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Vitamin D plays a crucial role in immune system function. Several studies have indicated that genetic 
variations in the vitamin D receptor (VDR) and vitamin D binding protein (VDBP, encoded by GC gene) 
increase the risk of developing asthma. However, the effect of these variations on the prognosis and clinical 
outcomes of asthma remains unclear. This study, involving 152 adult patients with asthma, aimed to assess 
the influence of VDR and GC polymorphisms on asthma severity and its exacerbation. Gene polymorphisms 
previously associated with asthma risk were analyzed, and VDR mRNA expression levels were evaluated in 
peripheral blood mononuclear cells. The AA genotype of the VDR rs2228570 polymorphism was associated 
with an elevated risk of severe asthma compared to the AG/GG genotype (odds ratio, 3.20; 95% confidence 
interval [CI], 1.24–8.28). Furthermore, patients with the rs2228570 AA genotype showed an elevated risk 
of exacerbation during the 1-year follow-up period (hazard ratio, 4.01; 95% CI, 1.75–9.15). VDR mRNA 
expression was significantly reduced in patients with the AA genotype. Furthermore, the mRNA expression 
levels of GLCCI1, HDAC2, NR3C1, and NFE2L2, which are associated with steroid response, were reduced in 
patients with the AA genotype. Our findings indicate that patients with the AA genotype of VDR rs2228570 
are more likely to experience severe asthma and exacerbations. This polymorphism has the potential to 
reduce vitamin D efficacy by altering VDR function and expression, potentially resulting in increased inflam-
mation and reduced steroid responsiveness in patients with asthma.
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INTRODUCTION

Among patients with asthma, approximately 4–10% have 
severe asthma, which is associated with a poor prognosis. 
Despite the use of high-dose inhaled steroids, effective 
treatment remains challenging.1) Several factors influence 
the severity of asthma. Approximately 50% of patients with 
asthma exhibit type 2 inflammation involving eosinophils.2) 
Additionally, non-type 2 inflammation, involving neutrophils 
and T-helper 17 (Th17) cells, is a key factor in the pathogen-
esis of asthma.3) Steroids are typically effective in treating 
type 2 inflammation and less effective in treating non-type 
2 inflammation.4) Nonetheless, some patients exhibit resid-
ual type 2 inflammation despite treatment with high-dose 
inhaled steroids.5) The various asthma subtypes emphasize 
the need for identifying each pathological subtype in individ-
ual patients and selecting the most appropriate treatment.6) 
However, the complex pathogenesis of asthma remains 
poorly understood, with no objective indicators existing for 

subtype-specific treatments. Elucidating its pathology is 
expected to facilitate the discovery of indicators for opti-
mized treatment, prognostic predictors of asthma, and thera-
peutic targets.

The regulatory function of vitamin D on the immune 
system may significantly influence inflammatory processes 
associated with asthma.7–9) Extensive research efforts have 
explored the potential advantages of vitamin D supplements in 
managing asthma symptoms.10,11) However, some studies have 
indicated that asthmatic patients with insufficient serum vita-
min D levels may experience a decline in pulmonary function 
and exacerbation of asthma symptoms,12,13) while others have 
yielded conflicting results with no discernible improvement 
in asthma symptoms following vitamin D administration.14,15) 
In our previous study,16) we assessed the relationship between 
blood vitamin D levels and asthma severity and exacerbation 
in patients with asthma. However, our results suggested that 
vitamin D levels did not have a significant effect on the sever-
ity or frequency of asthma exacerbations. Consequently, the 
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role of vitamin D in asthma management remains unclear and 
requires further investigation to elucidate its association with 
asthma pathophysiology.

The vitamin D receptor (VDR) and vitamin D binding pro-
tein (VDBP, encoded by GC gene) play crucial roles in medi-
ating vitamin D-related functions. Vitamin D forms a complex 
with VDBP in the plasma and is subsequently transported to 
the liver where it is converted to 25-hydroxyvitamin D. It is 
then transported to the kidneys, where it is further converted 
to 1,25-dihydroxyvitamin D, which is the active form of  
vitamin D.17) Upon binding of active vitamin D to VDR in the 
cytoplasm, the complex translocates to the nucleus and interacts 
with vitamin D response elements (VDREs) on DNA, thereby 
modulating the transcriptional activity of specific genes.7,8) 
Previous studies indicated a potential association between VDR 
and GC gene polymorphisms and asthma susceptibility.17,18) Sev-
eral polymorphisms, including rs731276, rs7975232, rs1544410, 
rs222850, and rs11568820 in the VDR gene and rs7041 and 
rs4588 in the GC gene, were associated with an increased risk 
of asthma.17,19) However, the relationship between VDR and GC 
gene polymorphisms and asthma pathophysiology, including 
disease severity and prognosis, remains unclear.

