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Multiple sclerosis (MS) is an autoimmune disease of the central nervous system

(CNS) with no definitive trigger. However, epidemiological studies indicate that

environmental factors, such as infection with Epstein-Barr virus (EBV) and low

vitamin D (Vit D) levels in genetically predisposed individuals, are important risk

factors. One leading proposal is that EBV triggers MS via mechanisms such as

molecular mimicry, where activated autoreactive B and T lymphocytes mistakenly

target self-antigens. In line with other risk factors, low serum Vit D level, genetic

polymorphism of Vit D receptor, and higher incidence of MS in countries in the

northern hemisphere, suggest that Vit D also plays a role in MS pathology. Vitamin

D, known for its neuroprotective and immunomodulatory effects, helpsmaintain a

balance between pro-inflammatory and anti-inflammatory immune cells. Studies

and ongoing clinical trials indicate that hypovitaminosis D is associated with an

increased risk of MS, and Vit D supplement can help to reduce the disease severity.

Moreover, hypovitaminosis D has also been associated with a dysregulated

immune system and an increased risk of developing MS. This review explores

how these three well-recognized risk factors - EBV infection, hypovitaminosis D,

and dysregulated immune system - interact in the pathogenesis of MS.

Understanding these interactions and their consequences could provide new

insights into novel therapeutic approaches for treating this devastating disease.
KEYWORDS
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1 Introduction

Multiple sclerosis (MS) is a chronic autoimmune-mediated disease with a complex

etiology. It involves a dysregulated immune system with bouts of peripherally mediated

inflammation and ongoing CNS-compartmentalized inflammation, leading to loss of myelin

sheath and progressive worsening disability (1). The disease is believed to be initiated and
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driven by autoreactive lymphocytes that target myelin basic protein

(MBP) (2). Normally, myelin sheath wraps around axons within the

CNS, facilitating the rapid transmission of electric impulses.

However, any severe damage to the myelin sheath can hinder the

conduction of impulses and ultimately cause disability (2). Thus, MS

is characterized by neurological symptoms manifesting at different

times and locations. These symptoms tend to decrease as the

underlying damage is repaired. Therefore, clinically, MS is classified

into four subtypes based on its progression: relapsing-remitting

(RRMS), primary progressive (PPMS), secondary progressive

(SPMS), and progressive relapsing MS (PRMS) (3).

MS is a complex, multifactorial disease, and its exact cause

remains unknown. However, genome-wide association studies

(GWAS) have indicated many genetic variants contributing to

MS susceptibility, including genes regulating the immune

response (4). The strongest genetic association is due to variation

in major histocompatibility complex (MHC) (i.e., HLA) class II

alleles DRB1*0101, DRB1*0602, and DRB1*1501 (5). Apart from

the genetic association, several environmental risk factors have also

been implicated, such as lifestyle factors, smoking, exposure to

organic solvents, heavy metals, infectious agents and

hypovitaminosis D (6–8). Of the environmental factors, Epstein-

Barr virus (EBV) and low vitamin D (Vit D) levels are considered

strong risk factors for disease onset (8, 9). These risk factors could

have an additive effect. For example, it has been shown that having

EBV infection or HLA-DRB1*1501, or both, have a strong

association in the development of MS (10). However, the role of

other environmental factors in disease onset is limited (8).
2 EBV and MS

EBV is highly prevalent, infecting more than 90% of the global

population. The infection is usually acquired early in childhood,

generally with no pathological consequences. However, the virus is

known to have oncogenic properties and is involved in the

pathogenesis of several types of human malignancies (11, 12). EBV

has also been implicated in the pathogenesis of MS (13).

Epidemiological studies have shown that individuals who develop

infectious mononucleosis (IM) following primary EBV infection have

a 2-3 fold increased risk of developing MS later in life (14–16).

Moreover, patients with MS have elevated levels of EBV-specific

immune responses, which correlate with disease activity (17–20). By

contrast, EBV-negative individuals have a significantly reduced risk

of developing MS (21–23). Importantly, EBV-infected cells have been

directly demonstrated in the brain of most cases of MS (24–26). More

recently, in a rabbit model of EBV infection, it was shown that

circulating EBV-infected cells can cross the blood-brain barrier (BBB)

and induce inflammation and demyelination reminiscent of MS (27)

To further galvanize the aetiological link between EBV and MS, a

recent study involving more than 10 million active US military

members, followed for over 20-years, found that 801 individuals

developed MS. Of these, 35 cases were EBV seronegative and all but 1

case became infected with EBV before the onset of the disease. The

authors concluded that EBV infection increases the risk of MS by 32

folds (28). These findings provide compelling evidence that EBVmay
Frontiers in Immunology 02
serve as a trigger and potentially a driver for the development of MS

(28, 29).

