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Abstract

Background: Vitamin D (VitD) deficiency is prevalent in more than half of patients treated with antiepileptic drugs. The number of
seizures decreases by more than 40% after vitamin D3 supplementation. This study aimed to investigate the antiepileptic effects of
vitamin D3 by using an in vivo epileptic model. Method: Sprague–Dawley rats received pentylenetetrazole (i.p.) treatment to induce
epilepsy and were then treated with sodium valproate, VitD, or a combination of VitD and paricalcitol. Results: Vitamin D3 treatment
improved epileptic behavior, as evidenced by increased latency time and a significant reduction in epileptic scores on the seventh day
after pentylenetetrazole challenge. Improvements in cell morphology and reduced neuronal damage were observed as well as decreased
apoptosis rates caused by epilepsy. Although no significant changes in the calcium-sensing receptor (CaSR) were observed in any group,
the level of VitD receptor (VDR) significantly increased in groups treated with vitamin D3 alone, and with paricalcitol and sodium
valproate. Conclusions: The study demonstrated the effect of vitamin D3 on reducing neuronal damage caused by epilepsy. The
neuroprotective effects of vitamin D3 treatment may be attributed to the inhibition of cell apoptosis and the increase in the expression of
VitD receptors induced by epilepsy.
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1. Introduction
Epilepsy is the fourth most prevalent neurological dis-

order and affects approximately 50 million people world-
wide [1]. Epilepsy is caused by abnormal firing of neurons
in the brain due to various causes, and its clinical mani-
festations include persistent repetitive seizures, transience
and rigidity. Almost one-third of epileptic patients do not
respond well to antiepileptic drugs, and their side effects
are associated with cognitive impairment, psychiatric prob-
lems and recurrent epileptic adverse reactions [2,3]. Vita-
min D (VitD) deficiency exists in more than 37%–54% of
patients treated with antiepileptic drugs [4–6] and in 86.8%
of epileptic patients with 14 years of history of epilepsy.
However, analysis of retrospective data from Saudi patients
indicated a 40% reduction in seizures after VitD supplemen-
tation [7]. To date, clinical trials have not been conducted
to assess the efficacy of VitD in the treatment of epilepsy
[8].

Optimal VitD status is essential to maintain cal-
cium homeostasis and bone health by regulating cell dif-
ferentiation, cell growth, immunomodulation and hor-

monal control. Theactive form of VitD, namely, 1,25-
dihydroxycholecalciferol (calcitriol, 1,25-(OH)2-VitD3),
activates the VitD receptor (VDR) to alter the transcrip-
tion rate of target genes for biological responses. VDRs
are found in nearly all cells in the human body. In the ner-
vous system, VDRs exist in the cerebellum, thalamus, hy-
pothalamus, basal ganglia and hippocampus [9–11] and reg-
ulate epileptic activities by releasing brain-inhibitory neu-
rotransmitters [12]. VitD3 showed anticonvulsant efficacy
(37.5 and 75 µg/kg) by increasing the level of the hip-
pocampal seizure threshold in the seizure model of rats or
mice induced by pentylenetetrazol (PTZ) [13–15]. In com-
parison, 10 µg/kg paricalcitol (a VDR agonist) exerted a
protective effect on PTZ-induced convulsion [16]. VitD
demonstrated cellular proliferation, differentiation regu-
lation, Ca2+ homeostasis, etc. [12,14,17]. These pro-
cesses may be mediated by calcium-sensing receptors on
the membrane (CaSR) [18,19]. CaSR regulates endoge-
nous excitability, synaptic transmission and neuronal activ-
ity, which are involved in the pathogenesis of neurologi-
cal diseases such as epilepsy [20]. Furthermore, the lev-
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Fig. 1. Experimental scheme. PTZ, pentylenetetrazol; EEG, Electroencephalography; VitD, Vitamin D; CaSR, calcium-sensing recep-
tor; VDR, VitD receptor; HE, Haematoxylin–eosin staining.

els of polyamine (a CaSR activator) are high in the cor-
tex of kainic acid-induced epilepsy [21]. VitD deficiency
in epilepsy patients is associated with long-term use of
antiepileptic drugs and seizures [5–7]. The use of Vit D
supplements has shown a synergetic effect of anticonvul-
sants in a study using ketogenic diet therapy [22]. VitD
can improve intestinal calcium absorption to increase Ca2+
concentration in the brain and reduce neuronal excitability.

