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Abstract: Vitamin D is very important for bone metabolism as well as for the prevention
of various diseases, such as type 2 diabetes, cardiovascular disease and different types
of cancer. Although vitamin D deficiency is widespread and an important public health
problem, there exists controversy in the scientific community, with no established standard
definition of adequate and deficient vitamin D status. To add new information on this topic,
the aim of this brief opinion paper is to identify and discuss the optimal 25(OH)D con-
centration (range) for a reduction in the risk of various disease outcomes by summarizing
dose–response reporting meta-analyses.
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1. Introduction
The best method to determine the vitamin D status and, in particular, a vitamin D de-

ficiency, is the measurement of serum 25-hydroxyvitamin D (25(OH)D), which reflects both
the dietary vitamin D intake and sunlight exposure [1]. Serum 25(OH)D levels are regarded
as optimal when the blood level is sufficient to maximally suppress serum parathyroid
hormone (PTH). However, former studies showed a huge variation in maximal PTH sup-
pression at levels between 20/25 and 110/125 nmol/L of serum 25(OH)D (summarized
in [2,3]), and they found that PTH levels might begin to plateau at >65 nmol/L [4]. More
recent studies have shown an inverse correlation between PTH and 25(OH)D levels for the
whole range of 25(OH)D concentrations, without reaching a plateau [5,6].

There has been a controversy about what exact 25(OH)D concentrations define vitamin
D deficiency and sufficiency. The Institute of Medicine (IOM, U.S. National Academy of
Sciences) considers the minimal 25(OH)D concentration of 20 ng/mL (50 nmol/L) as
physiologically adequate for at least 97.5% of the population [7]. The Endocrine Society,
in 2011, recommended serum levels of >30 ng/mL (>75 nmol/L) as optimal [8], although
in their revised 2024 statement they did not provide reference values for optimal serum
25(OH)D concentrations and stated that “in healthy adults, 25(OH)D levels that provide
outcome-specific benefits have not been established in clinical trials” [9].

Vitamin D is primarily linked to calcium and phosphorus metabolism and bone health.
However, especially in the last two decades, observational studies have also shown an
inverse association between the vitamin D status and the risk of various diseases such as
cancer, diabetes or cardiovascular and certain autoimmune diseases [1,10].

In a narrative review, it was suggested that for different health outcomes, like the bone
mineral density, lower extremity function and fall or fracture prevention, a serum 25(OH)D
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level around 75 nmol/L should be the target [11], although possible optimal levels for other
outcomes like cancer prevention appear to be higher, in the range of 75–110 nmol/L [11].

Also, others have suggested optimal serum 25(OH)D levels for a reduction in the
incidence of breast and colorectal cancer to be higher than 100 nmol/L [12].

In another review, the optimal 25(OH)D concentration for various outcomes, like
all-cause mortality, cancer, type 2 diabetes or cardiovascular disease, were summarized as
lying between 25 ng/mL (62.5 nmol/L) and 60 ng/mL (150 nmol/L) [10].

At a 2-day Vitamin D Summit Meeting of 25 experts held on 7–8 November 2009 in
Paris, it was concluded that the 25(OH)D level in specific groups of patients with or at risk
of problems of the musculoskeletal system, cardiovascular diseases, autoimmune diseases
and cancer should be above 30 ng/mL (75 nmol/L) for optimal health benefits [13].

Furthermore, to achieve the pleiotropic, non-skeletal effects of vitamin D, a recommen-
dation of 30–50 ng/mL (75–125 nmol/L) was provided in a multi-expert publication from
2018 [14].

Finally, in a workshop report and review from the Netherlands, age-dependent values were
proposed with 50–75 nmol/L possibly being the optimal range for an age range of 5–64 years
and 75–100 nmol/L for those older than 65 years to ensure an optimal anti-fracture effect [15].

All in all, in general, the majority of disease-specific recommendations to date have set a
lower limit of 75 nmol/L and an upper one of about 125 nmol/L for optimal 25(OH)D levels.

To add new information on the topic of optimal 25(OH)D levels, the aim of this
brief summary is to identify and discuss the 25(OH)D concentration (range) for optimal
risk reduction for various disease outcomes by, probably for the first time, summarizing
and evaluating data from meta-analyses providing dose–response curves to identify the
concentration-dependent lowest risk levels.

