. Pesticide controls include alachlor, atrazine, cyanazine, fluazifop,
metolachlor, metribuzin, and nicosulfuron. Employment controls include unemployment rate, employment rate, farm employment per capita, and farm
employment share. Income controls include farm and nonfarm income per capita. Age shares controls are share of population in seven decade wide
bins from ages 0 to 70, with over 70 as the omitted category. Race share controls are proportion of the population white, Black, and Hispanic. Fertilizer
controls are commercial nitrogen, commercial phosphorous, manure nitrogen, and manure phosphorous. Acre controls are corn, soy, and cotton acres, as
well as an aggregate of all other crop acreage. Family demographic FEs include mother’s age, race, education, marital status, birth facility, resident
status, previous births, sex of infant, and father’s age and race. We vary the construction of GM attainable yield: “GM Max Percentile” is our main
specification, “GM Avg Percentile” takes the average standardized attainable yield among corn, soy, and cotton (rather than the average) before re-scaling
into a percentile, “GM Average, Split at Median” uses a binary high vs low attainable yield, where a county is high attainable yield if they are above the
median attainable yield, “GM Max Top vs Bottom Quartile” is also binary, but only compares the top and bottom quartiles, omitting the middle group, and
“1990-1995 GM Max Yield Percentile” is the percentile of observed yield in each county for corn, soy, and cotton between 1990 and 1995 using data from
USDA NASS. “Eastern US” measures filter to counties east of the 100th meridian then calculate percentiles. Sample restricted to births occurring in rural
counties or to mothers residing in rural counties.
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Fig. S21. Robustness to spatial subsets, all outcomes. Estimated effect of glyphosate/km2 on various perinatal health outcomes instrumented with GM max
attainable yield interacted with year. All regressions include county, year by month, and family demographic fixed effects and control for other pesticides,
employment, income, population, age and race shares, and fertilizers. Standard errors are clustered by state and year. Family demographics include
mother’s age, race, education, marital status, birth facility, resident status, previous births, sex of infant, and father’s age and race.
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Fig. S22. Demographic event studies. Estimated effect of local GM max attainable yield percentile on various demographics outcomes relative to 1995. All
regressions include county and year by month fixed effects and control for family demographics, including mother’s age, race, education, marital status,
birth facility, resident status, previous births, sex of infant, and father’s age and race (controls exclude the outcome). Standard errors are clustered by state
and year. Sample restricted to births occurring in rural counties or to mothers residing in rural counties.
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Fig. S23. Reduced form heterogeneity by mother’s race. Estimated effect of local GM max attainable yield percentile on various perinatal health outcomes
relative to 1995. All regressions include county and year by month fixed effects and standard errors are clustered by state and year. All regressions also
control for other pesticides, employment, income, population, age and race shares, fertilizers, and family demographics, including mother’s age, race,
education, marital status, birth facility, resident status, previous births, sex of infant, and father’s age and race. Sample restricted to births occurring in
rural counties or to mothers residing in rural counties.
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Fig. S24. Reduced form heterogeneity by mother’s education. Estimated effect of local GM max attainable yield percentile on various perinatal health
outcomes relative to 1995. All regressions include county and year by month fixed effects and standard errors are clustered by state and year. All
regressions also control for other pesticides, employment, income, population, age and race shares, fertilizers, and family demographics, including
mother’s age, race, education, marital status, birth facility, resident status, previous births, sex of infant, and father’s age and race. Sample restricted to
births occurring in rural counties or to mothers residing in rural counties.
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Fig. S25. Heterogeneity in effect by different month of birth, all outcomes. Estimated effect of glyphosate/km2 on various perinatal health outcomes
instrumented with GM max attainable yield interacted with year. All regressions include county, year, and month fixed effects and standard errors are
clustered by state and year. Family demographics include mother’s age, race, education, marital status, birth facility, resident status, previous births, sex
of infant, and father’s age and race.
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(a) Total acreage (b) Corn acreage

(c) Soy acreage (d) Cotton acreage

Fig. S26. Effect of local Max GM attainable yield on crop acreage. Standard errors are clustered by state and year. All regressions include county and year
fixed effects with no other controls and are weighted by the number of births. Sample restricted to rural counties.
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(a) Soy yield

(b) Corn yield

(c) Cotton yield

Fig. S27. Effect of local GM max attainable yield on crop yield. Soy and corn yield is measured in bushels/acre, while cotton is measured in lbs/acre. Standard
errors are clustered by state and year
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(a) Effect of GM suitability on non-farm income. (b) Effect of GM suitability on farm income

(c) Effect of GM suitability on unemployment rate (d) Effect of GM suitability on farm employment

Fig. S28. Coefficients from an event study regression of various socioeconomic variables on GM suitability for rural counties. Standard errors are clustered by
state and year. Regressions are weighted by total births. Sample restricted to rural counties.
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Fig. S29. Predicted glyphosate disaggregated into watersheds in 2004. These predictions come from our first stage model regressing glyphosate on local GM
attainable yield percentile with county and year fixed effects. We disaggregate from county into watersheds using the portion of the county’s area that is
covered by each watershed. We generate predictions for each year, but only show 2004 to accompany the exposition.
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(a) Soil erodibility (K factor) percentile.