VitD supplement benefits in treating epilepsy [7,22],
especially in patients with VitD deficiency. However, no
study has examined its efficacy as an individual agent in the
treatment of epilepsy. This pilot study aimed to investigate
the antiepileptic effect of VitD in an in vivo epileptic model.

2. Materials and Methods
The study was carried out based on the schematic fig-

ure illustrated below (Fig. 1).

2.1 Animals

Based on our previous protocol, the study used 50
male Sprague–Dawley rats weighing 200–250 g [23]. All
rats were kept in smooth bottom plastic cages at (22± 2) °C
with a 12-h light/dark cycle and 60% humidity. They were

fed standard laboratory food and given tap water ad libi-
tum. Animal experiments were carried out using the Guide-
line for the Care and Use of Laboratory Animals’ published
by the Chinese National Institutes of Health. The Ethics
Committee of Third Affiliated Hospital in Jiamusi Univer-
sity approved the study. Rats for Western blot evaluation
were killed by cervical dislocation. Rats for the Tunnel as-
say were anesthetised with inhaled isoflurane (26675-46-7,
MilliporeSigma, Burlington, MA, USA) (5% for induction
and 2% for maintenance) according to our previous study
[24] and American Veterinary Medical Association guide-
lines for animal sacrifice. All efforts were made to alleviate
suffering.

2.2 Drug Preparations

VitD 3 powder (cholecalciferol, CAS: 67-97-0, Solar-
bio, Beijing, China) was dissolved in 10% Dimethylsulfox-
ide (DMSO) and then diluted in 90% corn oil. Paricalci-
tol (an agonist of the VitD receptor) was purchased from
MedChemExpress (CAS: HY-50919, Monmouth Junction,
NJ, USA) was dissolved similar to VitD did. PTZ was
purchased from Sigma–Aldrich (CAS: 54-95-5, St. Louis,
MO, USA) and dissolved in saline to reach a final concen-
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tration of 10 g/L. Sodium valproate was purchased from
Sigma–Aldrich (CAS: 1069-66-5) and dissolved in saline
to a final concentration of 100 mg/mL.

2.3 Experimental Design

A rat epileptic model was prepared based on our pre-
vious reports [25] and other works [15,24]. Rats were ran-
domly assigned to five groups (n = 10 per group). In the
control group (A), rats received daily saline treatment for 28
continuous days, followed by DMSO (i.p. 10% DMSO so-
lution in corn oil, and the given dosage was 75 µg/kg body
weight) daily for further 7 days [15]. The remaining rats
were given PTZ (i.p. 35 mg/kg) [25] daily for 28 days to
induce epilepsy and were further divided into four groups:
epilepsy group (B), which received only DMSO daily for
7 days; epilepsy + sodium valproate group (C); epilepsy +
VitD group (D); and epilepsy + VitD + paricalcitol group
(E). The following treatment was given daily in the follow-
ing seven days. The epilepsy group (B) was given DMSO
only; the epilepsy + sodium valproate group (C) received
sodium valproate (200 mg/kg) [26] orally for 7 days as a
positive treatment group [16]; the epilepsy + VitD group
(D) was given VitD 3 (10 µg/kg) treatment through in-
traperitoneal (i.p.) injection daily for 7 days, and the dosage
was based on previous study [15]; and the epilepsy + VitD
+ paricalcitol group (E) was treated with VitD 3 (10 µg/kg)
and paricalcitol (VitD receptor agonist, 10 µg/kg) daily for
7 days, and the dosage was based on a previous study [16].
At the end of the treatment, each rat was administered with
one additional PTZ treatment. The severity of rat flare-up
behavior was independently assessed by two experienced
individuals.