2. Methods
A search was conducted on 5 February 2024 in PubMed with the following search

terms: “dose response” AND (“vitamin d status” OR “25OHD” OR “25 hydroxyvitamin D”
OR “calcitriol”) AND (“meta-analysis” OR “systematic review”).

Meta-analyses were only included if they provided a dose–response curve with val-
ues of the relative risk (RR), an odds ratio (OR) or a hazard ratio (HR) as a function of
the 25(OH)D levels for different disease outcomes. (Approximate) data of the lowest
RR/OR/HR were taken from the publications, and, if not presented, estimated through
visual inspection from the dose–response curves. In unclear cases, computerized curve anal-
ysis (Engauge Digitizer Software, https://sourceforge.net/projects/digitizer/, accessed
on 6 April 2025) was used to confirm the visual estimation. In the case of linear or almost
linear associations, the endpoint of the curve/line was taken as the lowest risk value.

3. Results
The search yielded 113 papers, from which 51 were extracted after checking the titles

and abstracts. From these, five were excluded since one was a narrative review, two did not
provide dose–response curves related to the 25(OH)D status and the remaining two did
not provide dose–response curves at all. In addition to the PubMed search, one study was
additionally found through an individual search. So, a total of 47 papers with 65 analyzed
outcomes were included in this summary (Figure 1, Table 1).

https://sourceforge.net/projects/digitizer/
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Figure 1. Flow diagram of the search strategy and study selection. Source: [16]. This work is licensed
under CC BY 4.0. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/,
accessed on 6 April 2025.

Table 1. 25-hydroxyvitamin D levels in dose–response meta-analyses of different outcomes.

Reference Outcome(s)
Included Studies for

Dose–Response
Analysis

Lowest Risk (RR/HR/OR) in nmol/L *
Shape of

Association—Nonlinearity
(Significance)

Gorham ED et al.
2007 [17] Colorectal cancer 5 studies 34 ng/mL (85 nmol/L, 50% reduction in

incidence, from paper)
Inverse dose–response gradient in

quintiles

Grant WB
2010 [12]

Breast cancer 6 studies Approx. 78 nmol/L (50% reduction in
incidence rate, from paper)

Nonlinear regression line

Colorectal cancer 10 studies Approx. 60 nmol/L (50% reduction in
incidence rate, from paper)

Chung M et al.
2011 [18]

Colorectal cancer 9 studies Lowest risk not clearly extractable;
especially for colorectal cancer, most studies
found inverse relationship with prediagnosis

blood 25- (OH)D concentration

Presentation of individual study
curvesProstate cancer 8 studies

Breast cancer 4 studies

Bischoff-Ferrari
HA et al. 2012 [19]

Hip fracture 4383 study participants ≥61 nmol/L (from paper) Threshold assessment for risk of
fracture according to quartile of

baseline 25(OH)D levelNon-vertebral fracture ≥61 nmol/L (from paper)

Wang L et al.
2012 [20] Cardiovascular disease 16 studies Approx. 60 nmol/L (from paper)

Linear relation (p = 0.06); higher
risk below 50–60 nmol/L; high

values not clearly associated with
higher risk

Song Y et al.
2013 [21]

Type 2 diabetes mellitus 18 studies
Significantly lower risk at approximately

50 nmol/L (from paper) Linear relation across range of
25(OH)D concentration from 20 up

to 160 nmol/L was significant
(p < 0.0001)

Around 100 nmol/L (after exclusion of 3
studies; evidence for relation of 25(OH)D
concentration of >100 nmol/L with type 2

diabetes was weak)

Bauer SR et al.
2013 [22]

Breast cancer in
postmenopausal women Total of 9 studies 35 ng/mL (87.5 nmol/L, from paper) Nonlinear association (p = 0.05)

Schöttker B et al.
2013 [23] Overall mortality 12 studies Approx. 50–60 nmol/L in most of the

studies (rather linear, weak association)
25(OH)D concentration categories

in single studies

https://creativecommons.org/licenses/by/4.0/
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Table 1. Cont.