Therefore, we investigated the impact of polymorphisms in 
vitamin D-related genes on the disease’s severity and prognosis.

MATERIALS AND METHODS

Study Design and Subjects  This single-center, prospec-
tive, observational study was conducted at Shizuoka General 
Hospital.20) Participants comprised adults with asthma who 
were diagnosed with asthma according to the Global Initia-
tive for Asthma diagnostic criteria. At baseline, patient blood 
samples were collected; various laboratory and pulmonary 
function tests were performed; and the fractional exhaled 
nitric oxide (FeNO) was assessed. Severe asthma was diag-
nosed according to the guidelines of the European Respiratory 
Society and the American Thoracic Society.21) An exacerba-
tion was defined as an asthma symptom that required systemic 
corticosteroid treatment for a period exceeding 3 d and was 
recorded during the 1-year follow-up period. This study was 
conducted with the approval of the ethics committee of Shi-
zuoka General Hospital (Approval Number: SGH 15-01-55).

Ethics  This study was conducted with the approval of 
the ethics committee of Shizuoka General Hospital (Approval 
Number: SGH 15-01-55).

Assessment of Gene Polymorphisms  Five VDR poly-
morphisms and two GC polymorphisms were selected for 
analysis based on previous reports of asthma and linkage 
disequilibrium, with minor allele frequencies ≥10%. The 
PCR-restriction fragment length polymorphism and allele- 
specific PCR method were used to analyze the single nucle-
otide polymorphisms (SNPs) on the VDR and GC genes. The 
SNPs analyzed included rs731236, rs7975232, rs1544410, 
rs2228570, and rs11568820 on the VDR gene, as well as rs7041 
and rs4588 on the GC gene. The primers and restriction 
enzymes used in the genetic polymorphism analysis are listed 
in Supplementary Table 1. DNA was extracted from whole 
blood samples using a QIAamp DNA Blood Mini Kit (Qiagen, 

Venlo, the Netherlands). PCR was performed using Taq DNA 
polymerase, and the genotype was determined by agarose gel 
electrophoresis after restriction enzyme digestion.

Measurements of Gene Expression  Peripheral blood mono-
nuclear cells (PBMCs) were isolated from whole blood using 
the Ficoll-Paque PLUS (GE Healthcare, Chicago, IL, U.S.A.) 
density gradient method, and total RNA was extracted using 
the NucleoSpin kit (Macherey-Nagel, Düren, Germany). The 
mRNA expression levels of VDR, NR3C1, HDAC2, GLCCI1, 
and NFE2L2 in PBMCs were quantified using the intercalation 
method with Fast SYBR Green Master Mix (Applied Biosystems, 
Waltham, MA, U.S.A.), after cDNA synthesis using the High 
Capacity cDNA Reverse Transcription Kit (Applied Biosystems). 
Quantitative PCR was conducted using the 7500 Fast Real-Time 
PCR System or the QuantStudio 5 Real-Time PCR System 
(Applied Biosystems), and each sample was analyzed in dupli-
cate. The primers used in this study are listed in Supplementary 
Table 2. The expression level of each mRNA was normalized 
to that of ACTB, and the resulting values were expressed as 
log2-transformed values, with the mean value adjusted to zero.

Statistical Analysis  In the comparative analysis of the 
two groups, the Mann–Whitney U test was used for continu-
ous variables, while Fisher’s exact test was used for categori-
cal variables. Logistic regression analysis was performed with 
severe asthma as the objective variable and odds ratios (OR) 
and 95% confidence intervals (CIs) were calculated for each 
genotype. To evaluate the association between genotype and 
time to the initial exacerbation of asthma, we used the log-
rank test and the Cox proportional hazards regression model 
to determine the hazard ratio (HR) and 95% CI. All statistical 
analyses were performed with R version 4.4.1 (R Foundation 
for Statistical Computing), and a p-value of less than 0.05 was 
considered statistically significant.