EBV (Human herpes virus 4) is a large dsDNA virus (11). Its

genome is approximately 172kb long and encodes around 80

proteins and 46 functional small untranslated RNAs (miRNA).

Some proteins are involved in viral genome replication and the

generation of new viral particles during the lytic (productive) viral

cycle, which is believed to occur primarily in B-cells (30).

Herpesviruses, including EBV, are known for their ability to

establish a latent phase of infection, where they persist within the

host by expressing a limited number of genes that contribute to the

virus’s ability to persist for life in its host (31).

EBV life cycle is characterized by lytic and latency programs

(latency 0, I, II, and III) occurring within the infected B-cells.

Throughout this life cycle, different viral proteins and miRNAs are

produced, including six Epstein-Barr virus nuclear antigens (EBNA-1,

2, 3A, 3B, 3C, and LP), three latent membrane proteins (LMP-1, LMP-

2A, and LMP-2B), two small non-coding RNAs (EBER-1 and 2) and

dozens of miRNAs (31, 32). Of the EBV latent proteins, EBNA-1 is one

of the most essential viral proteins expressed in all latency phases of the

virus, except perhaps latency 0. It is necessary for viral DNA

replication, episomal genome maintenance, expression of other latent

proteins, immune evasion, and cell immortalization (33, 34). EBNA-1

is a multi-domain phosphoprotein having a DNA-binding and

dimerization domain (DBD/DDD) within the C-terminal, involved

in all EBNA-1 functions associated with binding to the origin of

replication (oriP). On the other hand, its basic N-terminus consists of

glycine-alanine domains (GAr) (aa 40-64 and aa 325-367), which are

conserved across all EBV strains. The two GAr domains play critical

roles in the ability of EBNA-1 to evade the immune system during the

latent phase of viral infection (35). Therefore, EBNA-1 is highly

antigenic, leading to the development of EBNA-1-specific

autoreactive antibodies and cross-reactive T-cells in MS patients (36).
2.1 EBV-specific cross-reactive
lymphocytes in MS

It has long been believed that MS is a T-cell-mediated disease (37).

In several histopathological studies on MS lesions, T-cells were found

to be much more abundant than B-cells (38). However, the

importance of B-cells in MS pathology cannot be neglected; indeed,

new therapeutic approaches, such as rituximab, target B-cells (39).

Evidence for the involvement of B-cells in MS has been accumulating

over the past 10-15 years, but their precise role in the evolution of the

disease is still under discussion (39). Various studies have identified

IgG oligoclonal bands in the CNS of MS patients that can recognize

EBV antigens, particularly EBNA-1 (40, 41). Furthermore, the

presence of ectopic B-cell follicles in the subarachnoid space and

white matter lesions indicate the continuous activation of B and T-

cells (41). Over 90% of MS patients have been reported to be positive

for IgG oligoclonal bands, long-known as a diagnostic marker (42, 43).

Additionally, patients with high levels of brain inflammation have

been recognized by infiltrating B and T-cells into the meninges (44),

perivascular cuffs, and brain parenchyma (45). These infiltrating cells

lead to active lesions, demyelination, and progressive clinical disease
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course (46, 47). These findings indicate the involvement of both B and

T-cells in MS pathogenesis.
2.2 T-cells in MS

MS patients have been reported to have self-reactive T-cells in

their immune system; these cells can also exist in an inactive form in

healthy individuals. However, their pathogenic effect is only realized

when they become activated, which can occur due to various

mechanisms (48). One hypothesis states that reactivation of EBV

results in peripherally activated B and T lymphocytes crossing the

BBB and entering the CNS (Figure 1), where they cross-react with

self-antigens, resulting in local inflammation and tissue damage

(49). How EBV triggers the activation and transmigration of these

lymphocytes into the CNS and how infiltrating cells are involved in

local MS pathology remains unknown.
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Many theories have evolved about the involvement of EBV in

MS pathogenesis. One hypothesis is that chronic EBV infection

causes the generation of so-called “exhausted T-cells” due to

continuous antigen presentation by B-cells (Figure 1), resulting in

inappropriate T-cell mediated control of pathogenic B-cells (50).