Reference Outcome(s)
Included Studies for

Dose–Response
Analysis

Lowest Risk (RR/HR/OR) in nmol/L *
Shape of

Association—Nonlinearity
(Significance)

Ju SY et al.
2014 [24] Metabolic syndrome 16 cross-sectional

studies

120 nmol/L (from paper; possibly lower risk
at higher levels according to regression

model)

Weighted linear regression model
was fitted (p for linear

trend < 0.001)

Maalmi H et al.
2014 [25]

Overall mortality, breast
cancer 5 studies Approx. 50–100 nmol/L (estimate)

25(OH)D concentration categories
in single studiesOverall mortality, colorectal

cancer 5 studies Approx. 50–100 nmol/L (estimate)
Few data points, somewhat high deviation

Schöttker B et al.
2014 [26]

All-cause mortality 8 studies 70 nmol/L
Curvilinear association within

quintiles of 25(OH)D concentrationCardiovascular mortality
(with or without history of

CVD)
8 studies 70 nmol/L

Garland CF et al.
2014 [27] All-cause mortality 32 studies

30–39 ng/mL (75–97.5 nmol/L), with 36
ng/mL (90 nmol/L) n.s. at higher levels

(from paper)
Stratified in 10 ng/mL intervals

Chen GC et al.
2015 [28] Lung cancer 10 studies (?) Approximately 53 nmol/L (from paper) U-shaped, nonlinear relationship

(Pnonlinearity = 0.02)

Mohr SB et al.
2015 [29] Colorectal cancer mortality 4 studies Approx. 30–40 ng/mL (75–100 nmol/L) Results of individual studies

Zhao Y et al.
2016 [30] Bladder cancer 7 studies 75 nmol/L (last quintile) Inverse linear in quintiles

Ekmekcioglu C
et al. 2017 [31]

Type 2 diabetes 119 risk estimates About 65 ng/mL (162.5 nmol/L, from paper) Roughly U-shaped association

Colorectal cancer 111 risk estimates About 55 ng/mL (137.5 nmol/L, from paper) U-shaped association

Feng Q et al.
2017 [32] Lung cancer 9 studies Around 43 nmol/L (estimate) Roughly U-shaped

Zhang R et al.
2017 [33]

Total cardiovascular events 32 publications Approx. 25 ng/mL (62.5 nmol/L, from
paper) Nonlinear association (p < 0.001)

CVD mortality 17 publications 40 ng/mL (100 nmol/L, end of curve,
estimate) Nonlinear association (p < 0.022)

LV QB et al.
2017 [34] Hip fracture 4 studies Approx. 60 nmol/L (from paper) p = 0.110 for nonlinearity

Jayedi A et al.
2017 [35]

All-cause mortality in patients
with chronic kidney disease 6–7 studies Approx. 25–30 ng/mL (62.5–75 nmol/L,

from paper)

Nonlinear dose–response
meta-analysis, significant

curvilinear association
(Pnonlinearity = 0.002 and 0.004 after

exclusion of one study)

Garland CF,
Gorham ED

2017 [36]
Risk of colorectal cancer 15 studies Suggested to be 35 ng/mL (87.5 nmol/L,

from paper)
Linear downward trend, medians
of ORs for each 10 ng/mL interval

Maalmi H et al.
2018 [37]

Overall survival in colorectal
cancer patients 4 studies Around 40–50 nmol/L (rough estimate) 25(OH)D concentration categories

in single studies

Cancer-specific survival 3 studies Around 40–50 nmol/L (rough estimate) 25(OH)D concentration categories
in single studies

Wei H et al.
2018 [38] Lung cancer 9 studies Around 60 nmol/L (estimate) Nonlinear model, nonlinearity

tests (p = 0.14)

Hu K et al.
2018 [39]

Overall survival in breast
cancer patients 6 studies Linear decrease (unreliable data in the

highest range)

No significant nonlinearity in
relationship between overall

survival and circulating 25(OH)D
levels (Pnonlinearity = 0.13)

Ju SY et al.
2018 [40] Frailty syndrome 4 cohort studies, 6

cross-sectional studies 94 nmol/L (lowest RR, from paper) Linear model

Chen H et al.
2018 [41]