(b) Slope percentile.

(c) Growing season (Apr to Sep) precipitation in 2004.

Fig. S30. Spatial variation in water ML predictors. Each map depicts a watershed-level average of the given variable. See text for details.
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(a) Upstream and downstream watersheds. (b) Distance bins.

Fig. S31. Capturing upstream and downstream watersheds. For an example watershed in Illinois (highlighted in red), we show all of the watersheds upstream
and all of the watersheds downstream. We calculate distance upstream and downstream using the distance between the centroids of watersheds along
the path, then categorize these into 50-kilometer distance bins.
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(a) CV Results for AMPA Random Forest Model. (b) CV Results for glyphosate Random Forest Model.

(c) CV Results for AMPA LASSO Model. (d) CV Results for glyphosate LASSO Model.

Fig. S32. Cross Validation Results.
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(a) Predicted vs Actual AMPA Concentrations. (b) Predicted vs Actual glyphosate Concentrations.

Fig. S33. Out-of-sample prediction performance for LASSO and Random Forest models. Predictions are made on the 757 held-out observations in order to
assess the model fit for LASSO and random forest models. Smooth lines are that of a generalized additive model.
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Fig. S34. Density of out-of-sample predictions relative to the actual values.
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Fig. S35. Aggregating watersheds to counties. For the same watershed as in Fig S31 with the red border, on the left, we have population weights for
Washington County (black outline). On the right, we have our predicted AMPA in July, 2004 using the LASSO model in each watershed touching
Washington County. Thus, to generate county-month level predicted AMPA, we take the weighted average of predictions (left), where the weights come
from the population in each watershed (right).
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Fig. S36. Predicted county-level AMPA in July of 2004. This is a map for one month (July), in one year (2004), using one of four predictive models (LASSO
predicting AMPA). We generate county level predictions like this for all months and years between 1992 and 2017 with LASSO and random forest models
predicting glyphosate and AMPA.
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Dep Var BW
Model: (1) (2) (3) (4)

Predicted AMPA (LASSO) 16.1
(11.2)

Predicted AMPA (RF) -3.14
(8.83)

Predicted GLY (LASSO) -6.01
(16.7)

Predicted GLY (RF) -5.94
(6.69)

Local attainable yield Yes Yes Yes Yes
Local pesticides Yes Yes Yes Yes
Unemployment Yes Yes Yes Yes

Fixed-effects
Family Demog Yes Yes Yes Yes
Yr x Mo + Cnty Yes Yes Yes Yes

Fit statistics
N (millions) 7.910 7.910 7.910 7.910

Clustered (Year & State) standard-errors in parentheses
Table S9. Effect of predicted GLY or AMPA in water on birthweight.
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Fig. S37. Effect of upstream glyphosate by distance bin. Estimated effect of upstream GM max attainable yield percentile on various perinatal health
outcomes relative to 1995. Bin labels represent the lower bound distance between the county and the upstream watershed, thus “50” is an aggregate of
watersheds 50 to 100km upstream of a county. All regressions include county and year by month fixed effects and standard errors are clustered by state
and year. All regressions also control for local attainable yield interacted with year, other pesticides, employment, income, population, age and race
shares, fertilizers, and family demographics, including mother’s age, race, education, marital status, birth facility, resident status, previous births, sex of
infant, and father’s age and race. Sample restricted to births from mothers with rural residence.
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Fig. S38. Effect of upstream glyphosate by distance bin by high and low soil erodibility and precipitation. Estimated effect of upstream GM max attainable yield
percentile on various perinatal health outcomes relative to 1995. Bin labels represent the lower bound distance between the county and the upstream
watershed, thus “50” is an aggregate of watersheds 50 to 100km upstream of a county. All regressions include county and year by month fixed effects and
standard errors are clustered by state and year. All regressions also control for local attainable yield interacted with year, other pesticides, employment,
income, population, age and race shares, fertilizers, and family demographics, including mother’s age, race, education, marital status, birth facility, resident
status, previous births, sex of infant, and father’s age and race. Sample restricted to births from mothers with rural residence.
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