Consistent with this, in healthy individuals, CD8+ cytotoxic T-cells

keep control over EBV infection by directly killing virus-infected B-

cells (51), and CD4+ T-cells. However, the GAr domain of the

EBNA-1 limits antigen presentation by reducing translation and

proteasomal processing by MHC-I (52). Thus, it reduces the

activation of CD8+ T-cells, typically involved in antigen

recognition and presentation by MHC-I (52), thereby increasing

viral load (53). However, in healthy individuals, CD4+ T-cells are

primed to EBNA-1 (54). Moreover, EBNA-1-specific CD4+ T-cells

in healthy individuals can recognize autologous EBV-transformed

B-lymphoblastoid cell lines (B-LCL) and kill EBNA-1-expressing

targets through CD95L/CD95-mediated pathway (55). Conversely,
FIGURE 1

Primary EBV infection leads to CNS inflammation and MS lesions, potentially due to the infiltration of cross-reactive lymphocytes into the CNS. EBV
is transmitted primarily via saliva and targets B-cells in the oral cavity, either directly or by oropharyngeal epithelial cells (61). Acute EBV infection can
result in EBV-transformed B-cells, which may either transform into autoreactive B-cells (red nuclei) or act as antigen-presenting cells to T-cells (62),
transforming them into autoreactive T-cells (red nuclei). These autoreactive lymphocytes cross the BBB and enter the CNS (63). Pathogenic and
autoreactive B-cells secrete autoantibodies, particularly against EBNA-1, and autoreactive T-cells cross-react with self-antigens (e.g., MBP, GlialCAM,
Anoctamin 2) (64, 65), contributing to MS pathogenesis.
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in MS patients, EBNA-1-specific CD4+ T-cells have been found to

expand selectively and cross-recognize MS-associated MBP, leading

to MS pathology (55). Further analysis revealed the presence of

CD4+ T-cells against a specific sequence of EBNA-1 (55). Several

studies have demonstrated a distinct immune response of cross-

reactive T-cells in the CSF of MS patients, supporting the

involvement of T-cells in MS pathology (56, 57).

Although most T-cells normally react to one specific antigen,

studies in MS and long-term EBV carriers have shown that a high

proportion of EBV-specific CD4+ and CD8+ T-cells are

polyfunctional cells (PFCs) (58). PFCs originate from the central

memory compartment with less functional avidities, but retain their

antigen-specific proliferation capacity through IL-2 secretion. As

these cells are less susceptible to activation-induced cell death, it has

been assumed that they are essential in persistent antigen exposure

and high viral load (58, 59). Interestingly, EBV-specific PFCs appear

to have different subsets, including some CD107a- CD4+ T-cells

producing IFN-g, MIP1-a, TNF-a, and IL-2. By contrast, CD107a+

CD8+ T-cells expressed only three of four cytokines (MIP1-a, TNF-
a, and IL-2) (58, 60). CD107a is a degranulation marker,

representing the potential cytotoxic function of the immune cells.

Taken together, both types of T-cells produce MIP1-a to the level

that it dominates the response of EBV-specific T-cells (56). The

increased presence of these cells, combined with selective

impairment of cytokines, indicates immune dysfunction driven by

viral dominance and enhanced neuroinflammation. This, in turn,

could be responsible for MS pathogenesis.
2.3 Molecular mimicry

How do autoreactive T-cells reach the CNS, and how do they

trigger an autoimmune response? The concept of considering CNS

as a secondary lymphoid organ led to studying the communication

mechanisms between CNS and the immune system. Different

studies have proposed that the CNS is capable of immune

surveillance, in which autoreactive T-cells can induce

autoimmunity. Several studies reported that CD4+ Th1/Th17 cells

migrated from the peripheral to CNS through cytokine gradient and

showed strong reactivity with the MS-associated myelin antigen in

MS patients (55, 66). This evidence for autoreactive T-cells is the

basis for molecular mimicry between viral epitope and MBP,

supported by the mechanistic studies implicating EBNA-1 specific

T-cell-mediated autoimmunity to myelin antigens, including

proteolipid proteins (PLP), myelin oligodendrocytes glycoprotein

(MOG) and MBP (49). Detailed analysis revealed the presence of

autoreactive CD4+ T-cells with Th1 phenotype against EBNA-1 C-

terminal spanning amino acids 400-641 (55). Moreover,

autoantibodies against specific sequences of EBNA-1 have also

been demonstrated in MS patients (67), indicating that EBNA-1

is a key viral protein triggering autoimmune responses in MS.