Dementia 9 studies Approx. 65 nmol/L (end of linear trend,
estimate) Inverse linear trend (p < 0.001),

nonlinearity n.s.
Alzheimer’s disease 4 studies Approx. 65 nmol/L (end of linear trend)

Han J et al.
2019 [42]

Total cancer incidence
Not indicated for

dose–response
analyses

Around 30–50 nmol/L (estimation from
curve)

Dose–response linear trend
(variance-weighted least squares
regression of fixed effect model)

Total cancer mortality
Not indicated for

dose–response
analyses

Around 75 nmol/L (estimation from curve)
Dose–response linear trend

(variance-weighted least squares
regression of fixed effect model)

Zhang L et al.
2019 [43] Colorectal cancer 4 studies Around 37 ng/mL (92.5 nmol/L, end of

curve, estimation)
Linear and spline model, nonlinear

trend (Pnonlinearity = 0.11)

Yang J et al.
2019 [44]

Mortality of cardiovascular
disease

Approx. 90 nmol/L (end of curve, almost
linear, estimate)

Nonlinear dose relationship,
p < 0.001
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Table 1. Cont.

Reference Outcome(s)
Included Studies for

Dose–Response
Analysis

Lowest Risk (RR/HR/OR) in nmol/L *
Shape of

Association—Nonlinearity
(Significance)

Li H et al.
2019 [45] Depression 6 studies Approx. 65 ng/mL (162.5 nmol/L, end of

line, estimate)
Restricted cubic splines, linear
association (Pnonlinearity = 0.96)

Jayedi A et al.
2019 [46]

Dementia 6 studies 25 ng/mL (62.5 nmol/L, from paper) Pnonlinearity = 0.05, U-shaped

5 studies Approx. 30 ng/mL (75 nmol/L, after
exclusion of one study, from paper) Pnonlinearity = 0.22

Alzheimer’s disease 4 studies 35 ng/mL (87.5 nmol/L, from paper) Pnonlinearity = 0.08

Shi H et al.
2020 [47] Stroke 8 cohort studies 50 nmol/L (from paper) Nonlinear association (p = 0.04)

Mahamat-Saleh Y
et al. 2020 [48]

Melanoma 3 cohort studies Around 30 nmol/L (estimate) Nonlinearity n.s.
(Pnonlinearity = 0.08)

Keratinocyte cancer 3 cohort studies Less or more than 60 nmol/L (from paper)

Nonlinear association
(Pnonlinearity = 0.01); inverse

U-shaped, highest risk around
60 nmol/L (from paper)

Wu G et al.
2020 [49]

All-cause mortality Total of 17 studies
(dose–response not

indicated)

Approx. 40 nmol/L (estimate) L-shaped

Colorectal cancer mortality Approx. 80 nmol/L (estimate) Nearly inverse linear

Tan Q et al.
2020 [50] Risk of maternal depression 10 studies 90–110 nmol/L (from paper) Pnonlinearity = 0.001

Zhang D et al.
2020 [51] Hypertension 10 studies Decreasing risk from 75 nmol/L up to

lowest risk at 130 nmol/L (from paper)
Restricted cubic splines, L-shaped,

Pnonlinearity = 0.04

Hou Y et al.
2021 [52] Type 1 diabetes mellitus 10 studies 103–113 nmol/L (from paper) U-shaped association, inverse

nonlinear association (p < 0.001)

Jani R et al.
2021 [53]

Fatal CVD events 28 studies Approx. 30 ng/mL (75 nmol/L) (estimate) Nonlinear association
(Pnonlinearity < 0.001)

Non-fatal CVD events 10 studies Approx. 65 ng/mL (162.5 nmol/L) (rough
estimate, end of line) Linear association

Combined CVD incidence
events 31 studies Approx. 30 ng/mL (75 nmol/L) (estimate) Combined CVD events

(Pnonlinearity = 0.001)

Hajhashemy Z
et al. 2021 [54] Abdominal obesity 8 studies Approx. 85 nmol/L (estimate) U-shaped, Pnonlinearity = 0.86

Mohammadi S
et al. 2022 [55]

Type 2 diabetes mellitus 19 studies Approx. 15 ng/mL (37.5 nmol/L, estimate) U-shaped (Pnonlinearity = 0.68)