RESULTS

Association of VDR Gene Polymorphisms and Severe 
Asthma  The present study included 152 patients with 
asthma, 25 (16.4%) of whom were classified as having severe 
asthma. The clinical characteristics of the study subjects and 
the comparison between patients with severe and non-severe 
asthma have been described in detail in the literature.20,22) 
Table 1 shows the genotype frequencies of the analyzed VDR 
and GC gene polymorphisms classified according to asthma 
severity. The allele frequency of each genetic polymorphism 
was found to be in accordance with Hardy–Weinberg equi-
librium, which is consistent with that previously reported in 
the Japanese population.23) The frequency of the AA genotype 
of the rs2228570 polymorphism was significantly higher in 
patients with severe asthma than in those with non-severe 
asthma, suggesting an association between this genetic vari-
ant and the severity of asthma. The OR for severe asthma in 
the AA genotype of the rs2228570 polymorphism was 3.20 
(95% CI, 1.24–8.28; p = 0.017). This remained statistically 
significant even after plasma vitamin D (25-hydroxyvitamin 
D3) concentration, lung function, and body mass index (BMI) 
were added as covariates in the logistic regression analy-
sis (OR, 3.43; 95% CI, 1.17–10.08; p = 0.025). The GC gene 
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polymorphisms, rs7041 and rs4588, were not significantly 
associated with severe asthma.

Association of VDR Gene Polymorphisms and Asthma 
Exacerbations  A total of 23 patients (15.1%) experienced 
acute exacerbation within 1 year after inclusion in the study. 
The relationship between the VDR gene polymorphisms and 
exacerbation is illustrated using Kaplan–Meier curves (Fig. 1).  
Patients with the AA genotype of the rs2228570 polymor-
phism demonstrated a markedly elevated risk of exacerbation 
compared to patients carrying the G allele. The HR for exacer-
bations among patients with the rs2228570 AA genotype was 

4.01 (95% CI, 1.75–9.15; p < 0.001). This association remained 
consistent even after adjusting for plasma 25-hydroxyvitamin 
D3 concentration, lung function, and BMI as covariates (HR, 
3.09; 95% CI, 1.25–7.59; p = 0.014). Furthermore, the probabil-
ity of exacerbation was higher in patients with the CC geno-
type of the rs11568820 polymorphism than in those with the 
T allele. The unadjusted HR for the rs11568820 CC genotype 
was 3.25 (95% CI, 1.38–7.66; p = 0.007), whereas the adjusted 
HR, which accounted for plasma 25-hydroxyvitamin D3 con-
centration, lung function, and BMI, was 3.83 (95% CI, 1.58–
9.29; p = 0.003). By contrast, no association was identified 

Biol. Pharm. Bull. Vol. 48, No. 1 (2025)

Table 1.  Comparison of Genotype Frequencies of VDR Gene Polymorphisms in Patients with Severe Asthma and Those with Non-severe Asthma

Gene SNP ID
Allele 

1/2

Severe asthma 
Genotype frequency

Non-severe asthma 
Genotype frequency Overall 

p-value

p-Value 
1/1 vs. 

1/2 + 2/2

p-Value 
1/1 + 1/2  
vs. 2/21/1 1/2 2/2 1/1 1/2 2/2

VDR rs731236 A/G 17 (68) 8 (32) 0 (0) 103 (81) 23 (18) 1 (1) 0.308 0.179 1.000

VDR rs7975232 C/A 10 (40) 11 (44) 4 (16) 64 (50) 51 (40) 12 (9) 0.437 0.387 0.303

VDR rs1544410 C/T 17 (68) 8 (32) 0 (0) 105 (83) 21 (17) 1 (1) 0.244 0.104 1.000

VDR rs2228570 G/A 8 (32) 8 (32) 9 (36) 45 (35) 63 (50) 19 (15) 0.046 0.822 0.022

VDR rs11568820 C/T 10 (40) 12 (48) 3 (12) 49 (39) 58 (46) 20 (16) 0.957 1.000 0.768

GC rs7041 A/C 10 (40) 13 (52) 2 (8) 74 (58) 42 (33) 11 (9) 0.187 0.123 1.000

GC rs4588 G/T 14 (56) 11 (44) 0 (00) 73 (57) 41 (32) 13 (10) 0.181 1.000 0.128

Data are presented as frequency (percentage).