MS is associated with three HLA class II alleles belonging to

haplotype HLA-DR2 (DR2) (10). DRB1*1501 and DRB5*0101

encode for the b-chain of DR2b and DR2a, respectively. MHC-II

regulates the activation of CD4+ T-cells through the interaction of
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CD4+ TCR and MHC-II peptide complex, leading to signal

transduction, activation, and differentiation of T-cells into

different phenotypes (68). Analysis of antigen-specific TCR of a

specific T-cell clone (Hy.2E11) from MS patients showed cross-

reactivity with MBP and EBV antigens (69). Detailed analysis

revealed that these two peptides are presented by different

complexes: MBP complex is presented by DR2b and EBV

peptides by DR2a (48). However, both complexes were found to

have astounding similarities between them (69). Moreover,

structural studies revealed the cross-reactivity of EBNA-1-specific

T-cells to the N-terminal of MBP (residue 85-99) (55, 64),

suggesting that the elevated level of these T-cells may target the

MBP, which could provoke MS pathogenesis.

Another study on T-cell repertoire in MS patients, including

identical twins, found more EBV-specific T-cell repertoire in MS

patients than in healthy individuals (38). Interestingly, these T-cells

were found to cross-react with the viral antigens (38), further

strengthening the connection between EBV and MS.
2.4 B-cells in MS

Although cross-reactive T-cell-dominated inflammation is a

characteristic of almost all types lesions, the presence of EBNA-1-

specific autoantibodies has also been observed in the CNS of MS

patients (67). Studies have revealed that these antibodies contribute

to oligoclonal bands produced by clonal expansion of plasma cell-

derived B-cells (42, 67). Several studies have reported the cross-

reactivity of autoantibodies against the CNS autoantigens, including

MBP, anoctamin 2, glial adhesion molecules, and ab-crystallin,
resulting in autoimmunity through molecular mimicry (64, 65).

Like autoreactive T-cells, EBNA-1-specific antibodies are also raised

against the C-terminal domain of EBNA-1 (385-420 residue).

However, injection of EBNA-1-specific peptide (385-420 residue)

into the MS mice model of EAE, results in CNS autoimmunity,

further confirming the involvement of EBV-specific antibodies in

MS pathology (67). Despite the overwhelming evidence for the

presence of EBNA-1-specific B and T-cells in MS patients, the

molecular mechanism for B-cell involvement is still poorly

understood. One hypothesis is that, in addition to producing

autoantibodies, B-cells may influence the activation and

functioning of T-cells (70). As previously mentioned, targeting B-

cells with rituximab, an anti-B-cell antibody, ameliorates symptoms

of MS (71), further highlighting the critical role of B-cells in

MS pathology.
2.5 Crosstalk between B and T-cells in MS

B-cells are multifunctional players in mediating both humoral

and cellular immune responses. Additionally, B-cells are implicated

in the formation of ectopic germinal center-like structures reported

in the CNS of MS patients (44). Moreover, memory B-cells are also

the prime target of EBV and take part in the development of T-cells

in various ways, including activation of antigen-presenting cells
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(APC), expression of co-stimulatory molecules for effector T-cell

function, and release of different cytokines (62). The range of

cytokines from activated B-cells includes TNF, IL-6, and GM-

CSF, which increase T-cell activation and contribute to the

differentiation and proliferation of B-cells (39). EBV is a B-cell

tropic virus, and a large pool of antigen-presenting B-cells is

generated during virus-mediated activation (62). Some of these

cells might persist for a long period, resulting in the emergence of

exhausted or cross-reactive T-cells. Several in vivo studies reported

the efficient stimulation of CD4+ T-cells by pathogenic B-cells, and

they also supported their expansion during primary immune

response (70, 72). Furthermore, EBV-transformed B-cells have

been reported to efficiently activate and expand brain-homing

CD4+ T-cells, particularly Th1 cells (62). These cells migrate into

the CNS and cause local inflammation and tissue damage. In vitro

study provided evidence that natalizumab, an MS treatment drug,

blocks the migration of activated lymphocytes into the CNS (73).