Type 2 diabetes mellitus +
prediabetes 4 studies Approx. 35 ng/mL (87.5 nmol/L, nearly

linear, end of curve, estimate) Pnonlinearity < 0.001

Lee K, Kim J
2021 [56] Metabolic syndrome 23 studies 150 nmol/L (from paper)

Weighted linear dose–response
regression model

(Pnonlinearity = 0.10)

Mokhtari E et al.
2022 [57] Hypertension 10 studies Around 75 nmol/L (estimate)

Nonlinear association (P
nonlinearity < 0.001), roughly

U-shaped association

Bahadorpour S
et al. 2022 [58] Hypertriglyceridemia 20 studies

Shape of sinusoidal curve; approx. 55
ng/mL (137.5 nmol/L, end of curve,

estimate; first nadir at approx. 15 ng/mL)
Pnonlinearity < 0.001

Guo LL et al.
2022 [59]

Colorectal cancer precursor
incidence 7 studies Approx. 40 ng/mL (100 nmol/L, almost

linear, end of line, estimate)

Significant negative dose–response
relationship with circulating

25(OH)D (Pnonlinearity = 0.39) level

Jayedi A et al.
2023 [60]

All-cause mortality in patients
with diabetes or prediabetes

11 cohort studies (10
publications) Around 60 nmol/L (from paper) J-shaped (Pnonlinearity < 0.001,

Pdose–response < 0.001)

Cardiovascular mortality in
patients with diabetes or

prediabetes
6 cohort studies Around 60 nmol/L (from paper) U-shaped (Pnonlinearity < 0.001,

Pdose–response < 0.001)

Rouhani P et al.
2023 [61] Preeclampsia

13 publications
(nonlinear

dose–response
analysis)

30 ng/mL (75 nmol/L, from paper) U-shaped (Pnonlinearity < 0.001)

Vergatti A et al.
2023 [62] Recurrent stroke 3 prospective studies 28.1 ng/mL (70.25 nmol/L, from paper) Nonlinear association

(Pnonlinearity < 0.0001)

* Conversion factor from ng/mL to nmol/L = 2.5; “from paper” relates to data mentioned in publications;
“estimate” is approximate value from visual inspection.

In addition to the all-cause and disease-specific mortality, various other outcomes
including, in particular, different types of cancer and also metabolic or cardiovascular
diseases like diabetes or stroke, were addressed in the reviewed papers (Table 1).
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The lowest risk for most of the different outcomes was found at 25(OH)D levels
between approximately 40–50 nmol/L and 100 nmol/L (Table 1), with about half of the
analyzed outcomes showing the lowest risk at ≤75 nmol/L. Only a few had a lowest risk
estimation higher than 100 nmol/L.

Grouping individual studies into different outcome groups (with ≥3 studies) showed
that for most of the combined outcomes, the mean 25(OH)D values were between ap-
proximately 60 and 80 nmol/L (Figure 2) with the exception of metabolic diseases, which
included diabetes, metabolic syndrome, obesity and dyslipidemia, showing a combined
mean value of 111 nmol/L.
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Figure 2. Lowest risk (RR/HR/OR) of 25-hydroxyvitamin D concentration (in nmol/L) in dose–
response meta-analyses for different outcome groups. Data are taken from Table 1 and the mean
values of the lowest risk concentrations from the respective studies are presented.

Our survey further showed that the dose–response curve for 25(OH)D and various
outcomes only showed a clear optimal concentration, in the sense that 25(OH)D levels above
the optimum may increase the risks, for about 40% of the included meta-analyses. Several
outcomes were shown to be associated in a linear manner, while other risk endpoints were
negatively related to 25(OH)D blood levels and showed a flattening of the curve at higher
levels, indicating an asymptotic trend.