2.4 Behavior of PTZ-Induced Kindling Rats

The rats were placed in cages and observed for 60
minutes after PTZ injection. The frequency and duration
of seizures were also assessed. According to Racine’s pro-
posed criteria [27], seizure activities were evaluated using a
method described in our previous study [24]. The intensity
of seizure was assessed as follows: stage 0, no convulsions;
stage 1: rhythmic corners of the mouth, facial twitching;
stage 2: myoclonic jerking or head nodding; stage 3: head
twitching, forelimb clonus with standing; stage 4: limbs
twitching, clonic–tonic seizure; and stage 5: generalised
tonic–clonic seizures and absence of reflexes. Seizure lev-
els for each rat were recorded daily. Electroencephalogra-
phy (EEG) data were evaluated using the method described
in our previous study [25]. Isoflurane was administered
to the rats at a concentration of 5% for anaesthesia induc-
tion and maintained at 1%–2%. Three 1.2 mm-diameter
stainless-steel screw electrodes were separately positioned
in the bilateral temporal lobes and the right frontal lobe of
the rats, with the latter as the reference electrode. EEG
recordings were conducted for up to 90 minutes by utiliz-
ing EEG recorder (Z2N-F-20-C, NCC Electrophysiology,

Shanghai, China, https://www.shnccmedical.com/). If rats
maintained an epileptic behavior (at stage 2 or above) for
5 consecutive days, then they were considered a successful
kindling model and used for subsequent analysis [24,25].

2.5 Haematoxylin–Eosin Staining

Rats were decapitated at the end of the experiment.
The brains were removed as previously described [25].
Paraffin sections were taken from the brain tissues of rats in
each group and dewaxed with conventional xylene in wa-
ter. The sections were used for haematoxylin–eosin stain-
ing and washed with 1% hydrochloric acid alcohol differen-
tiated, washed with water, re-stained with 1% eosin alcohol,
and subjected to conventional gradient alcohol dehydration;
the sectionsweremade transparent and sealed. Pathological
changes in the CA1 cortical and hippocampal regions were
observed under a light microscope (ECLIPSE Ni, Nikon,
Melville, NY, USA).

2.6 Terminal Deoxynucleotidyl Transferase dUTP Nick
End Labeling (TUNEL) Staining Detection

Paraffin sections of rat brain tissues in each group
were used to detect nerve cell apoptosis according to the
instructions of the TUNEL kit (CAS: MK1015, Boster
Biotechnology, Wuhan, China) [25]. Under an optical mi-
croscope, the nucleus of positive cells emerges, and their
shapes are round, crescent or irregular. Six observed fields
were randomly selected to record the number of positive
cells and the total cells in each view. Apoptotic rate was
calculated for each field by using the following equation:
apoptosis rate (%) = positive cell number/total cell number
× 100.

2.7 Western Blot Analysis

The hippocampal tissues of the rats were extracted and
placed in a glass homogenate tube [24]. The sample was
added with protein lysis buffer for low-temperature grind-
ing and cracked on ice for 30–40 min. The proteins were
then centrifuged at 4 °C and 12,000 rpm for 20 min. The su-
pernatant was added to the protein loading buffer, boiled in
boiling water for 5 minutes, cooled and stored in a refriger-
ator at –20 °C. Protein was extracted forWestern blot analy-
sis [26]. Protein lysis buffer was added to extract proteins.
About 20 µg of proteins were loaded onto 15% polyacry-
lamide gel electrophoresis, and the separated proteins were
transferred onto a Polyvinylidene Fluoride (PVDF) mem-
brane with 100 V for 2 h. The PVDFmembrane was placed
in a blocking buffer at 37 °C for 1 h. The membrane was in-
cubated with anti-calcium-sensing recepter (CaSR) (CAS:
19125-1-AP, 1:1000; Proteintech Group; Wuhan, China)
and anti-VDR (CAS: K110777P, 1:1000; Solarbio; Beijing,
China) at 4 °C overnight. After repeated washing, the mem-
brane was incubated with an alkaline phosphatase-labelled
anti-rabbit IgG antibody (CAS: A0352, 1:5000, Beyotime,
Shanghai, China) for 1 h. After the membrane was washed,
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Fig. 2. The Racine score during the number of PTZ injections (mean ± SE, n = 5). SE, Standard Error.

the developer was added, the colour in the darkroom was
observed and the optical density of each protein band was
analysed. The original figures of Western blot can be found
in the Supplementary Materials.

2.8 Data Analysis

All data are reported as means± standard error (mean
± SE) and analysed with SPSS version 23.0 software (IBM
SPSS Statistics, New York, NY, USA). T-test was used
to evaluate differences between the two groups. Differ-
ences in Gaussian distribution data among multiple groups
were compared by one-way ANOVA. For non-normally
distributed data in the analysis of farer-up grade, apopto-
sis, and expression of CaSR and VDR, the differences be-
tween the two groups were evaluated using Mann–Whitney
U test. Kruskal–Wallis test was used for multiple groups.
A p value of <0.05 indicated statistical significance.