Interestingly, it was observed that the expansion of RAS guanyl-

releasing protein 2 (RASGRP2), an autoantigen expressed in the

brain and B-cells, impairs T-cells (62), suggesting that the crosstalk

between pathogenic B and T-cells, can result in cross-reactive T-

cells (Figure 1).

Although B-cells have been considered a cellular source of

antibodies, it is clear that they can also regulate cellular and humoral

immunity by producing cytokines that orchestrate the nature of the

immune response. Like T-cells, B-cells can be polarized and make

different cytokines, particularly IL-10, that have been implicated in

controlling the immune response and are involved in CNS

autoimmunity (74). Interestingly, B-regulatory cells (B-reg) are the

primary producers of IL-10 and can maintain peripheral tolerance and

suppress the development of autoimmune disease (74). This is further

supported by in vivo studies in the EAE model (75). It was suggested

that B-cells play an important role in controllingMS as B-cells depleted

mice failed to recover after initial damage to the CNS (75). Several

studies characterized the peripheral B-cells from MS patients and

observed altered cytokine profile (76). Pathogenic B-cells in the

blood released more pro-inflammatory cytokines, IL-6, GM-CSF,

and decreased ability to produce IL-10 (76), suggesting an altered

cellular functions inMS. Taken together, these findings indicate that B-

cells are central players in MS pathogenesis because of their

malfunctioning and hijacking by EBV. Moreover, the crosstalk

between pathogenic B and T-cells could result in disease severity.

Despite 90% of the population being positive for EBV, only a

very small proportion develop MS, indicating that factors beyond

EBV are involved in the disease onset in genetically predisposed

individuals. Another significant environmental risk is the low Vit D

level, which is linked to an increased risk of MS. Conversely,

maintaining a normal Vit D level, particularly in the early

decades of life, can protect against the disease’s onset (77, 78).

The ability of Vit D to modulate the immune system seems crucial

in understanding how its deficiency may lead to incorrect

programming of immune cells. Some malfunctioning cells then

migrate into the CNS and target the MBP. Here, we describe the

potential involvement of Vit D in MS pathogenesis by highlighting

several potential mechanisms that could lead to EBV spread

and autoimmunity.
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3 Role of Vit D in MS

Vit D is increasingly considered as an important immune

modulator (79). It functions as a steroid hormone, plays a crucial

role in calcium and phosphate metabolism, immune homeostasis,

and influences brain function during development and adulthood

(77). Consequently, hypovitaminosis D has been associated with

various diseases, including rheumatoid arthritis, type I diabetes, and

autoimmune diseases (77, 80). There is an accumulating body of

data that supports the association of circulating Vit D levels and MS

with disease activity and progression. Different studies

demonstrated a decrease of around 41% in MS risk with

increased serum Vit D level (81). Several studies used Mendelian

Randomization (MR) to measure the risk of MS associated with Vit

D level (82–85). One study did anMR control trial on Vit D levels in

MS in a large European population and reported that one standard

deviation decrease in Vit D level in genetically predisposed

individuals resulted in a 2-fold increased risk of developing MS

(82). Additionally, one of the largest recent genome-wide

association studies (GWAS) on serum Vit D level and MS

included 401,406 participants, 24,091 controls, and 14,498 MS

patients of European ancestry. The findings indicated an inverse

correlation between MS and Vit D (86).
3.1 Vit D metabolism

Vit D is mainly synthesized in the skin, with less than <5% coming

from dietary intake. Upon exposure to ultraviolet B (UVB) radiation

(sunlight), precursor Vit D (7-dehydrocholcholesterol) is transformed

into Vit D3 (cholecalciferol) and then converted to biologically active

form (calcitriol) in a two-step hydroxylation process (Figure 2).