4. Discussion
Vitamin D deficiency is common in different populations worldwide [63]. 25(OH)D is

the most abundant vitamin D metabolite in the circulation and, due to a long half-life of
2–3 weeks, is considered the best indicator of the vitamin D status [1]. Sufficient, repeated
evidence is available that the serum 25(OH)D levels are associated with mortality and
different clinical outcomes involving major organ systems [64]. However, the optimal
target concentration for 25(OH)D still differs between various organizations. Although
there is a consensus that very low levels of less than 25–30 nmol/L indicate a clinically
relevant (severe) deficiency, primarily because of an increased risk for rickets/osteomalacia,
the establishment of higher thresholds is still under discussion, with some organizations
like the IOM setting 50 nmol/L as adequate for most of the population [7], while others
recommend higher optimal levels, also dependent on different periods of life and clinical
conditions (reviewed in [65]). For example, in a recent publication by a large group
of experts, adequate to optimal 25(OH)D levels (for Poland) were indicated as being
75–125 nmol/L [66]. By setting a realistic upper level of 125 nmol/L for adequate 25(OH)D
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levels, this expert group also considered the important risk of vitamin D intoxication
beyond concentrations of 250 nmol/L [66].

By inspecting a large number of dose–response curves from meta-analyses, we found
that in nearly half of the studies, the lowest risks were found to be associated with levels
lower than 75 nmol/L, and when looking at different outcome groups, there seemed to be
a trend for higher optimal 25(OH)D concentrations in metabolic diseases. For example, in a
systematic review of three vitamin D supplementation trials, which investigated the risk
of new-onset diabetes in adults with prediabetes, it was found that in participants with
25(OH)D levels of 100 to 124 nmol/L and 125 nmol/L or higher during follow-up, the
hazard ratios for diabetes were 0.38 (CI: 0.27 to 0.55) and 0.24 (CI: 0.16 to 0.36), respectively,
compared with participants who maintained levels of 50 to 74 nmol/L [67].

Through multiple mechanisms, like inducing genes related to glucose transport or
affecting intracellular calcium levels in β-cells, vitamin D is involved in the function and
secretion of insulin [68]. Higher vitamin D levels therefore might be advantageous in
decreasing the diabetes risk in a dose-dependent manner.

In contrast to metabolic diseases, the concentrations associated with the mean lowest
risks were lower for mortality (all-cause and disease-specific), cancer and cardiovascular
diseases. Regarding cardiovascular diseases, a previous study, for example, showed a
U-shaped association, with the lowest risk for acute coronary syndrome and all mortality
lying between 50 and 90 nmol/L 25(OH)D and lower and higher levels being associated
with an increased risk [69]. An increased risk for major cardiac and cerebrovascular events
at 25(OH)D levels > 100 nmol/L compared to those of 75–100 nmol/L was also calculated
in cardiac surgical patients [70]. Also, regarding lung cancer, for example, a U-shaped
association with the lowest risk values at a 25(OH)D concentration between approximately
50 until 90 nmol/L was found [28].

The relevance of potential different protective optimal 25(OH)D levels for various
outcome groups might be, for example, in certain cases, like in the case of a high risk
for diabetes or metabolic syndrome, where the supplemented dose of vitamin D can be
increased to reach the desired levels in the direction of 100 nmol/L 25(OH)D. However,
this approach could also be a double-edged sword with beneficial effects for one outcome
and suboptimal effects for another. More studies and specific knowledge are necessary to
handle this in an evidence-based and cautious manner.

A major limitation of this brief opinion review is that, due to the objective of this opin-
ion paper, only meta-analyses providing dose–response curves were included. Therefore,
other important vitamin D-related clinical outcomes, for which, in our search, no dose–
response meta-analyses were found could not be assessed. One of these was infections, and
especially COVID-19, with several meta-analyses suggesting that a low vitamin D status is
associated with an increased infection risk or severe outcomes (reviewed in [71]).

In conclusion, to define a universal level that could be considered optimal for minimiz-
ing overall risks, considering the linear and nonlinear outcome relationships of multiple
endpoints, is rather a challenge, and it is not possible to determine a common optimal
concentration that minimizes the risk for all of these outcomes. All in all, the optimal
vitamin D status seems to be tissue-dependent and might also vary by age and race, which
would make it difficult to set generally applicable optimal values.

Nevertheless, there seems to be little evidence that 25(OH)D concentrations higher
than 100 nmol/L provide further risk reduction, which could be due to the limited number
of participants with very high 25(OH)D levels in the studies.

Well-designed and -monitored intervention trials of treatment for various clinical
outcomes and 25(OH)D targets might reveal more information about the optimal protective
vitamin D status.
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