3. Results
3.1 VitD Treatment Improved Epileptic Behaviour

Rats injected with PTZ experienced seizure symp-
toms such as rhythmic chewing, nodding, tail swinging
and forelimb clonus with standing, rolling, jumping, neigh-
ing and uncontrolled postures. Seizure behaviour was as-
sessed using Racine scoring method [27]. Rats with epilep-
tic seizures at or above stage 2 were suitable as models of
epilepsy. The Racine score during PTZ injections is shown
in Fig. 2. The Racine score reflected epileptic behavior,
which increased significantly with increasing times of PTZ
injection.

These rats were also monitored for changes in EEG
waveforms (Fig. 3) before being treated with sodium val-
proate, a drug used to treat epilepsy, VitD alone, or in com-
bination with paricalcitol for another seven days. The EEG
of the control group showed regular waves of nerve electri-
cal activity, and the primary rhythm wave did not change.
However, the EEG of the epilepsy group showed spikes of
high amplitude or irregular waveforms of the slow spinous
complex waves.

At the end of the treatments, rats received onemore in-
jection of PTZ to induce recurrence of epilepsy. The latency
of the seizure (minutes difference between the completion
of a seizure and the start of the subsequent seizure) was
analysed to assess the efficacy of the treatments (Fig. 4a).
Sodium valproate treatment had the highest efficacy in re-
ducing epileptic symptoms by improving the latency period
(3 times), followed by VitD plus paricalcitol treatments (2.5
times) and VitD alone treatments (2 times). They also sig-
nificantly reduced the epileptic Racine Score on day seven
after PTZ challenges (Fig. 4b).

3.2 VitD Treatment Ameliorated Nerve Cell Damage
Caused by PTZ

The morphology of nerve cells in the rat cortex and
hippocampus are shown in Fig. 5a,b, respectively. Corti-
cal nerve cells were intact in the control group, with a clear
outline, regular shape and size. Compared with the control
group, the cortical nerve cells in the epilepsy group were of
abnormal shape, with a fuzzy outline, obvious nucleus py-
cnosis, karyolysis and missing cell structures. Compared
with the epilepsy group, pathophysiological damage (e.g.,
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Fig. 3. Changes in EEG waveform and amplitude of rats in control and PTZ group.

Fig. 4. Seizure latency (a) and average severity of recurrence (also known as flare-up grade after challenge with PTZ); (b), for
each group at the end of the experiment. Note: A, Control group; B, Epilepsy group; C, Epilepsy + sodium valproate group. D,
epilepsy + VitD group; E, epilepsy + VitD + paricalcitol group; **p < 0.001 group B vs group C, D, or E, respectively; ##p < 0.001
group D vs group C or E, respectively, n = 5.

cortical nucleus pycnosis and karyolysis) may be mitigated
in epilepsy treated with the sodium valproate group, the
VitD group, and the VitD plus paricalcitol group, respec-
tively.

Qualitative inspection of the control group tissue in-
dicated intact nerve cells in the hippocampus without ap-
parent damage and abnormal morphology. In the epilepsy
group the cell spacing appeared visibly looser, and evidence
for cell damage was detected. According to hematoxylin-
eosin (HE) staining of brain tissue from two rats of each
group, the epilepsy animals treated with sodium valproate,
with VitD alone or with paricalcitol groups exhibited

less damage and morphological changes compared to the
epilepsy group (not quantified).

3.3 VitD Treatment Reduced PTZ-Induced Apoptosis
Images of apoptosis of rat nerve cells after treatments

are shown in Fig. 6A–E. Apoptotic cells are stained brown
in the TUNEL assay. The apoptosis rate (Fig. 6F) was cal-
culated by the number of five randomly observed optical
fields. Apoptosis rate of groups treated with sodium val-
proate, VitD and VitD plus paricalcitol was significantly
lower than that of the epilepsy group (p < 0.01).
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Fig. 5. Morphological images of HE staining in the cerebral cortex (a, top panel) and hippocampus (b, bottom panel) of rats under
a light microscope (40 × 10). Note: A, Control group; B, Epilepsy group; C, Epilepsy + sodium valproate group. D, epilepsy + VitD
group; E, epilepsy + VitD + paricalcitol group; arrows show the indicated changes, and the bar represents 50 µm. HE, hematoxylin-eosin.
Scale bar: 50 µm.