Firstly, it is converted to 25-hydroxyvitamin D (25(OH)D) by 25

hydroxylases (CYP27A1, CYP3A4, CYP2R1), mainly expressed in the

liver. Later, 1-a-hydroxylase (CYP27B1), which is predominantly

expressed in kidneys, converts 25(OH)D into biologically active

form 1,25-dihydroxyvitamin D (1a,25(OH)2D) (calcitriol) (87, 88).
Calcitriol forms the (1a,25(OH)2D)- Vit D receptor (VDR) complex

and modulates the expression of around 500 genes (89, 90). Most of

these genes are associated with Vit D metabolism and immunological

processes (91), highlighting the involvement of Vit D in inflammatory

diseases (Figure 2).
3.2 Genetic clues for Vit D involvement in
MS susceptibility

Vit D receptor elements (VDREs) are regulated by Vit D and

are present in the promotor region of more than 80% of MS-

associated genes (94). Therefore, suboptimal Vit D level can result

in the altered expression of MS susceptible genes, leading to MS

predisposition (95). Vit D-binding protein (VDBP) plays an

essential role in the regulation of Vit D availability to the target

cells (96). The presence of VDBP in the CSF of MS patients further

confirms the access of Vit D metabolites into the CNS and is

proposed to play an important role in reducing the disease severity
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(97). However, the association between VDBP and MS is

controversial, and their relationship still needs to be defined (95).

Moreover, VDR and CYP27B1 were also observed in the healthy

controls’ grey matter neurons and astrocytes, suggesting that these

cells might be involved in Vit D regulation (98). Similarly, in an in

vivo EAE experimental model, the increased expression of VDR and

CYP27B1 in the CNS resulted in reduced inflammation and

protection against severe EAE development (99), demonstrating

the protective role of Vit D in autoimmunity. Interestingly, GWAS

studies have found single nucleotide polymorphism (SNPs) in the

CYP27B1 gene with a positive correlation to MS (96, 100). Likewise,

a pilot study conducted in MS patients demonstrated an association

between SNP in the CYP24A1 and CYP27A1 genes, Vit D levels,

and risk of MS. A higher frequency of SNP in CYP24A1 gene and

low Vit D levels were observed particularly in MS patients as

compared to control (101). These findings further confirm a role

for Vit D and its metabolites in MS susceptibility. However, the

details of the mechanism remain unclear.
3.3 Role of Vit D in innate immunity in MS

The role of Vit D in the pathogenesis of MS could be more

clearly understood by breaking it down into three distinct steps:

(i) activation of autoreactive B and T-cells, (ii) disruption of BBB by

autoreactive cells and infiltration into the CNS, (iii) effector

function of infiltrated cells and progressive neurodegeneration
Frontiers in Immunology 06
(102). Vit D regulates the epigenetic programming of immune

cells, promotes immunological tolerance in T-cells, and reduces the

inflammatory response, all of which contribute to MS pathogenesis

(77). Therefore, the appropriate level of Vit D should prevent the

activation of autoreactive lymphocytes (77).

Vit D receptor is expressed intracellularly by various immune

cells such as dendritic cells (DC), resting monocytes, macrophages,

and natural killer (NK) cells (103, 104). Calcitriol influences the

activity of these cells by downregulating the expression of MHC-II

and promoting their tolerogenic activity (105, 106). It also inhibits

the differentiation of monocytes into DC, hence downregulating IL-

12 production. Additionally, Vit D regulates the expression of

intracellular toll-like receptors (TLR) and reduces IL-6 production

by downregulating the TLR9 expression (106–109). IL-6 and IL-12

are pro-inflammatory cytokines that help the body to control EBV

infection (106). However, their role in MS pathogenesis is more

complex and detrimental. Therefore, reducing IL-6 and IL-12

production could help to decrease MS pathogenesis related to

EBV and molecular mimicry (Figure 2).
3.4 Effect of Vit D on B-cells in MS

It is known that Vit D modulates the adaptive immune system

as it influences B and T-cell function (102). B and T lymphocytes

express only little VDR in the resting stage and is upregulated upon

activation. Additionally, CYP27B1 and CYP24A1 are also expressed
FIGURE 2

Vit D metabolism and its immunomodulatory action. Vit D can be either synthesized in the skin under the effect of UVB radiation or absorbed
through dietary intake. Cholecalciferol is stored in the adipose tissues and hydroxylated in the liver into 25(OH)D by the CYP2R1 enzyme. 25(OH)D is
then converted into 1,25(OH)2D by CYP27B1 in the kidney. Activated Vit D then circulates ubiquitously and binds to its transporter (VDBP). Calcitriol
binds to cytoplasmic VDR, which makes the complex with RXR and is transported to the nucleus. Vit D/VDR/RXR complex binds to the VDRE on the
DNA and regulates the expression of different genes (92). Vit D exerts a direct effect through binding with VDR on DC and T-cells and intervenes
with their antigen-presenting function by decreasing MHC-II presentation on their surface. Vit D reduces the Th1 and Th17 differentiation and
proliferation and shifts them toward tolerogenic immune response (93).
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by B-cells, CD4+, and CD8+ T-cells, suggesting local activation and