Fig. 1.  Kaplan–Meier Curve Showing Time to Initial Exacerbation in Patients, Categorized into (A) Three Groups and (B) Two Groups According to 
Their VDR Gene Polymorphisms 
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between GC gene polymorphisms rs7041 and rs4588 and an 
elevated risk of asthma exacerbation (Supplementary Fig. 1).

Association of VDR Gene Polymorphisms and the 
Pathophysiology of Asthma  The AA genotype of the VDR 
rs2228570 polymorphism increases the risk of severe asthma and 
exacerbations. Consequently, we conducted a more detailed inves-
tigation into the relationship between this gene polymorphism 
and asthma pathophysiology. Table 2 presents a comparison of 
the clinical characteristics of patients with the AA genotype of 
the rs2228570 polymorphism and those with the G allele. Patients 
with the AA genotype had significantly elevated levels of FeNO, 
a marker of eosinophilic airway inflammation, and a trend toward 
a higher neutrophil-to-lymphocyte ratio (NLR). Furthermore, 
VDR mRNA expression levels, extracted from PBMCs, were 
significantly lower in patients with the AA genotype compared 
to those with the G allele (Fig. 2). Furthermore, building on pre-
vious research suggesting that elevated inflammatory conditions 
decrease steroid responsiveness,24) we postulated that VDR gene 
polymorphisms alter the expression levels of molecules involved 
in steroid response. Specifically, the expression level of the glu-
cocorticoid receptor NR3C1 is associated with steroid respon-
siveness.24) Additionally, the significance of GLCCI1, HDAC2, 
and NFE2L2, which are also involved in steroid responsiveness, 
has been suggested in patients with asthma.22) Therefore, we 
focused on these steroid-responsive molecules and analyzed their 
expression levels. Our findings revealed that the expression levels 
of GLCCI1, HDAC2, NFE2L2, and NR3C1, which are molecules 
related to steroid responses, decreased in patients with the VDR 
rs2228570 AA genotype (Fig. 3).

Fig. 2.  Comparison of VDR mRNA Expression Levels between  
Patients with the AA Genotype and Those with the G Allele of the VDR 
rs2228570 Polymorphism 

Table 2.  Comparison of Clinical Characteristics between Patients with the AA Genotype and Those with the G  
Allele of the VDR rs2228570 Polymorphism

Characteristics
AA genotype 

(n = 28)
AG + GG genotype 

(n = 124)
p-Value

Sex, female 14 (50) 67 (54) 0.834

Age (years) 65 (51, 74) 66 (50, 74) 0.844

BMI (kg/m2) 24.5 (22.9, 27.2) 22.7 (20.6, 25.0) 0.015

FEV1 (%predicted) 81.1 (66.1, 93.8) 86.9 (73.1, 98.7) 0.106

FEV1/FVC (%) 68.1 (63.6, 73.7) 70.5 (62.5, 77.1) 0.427

Pack-years 0 (0, 24) 0 (0, 15) 0.878

Peripheral blood cells (/µL)

  Neutrophil 4168 (3104, 5439) 3501 (2930, 4446) 0.075

  Lymphocyte 1695 (1451, 1938) 1689 (1351, 2209) 0.807

  Monocyte 373 (298, 463) 359 (299, 455) 0.892

  Eosinophil 304 (210, 600) 324 (186, 479) 0.966

  Basophil 51 (36, 67) 43 (31, 62) 0.422

Neutrophil-to-lymphocyte ratio 2.45 (1.83, 3.07) 2.01 (1.56, 2.78) 0.078

FeNO (ppb) 44 (26, 108) 28 (17, 45) 0.016

Serum total IgE (IU/mL) 229 (126, 616) 238 (85, 636) 0.930

Plasma 25-hydroxyvitamin D3 (ng/mL) 14.1 (10.9, 17.1) 13.4 (10.6, 16.9) 0.585

Concomitant drugs

  ICS use 27 (96) 118 (95) 1.000

  ICS dose (µg/d) 500 (0, 500) 500 (400, 500) 0.226

  Oral corticosteroid 5 (18) 5 (4) 0.019

  LABA 26 (93) 100 (81.1) 0.167

  LAMA 4 (14) 8 (6) 0.235

Data are presented as median (interquartile range) or frequency (percentage). BMI: body mass index; FeNO: fractional exhaled 
nitric oxide; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; LABA: long-acting β2 agonist; LAMA: long-acting 
muscarinic antagonist.