Fig. 6. Images of apoptosis of nerve cells assessed by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)
(A–E) and comparison of the apoptosis rate (F) calculated by the five observed fields in the brain tissue of each group. Note: A,
Normal group; B, Epilepsy group; C, Epilepsy + sodium valproate group. D, epilepsy + VitD group; E, epilepsy + VitD + paricalcitol
group. Differences between groups (F) were evaluated using the rank sum test (for nonparametric data). The results represent the mean
± SE for five experiments. Arrow shows the apoptosis cell. ++p< 0.01, vs. other groups; ∗∗p< 0.01, vs. D group; n = 6; scale bar: 50
µm.

3.4 The Expression of the CaSR and VDR Protein

The results (Fig. 7) show no significant changes in
CaSR among all groups. However, there were substantial

increases in VDR after VitD alone or with paricalcitol and
in sodium valproate treatments.
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Fig. 7. Western blot analysis of CaSR (a), VDR (b) protein expression in hippocampi from rats with different treatments. Note:
A, Control group; B, Epilepsy group; C, Epilepsy + sodium valproate group. D, epilepsy + VitD group; E, epilepsy + VitD + paricalcitol
group. Top panel, Western blot protein bands of the expression of CaSR, VDR in each group. Bottom panel bar graphs show the effect of
VitD on CaSR, VDR, and expression. The results represent the mean ± SE. VDR: ∗∗p < 0.01, vs. C, D and E groups, respectively; n =
5. VitD, Vitamin D; CaSR, calcium-sensing receptor; VDR, Vitamin D receptor; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase.

4. Discussion
Long-term use of antiepilepsy drugs (AEDs) can lead

to adverse side effects and drug resistance among 30% to
40% of patients with epilepsy [2]. VitD supplementation
improved efficacy of long-term AED treatment [13,15,16].
This finding may be due to compensation for the VitD lost
during epileptic treatment. The advantages of using VitD
include less toxicity, few side effects and easy availability
at a relatively low price compared to pharmaceuticals.

This study used a subconvulsive dose (35 mg/kg) of
PTZ to ignite an animal model of chronic epilepsy [25].
PTZ was injected intraperitoneally once a day for 28 con-
secutive days. The Racine score (Fig. 2) increased progres-
sively in line with the sequential delivery of PTZ injections.
According to the standard of the Racine scoring method,
rats in the experiment all had several consecutive epileptic
seizures of stages 2–4. The EEG in the PTZ treatment group
showed spikes of high amplitude or irregular waveform in
the slow spinous complex wave (Fig. 3). The morphologi-
cal changes in the cortex and the hippocampal regions ex-
hibited signs of severe damage, indicating the success of de-
veloping an in vivo rat model for epilepsy (Fig. 5). Based on
the above observation, it can be confirmed that the epilepsy
model has been successfully prepared.

After VitD treatment, seizure latency increased
(Fig. 4a), while the severity of recurrence of VitD was also
shown of rats was (Fig. 4b). Furthermore, the efficacy of
the antiepileptic effect in improving the histological struc-
ture of the neuron in the cortex and the hippocampal regions
(Fig. 5a,b); moreover, a significant reduction in the rate of

apoptosis was found in the hippocampal region (Fig. 6A–F).
The correlation between VitD deficiency and epilepsy has
been continuously reported in recent years. VitD can also
affect neuronal excitability at the threshold level by fine-
tuningCa2+ andCl− currents across the neuronal cell mem-
brane, thereby changing the conductance of L-type calcium
channels and chloride channels [8]. Excess calcium ion
levels will increase nerve excitability, leading to neuron
depolarisation and increased risk of epilepsy. VitD could
reduce the flow of calcium ions into cells and involve in
the synthesis of calcium-binding protein to protect nerve
cells [13]. An appropriate amount of VitD can maintain the
homeostasis of intracellular and extracellular calcium ions,
thus reducing abnormal discharge from neurons and pro-
tecting nerve cells [28]. In 1984, Siegel et al. [13] first re-
ported the anticonvulsant properties of 1,25-(OH)2-VitD3
and found that the administration of active VitD3 could in-
crease seizure threshold in the rat hippocampus. Further-
more, an animal study by Kalueff et al. [14] showed an an-
ticonvulsant effect of 1,25-(OH)2-VitD3 in chemically in-
duced seizures in mice.