regulation of Vit D by immune cells (110). Several studies have

reported that Vit D influences the proliferation and differentiation

of B-cells, decreasing the autoantibody production through B-cell

apoptosis (93). In vitro exposure of activated naive B-cells (CD27-,

CD19+, IgG-) with calcitriol results in the inhibition of B-cell

differentiation into post-switch memory B-cells (CD19+, IgG+)

and plasma cells (CD38+, CD27+), leading to diminished

antibody production (111). These findings demonstrate that Vit

D may play a role in maintaining B-cell homeostasis; therefore,

optimal Vit D level could be beneficial in diminishing MS

pathology. Some recent studies have demonstrated a significant

decrease in anti-EBNA-1 IgG titer in MS patients supplemented

with calcitriol, with no effect on other viruses or EBV

antigens (112).

It has been reported that in vitroVit D promotes the production

of IL-10-producing B-cells/B-reg and inhibits the co-stimulation of

T-cells (113). Unfortunately, these studies are not supported by in

vivo studies, possibly due to in vivo interaction of Vit D and its

metabolites interfering with Vit D pathway and/or the interaction

between EBV and B-cell in MS (113). In some clinical studies, no

significant correlation was observed between Vit D and B-cell

differentiation and antibody production (114, 115). Likewise, no

correlation was found between serum Vit D level and B-reg in a

cohort of RRMS patients and healthy controls (116). However, this

does not diminish the effect of Vit D on the B-cell subset, including

B-reg. It is possible that Vit D may affect the function of these cells

through different mechanisms. Additional research is needed to

understand their correlation, which might have clinical

implications, including ongoing Vit D trials as an add-on

MS therapy.
3.5 Effect of Vit D on T-cells in MS

As part of adaptive immunity, Vit D directly affects T

lymphocytes by inhibiting their proliferation at the G1a to G1b
cell cycle phase (117). It also targets Th cells to regulate the balance

between Th1, Th2, and Th17 cells (118) (Figure 3). This

immunomodulatory activity of Vit D acts against the pathogen

through several mechanisms, including the downregulation of pro-

inflammatory cytokines that differentiate T-cells in Th1 and Th17

subsets (119). Vit D also promotes the differentiation of Th2 cells,

producing anti-inflammatory cytokines (IL-3, IL-4, IL-5, IL-10)

(119), which contribute beneficially to MS pathogenesis. However,

the role of Vit D in controlling EBV has not been investigated yet.

The immune response to EBV involves antigen presentation,

activation and expansion of T-cells, which are modulated by Vit

D3 in both in vivo and in vitro (120). The adaptive effect of Vit D

also includes influence on regulatory T-cells (T-reg). This is further

evident in a clinical study that suggested a positive association

between serum Vit D level and T-reg in MS patients (121). This

further supports the hypothesis that Vit D is an important factor in
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regulating the balance between Th cells in MS. Moreover, low Vit D