DISCUSSION

The study shows that the VDR rs2228570 SNP is associated 
with poor clinical outcomes, including asthma severity and 
exacerbations, in adult patients with asthma. The rs2228570 
AA genotype has been implicated in the intensification of 
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inflammatory responses, and its presence has been shown to 
decrease the expression of genes encoding molecules associ-
ated with the glucocorticoid response. These findings suggest 
that patients with the AA genotype of the VDR rs2228570 
polymorphism experience reduced vitamin D efficacy due to 
impaired VDR functionality and expression. This diminished 
effect of vitamin D contributes to increased inflammation and, 
in turn, reduced steroid efficacy, thereby potentially exacerbat-
ing asthma severity. Therefore, the VDR rs2228570 polymor-
phism may serve as a valuable biomarker for predicting poor 
prognosis in patients with asthma.

Vitamin D modulates the immune system by regulating 
the transcription of specific molecules after binding to VDR. 
VDR is expressed in various immune cells, including mast 
cells, dendritic cells, and granulocytes, such as neutrophils 
and eosinophils. Although the precise mechanisms by which 
vitamin D influences the immune system remain unclear, 
previous studies have suggested that it may play a role in 
suppressing the production of inflammatory cytokines and 
promoting the differentiation of regulatory T cells.25) Con-
sequently, the reduced effects of vitamin D may exacerbate  
asthma-related inflammation. These effects are likely atten-
uated by insufficient serum vitamin D concentrations and 
impaired VDR function. VDR gene polymorphisms alter its 
function and affect its transcriptional activity. Numerous 
studies have investigated the association between VDR gene 
polymorphisms and the prevalence of asthma.18) Several 
studies and meta-analyses have shown that rs2228570, the 
focus of this study, is associated with an increased risk of 
asthma.26) However, the relationship between the rs2228570 
polymorphism and the pathology and prognosis of asthma is 
yet to be extensively investigated. In a previous investigation, 
we examined the relationship between plasma 25-hydroxyvi-
tamin D3 levels and asthma severity and exacerbations in 
the same patient cohort as in the present study.16) However, 
our findings did not reach statistical significance. Given the 
inter-individual variability in plasma 25-hydroxyvitamin D3 

levels, we incorporated this variable into the multivariate 
analysis as a covariate to assess the association of VDR gene 
polymorphisms. Additional covariates known to be associated 
with asthma severity and exacerbations, such as lung function 
and BMI, were included in the analysis. Notably, even after 
considering these covariates, rs2228570 was still shown to be 
significantly associated. Consistent with our findings, some 
studies involving pediatric patients with asthma have sug-
gested that individuals with the AA genotype of rs2228570 
experience a more severe form of the disease.27) Our study 
showed that patients with the AA genotype of rs2228570 had 
significantly elevated levels of FeNO, a marker of eosino-
philic airway inflammation, and tended to have higher levels 
of NLR, a marker of systemic inflammation. These results 
suggest that the AA genotype of rs2228570 is associated with 
increased inflammation, possibly due to reduced vitamin D 
efficacy, which contributes to severe disease and a poor prog-
nosis in patients with asthma.