The effect of VitD exhibited a downward trend of
CaSR expression of CaSR (p > 0.05, Fig. 7a) but a sig-
nificant stimulation of VDR expression (p< 0.05, Fig. 7b).
The protective effect of VitD was strengthened, indicating
that VitD can reduce the expression of CaSR; the downregu-
lation of CaSR expressionmight contribute to the neuropro-
tective effect of VitD. CaSR is widely expressed through-
out the brain and affects synaptic transmission and neuro-
transmitter releases [9,10]. In cultured hippocampal neu-
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rons, blocking CaSR inhibits dendritic growth, while acti-
vating CaSR activates spontaneous releases of neurotrans-
mitters. CaSR in the parathyroid glands senses the systemic
Ca2+ level and regulates the secretion of parathyroid hor-
mones (PTH) to maintain calcium homeostasis. Although
CaSR mutations do not result in an altered systemic PTH
or serum Ca2+ level associated with seizures, the impact
of CaSR activities on epilepsy progresses [20]. To investi-
gate the role of VDR in epilepsy treatment, paricalcitol, a
selective VitD receptor agonist, was introduced. Paricalci-
tol increases serum VitD levels in a controlled and subtle
way. In this experiment, VitD alone or in combination with
paricalcitol for 7 consecutive days, nerve cell damage and
necrosis in the hippocampal tissues of epileptic rats were
apparently reduced, which is consistent with previous stud-
ies [13,29]. The expression of the VDR protein in the brain
tissue from these two groups was significantly higher than
that in the epilepsy group and the sodium valproate group
(Fig. 7b). This suggested that VitD could alleviate nerve
cell damage in the hippocampal tissues of epileptic rats by
regulating the expression level of VDR.

In vivo CaSR and VDR regulate calcium homeosta-
sis; for example, CaSR governs the release of PTH in re-
sponse to changes in extracellular calcium. By contrast,
VDR mediates the effects of calcitriol, the active metabo-
lite of VitD [30]. In reverse, the impact of VitD on the re-
action of CaSR and VDR, such as CaSR, helps to main-
tain the homeostasis of calcium ions in the extracellular
space (10–3 M) and the cytosol (10–7 to 10–8 M) and
controls many processes, such as cell secretion, apoptosis,
chemotaxis, cell proliferation, cytoskeletal rearrangement,
ion channel activity, gene expression control and cell differ-
entiation [31,32]. Therefore, CaSR balance in vivo would
be critical for many pathophysiological processes in multi-
ple organs, including the parathyroid gland, kidney, heart,
bone, brain and skin. For example, in previous research,
we found a high expression of CaSR, which was associated
with a high apoptosis rate in injured hippocampal neurons
and cardiomyocytes [32–34].

CaSR is a G-protein-coupled receptor that plays a cru-
cial role in calcium homeostasis by sensing free calcium
levels in the blood and regulating parathyroid hormone se-
cretion accordingly. CaSR binds to various G proteins in
a tissue-specific manner and activates multiple signalling
pathways to regulate different intracellular activities [35].
Calcium is a universal signalling vector for biological in-
formation and one of the most specific and selective mes-
sengers. It participates in multiple signalling cascades crit-
ical for cell survival, differentiation and death. In addi-
tion, calcium controls several signalling pathways within
cells, including those that regulate cell growth and death
[19,28]. VitD regulates calcium homeostasis (e.g., 1,25-
(OH)2-VitD3 may act on the regulation of the transcrip-
tional activity of the CaSR and VDR genes [36].

According to Fig. 4, VitD improved the flare-up grade
in comparison with sodium valproate and VitD + paricalci-
tol but could not improve the apoptosis rate (Fig. 6F), even
though all the treatments with sodium valproate, VitD alone
or treated with paricalcitol reduced apoptosis significantly
than the model group with epilepsy without any given treat-
ment. These are possible reasons regarding the higher apop-
tosis rate in the VitD treatment group than in the VitD plus
paricalcitol and sodium valproate groups. Despite VitD’s
ability to reduce flare-up severity, the higher apoptosis rate
in the VitD treatment group highlights the complexity of its
effects on cellular processes. VitD has dual role as a neu-
roprotectant and a modulator of apoptosis so it can reduce
seizure severity while promoting apoptosis under certain
conditions. Adding paricalcitol or sodium valproate modu-
lates these effects, leading to a balanced outcome regarding
cell survival. Further investigation into the specific path-
ways involved could provide additional insights.