level is associated with a low level of CD4+/CD8+ T-cells, which

directly kill the virus-infected cells such as EBV-infected B-cells

(122). B-cells are the prime target of EBV, and the virus persists in

host memory B-cells to maintain different latencies. Thus,

insufficient Vit D level may impair the ability to control EBV

infection, hindering CD8+ T-cell production (123). Overall, an

adequate level of Vit D plays a significant role in regulating the

immune system by maintaining the balance between pro-

inflammatory and anti-inflammatory cells, which is essential for

controlling both EBV and MS (Figure 3).
3.6 Vit D and BBB integrity

Peripheral immune regulation by Vit D protects against CNS

inflammation by regulating the activation of microglia and

astrocytes in the brain parenchyma and maintaining BBB integrity

(92). Within the BBB, endothelial cells are joined together through

tight junctions. These cells are surrounded by pericytes and

astrocytes, responsible for controlling the cellular exchange

between blood and CNS (124). Pericytes are mural cells involved

in sustaining BBB integrity and remyelination of the CNS lesions in

MS. A recent study reported a direct relation between the loss of

pericytes and the rate of infiltrating immune cells into the CNS in the

EAE mouse model of MS (125). It was demonstrated that pericytes

directly interact with T-cells and may act as non-professional

antigen-presenting cells. This affects the activation and

proliferation of T-cells and suggests that pericytes shape the

functions of T-cells during their transmigration into the CNS after

antigen-specific interaction (125) (Figure 3). Furthermore, different

studies conducted in MS patients illustrate the presence of disrupted

BBB, damaged pericytes, and increased rate of infiltrating immune

cells into the CNS (126, 127). Further analysis revealed that Vit D is

involved in maintaining the integrity of BBB in different ways, by

reducing the rate of apoptosis of endothelial cells and inhibiting the

loss of tight junctions to increase the survival rate of these cells in MS

(128, 129). Furthermore, substantial evidence has been presented

that demonstrates the effective role of Vit D in maintaining BBB

integrity by using animal models (78, 129, 130). Taken together,

studies have indicated that Vit D plays a crucial role in maintaining

immune cell trafficking into the CNS and is also responsible for

maintaining BBB integrity. However, the exact molecular

mechanisms involved remain to be elucidated.
3.7 Outstanding questions

There are several outstanding questions pertaining to the

interaction of EBV, Vit D and the immune system that need to be

addressed. Studies have demonstrated that Vit D supplementation in

MS patients can improve disease symptomology (131, 132). The

Endocrine Society recommends that for general health, adults aged
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19-50 years can take Vit D dose of 1500-2000 IU/day (87). However,

it is unclear what dose is most effective in MS patients. A recent in

vivo study using the EAEmodel of MS reported that high Vit D levels

can exacerbate the disease (133). Moreover, despite extensive

research on the immunomodulatory role of Vit D, its interaction

with EBV is still not well known. In vivo studies aimed at addressing

the effect of Vit D on EBV, the immune response against the virus,

and its associated neuroinflammation could shed light on the

interactions of these risk factors in MS pathogenesis. Furthermore,

it is unclear if Vit D and EBV are the initiators or drivers of disease
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pathogenesis. The recent establishment of a rabbit model of EBV

infection may help to address some of these central questions (27).
4 Conclusion

There is substantial evidence that EBV, low Vit D, and aberrant

immune response are key players in the pathogenesis of MS. The

details of how these three risk factors interact to trigger and drive

MS remains unknown. We propose a model (Figure 3) in which
FIGURE 3

Proposed mechanism of how EBV, Vit D, and Aberrant immune response interact in the pathogenesis of MS. Sufficient levels of Vit D modulate the
immune system in several ways, such as maintaining the balance between Th subsets and sustaining BBB integrity. However, hypovitaminosis D is
likely to be associated with an imbalance between anti-inflammatory and pro-inflammatory immune cells in MS, which could also benefit the EBV
spread and the production of autoreactive lymphocytes (119). Furthermore, the exact mechanism for the involvement of Vit D in maintaining CNS
homeostasis is unknown. Still, the data suggests a direct relationship between low Vit D and an increased rate of infiltrating cells into the CNS
through loss of pericytes and disrupted BBB (129). Infiltration of malfunctioning immune cells into the CNS results in cross-reaction with the self-
antigens in the CNS either directly or by secreting autoantibodies (anti-EBNA-1 antibodies) or pro-inflammatory cytokines (47, 65), leading to
MS pathology.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1503808
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rasheed and Khan 10.3389/fimmu.2024.1503808
persistent EBV infection results in malfunctioning B and T-cells

that cross the BBB and enter the CNS. These cross-reactive

infiltrating cells target self-antigens such as MBP, anoctamin 2,

GlialCAM, and ab-crystallin, resulting in MS pathogenesis. Low Vit

D levels perturb the immune homeostasis, favoring the spread of

EBV-infected cells and thereby further exacerbating the aberrant

immune response. Delineating the interactions between these three

risk factors and their consequences to the pathogenesis of MS, will

help to shed light on strategies for potential interventions to prevent

or at least reduce the burden of MS.
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