The rs2228570 SNP represents a genetic variation located at 
the initiation codon of the VDR gene. The A allele functions as 
an initiation codon, while the G allele does not. In the presence 
of the G allele, the position of the initiation codon is shifted 
downstream by nine base pairs. Substituting alleles A to G 
resulted in a reduction in the length of the VDR protein from 
427 to 424 amino acids. Shorter VDR proteins produced by the 
G allele show greater stability and higher transcriptional activ-
ity.28) Accordingly, the function of VDR among patients with the 
AA genotype is considered inferior to that observed in the GA 
and GG genotypes, consistent with our findings that indicated 
a relationship between the rs2228570 polymorphism and VDR 
mRNA expression levels which were lower in the AA genotype. 
However, the relationship between this polymorphism and gene 
expression remains unclear, and contradictory results have been 
reported.29) The AA genotype may impair VDR function and 
reduce VDR expression. However, further validation is required. 
The frequency of the A allele of the rs2228570 polymorphism is 
higher in East Asians than in other racial groups, highlighting 

Fig. 3.  Comparison of mRNA Expression Levels of Steroid-Responsive Related Molecules between Patients with the AA Genotype and Those with 
the G Allele of the VDR rs2228570 Polymorphism 
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it as a potential factor to be considered when investigating indi-
vidual differences in the pathophysiology of asthma.

Among the genetic polymorphisms examined in this inves-
tigation, an association with exacerbation for rs11568820 was 
identified. However, we did not find an association between 
this polymorphism and severe asthma. Further research is 
required to elucidate its effects on the pathophysiology of 
asthma. The rs11568820 polymorphism is located in the pro-
moter region of the VDR gene and influences variations in 
promoter activity.30) Previous studies have suggested that this 
polymorphism plays a role in the development of asthma.31) 
Furthermore, meta-analyses and other reports have indi-
cated that the relationship between VDR polymorphisms and 
asthma onset may vary depending on an individual’s racial 
background.32,33) This study did not identify any association 
between the three VDR gene polymorphisms (rs1544410, 
rs731236, and rs7975232) and two GC gene polymorphisms 
(rs7041 and rs4588) and asthma severity or prognosis. How-
ever, the possibility that these SNPs may affect the patho-
physiology of asthma cannot be ruled out. More studies are 
required to elucidate this potential association. Asthma is 
widely recognized as a heterogeneous disease.4) It may be ben-
eficial to assess the relationship between vitamin D function 
and asthma pathogenesis in each pathological subtype.

The findings of this study indicated that patients with the 
AA genotype of the rs2228570 polymorphism showed lower 
expression levels of NR3C1, HDAC2, GLCCI1, and NFE2L2, 
which are molecules involved in the response to steroids. 
Steroids bind to the glucocorticoid receptor encoded by the 
NR3C1 gene. This complex then moves into the nucleus, 
where it performs its function through the action of HDAC2, 
a histone deacetylase enzyme.24) Steroid responsiveness is 
linked to GLCCI1,22,34) while NFE2L2, which encodes Nrf2, 
exhibits anti-inflammatory and antioxidant properties and is 
related to HDAC2.35) Given that patients with the AA genotype 
of VDR rs2228570 show reduced expression of these genes, it 
is plausible that their responsiveness to steroids is impaired. 
The efficacy of steroid treatment decreases under conditions 
of increased inflammation.24) It is reasonable to suggest that 
the elevated inflammatory state observed in individuals with 
the AA genotype contributes to this reduced response. Fur-
thermore, vitamin D affects steroid responsiveness,36) and evi-
dence indicates that vitamin D may enhance the diminished 
steroid responsiveness observed in patients with asthma.37,38) 
The findings of this study are significant because they eluci-
dated the potential impact of VDR gene variations on drug 
responses in patients with asthma. This suggests a reduction 
in the functionality of VDR and vitamin D efficacy, which are 
critical for the advancement of asthma treatment strategies.

There are some limitations to this study. First, it was a single 
cohort study conducted in a single center and the results have not 
been verified in another cohort. Second, although we confirmed 
that the participants did not receive the active form of vitamin D3, 
we did not investigate their dietary vitamin D intake. Third, we 
were unable to directly assess the sensitivity of steroids.

In conclusion, our findings indicate that the rs2228570 poly-
morphism in VDR is associated with the severity and exacer-
bation of asthma. The rs2228570 polymorphism diminishes 

the effects of vitamin D by impairing function and expression, 
thus promoting increased inflammation and reducing the 
response to steroids in patients with asthma. In asthmatic 
patients, the AA genotype of the rs2228570 polymorphism has 
been identified as a risk factor for severe disease and exac-
erbations and can also serve as a prognostic indicator and a 
potential marker for optimizing treatment.
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