VitD alone or treated with paricalcitol reduced apop-
tosis in vivo (Fig. 6F). The epilepsy-induced apoptotic path-
way can have several harmful effects. Recurrent transient
seizures can cause progressive loss of hippocampal neurons
and loss of spatial memory [37]. VitD has a neuroprotec-
tive effect on kainic acid-induced hippocampal apoptosis
in rats. The main pathological manifestations of epilepsy
are neuronal cell death and glial cell loss [38]. During
epileptic seizures, mitochondria in the brain are prone to
destruction. In epilepsy-induced brain injury, mitochon-
drial permeability occurs, and pro-apoptotic proteins are
released from the mitochondria, resulting in downstream
Caspase-3 activation and cell apoptosis [23]. Previous stud-
ies on the pathogenesis of epilepsy were based mainly on
cell necrosis and apoptosis, which explained the death of
neurons during seizures. In our TUNEL staining, VitD,
sodium valproate and paricalcitol groups had significant re-
ductions in neural cell apoptosis in epileptic rats. Hence,
VitD inhibited the apoptosis of the in vivo epileptic model,
but the mechanism needs further exploration. For example,
research should explore the role of the phosphoinositol-3
kinase/serine-threonine protein kinase (PI3K/Akt) pathway
because its activation is critical for the survival of neurons
by inhibiting cell apoptosis [39].

VitD deficiency exists in more than half of patients
treated with antiepileptic drugs [4–6] and with a 40% re-
duction in seizures after VitD supplementation in humans
[7,40] as well as in an animal study [13]. This commonly
VitD deficiency among individuals with epilepsy could be
due to medication, lifestyle and dietary habits as well as
the broader implications for health and treatment strategies
[4–6,41,42]. Many antiepileptic drugs, such as phenytoin,
phenobarbital and carbamazepine, are enzyme inducers and
increase the metabolism, thereby affecting the absorption of
VitD in the liver and leading to lower levels in the blood-
stream. Individuals with epilepsymay have lifestyle restric-
tions that limit their time outdoors and lead to a sedentary

8

https://www.imrpress.com


lifestyle due to concerns about seizure triggers or medica-
tion side effects, such as photosensitivity. This can result
in less sunlight exposure, which is necessary for the skin
to synthesize VitD. Some individuals with epilepsy may
have dietary restrictions or poor dietary habits that result
in inadequate intake of VitD-rich foods, such as fatty fish,
fortified dairy products, and eggs. Chronic seizures and
the associated stress on the body can lead to changes in
bone metabolism, increasing the demand for VitD and cal-
cium for bone health. People with epilepsy may have other
health conditions that affect VitD levels, such as gastroin-
testinal disorders that impair nutrient absorption or kidney
issues that affect VitD metabolism. The efficacy of VitD in
epilepsy treatment has not been warranted [8]. VitD defi-
ciency was present in 54% of enzyme-induced patients and
37% of non-enzyme-induced AED [4]. This could be be-
cause AEDs destroy VitD stores in the body. VitD nutri-
tional status should bemonitored formanaging epilepsy and
reducing the risk of VitD deficiency, such as osteoporosis
and osteomalacia. Until now, evidence remains limited on
the efficacy of VitD in epilepsy treatment, but the preva-
lence of VitD deficiency remains high among patients with
epilepsy. This provides good evidence for using VitD in the
treatment of epilepsy, although further research is required
to verify our results.

This study firstly established an epileptic animal
model and then assessed the epileptic behaviour of the an-
imals when they received vitamin D3 treatments and con-
trasted them with its agonist, paricalcitol, and the positive
medication valproate. The results showed that vitamin D3
treatments (1) improved epileptic behavior, (2) reduced the
apoptosis rate, and (3) decreased neuron damage caused by
epilepsy.

5. Conclusions
This study showed that VitD improved epileptic be-

havior and delayed the occurrence of epilepsy in vivo. It
decreased neuron apoptosis and improved the survival rate
of epileptic neurons in vivo. VitD increased the expression
of VDR. Further research is needed on the role of CaSR and
the PI3K/Akt pathway and the optimal intervention dose in
efficient epileptic treatment.
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