

An End to Breast Cancer by 2020? Sharif B. Mohr, PhD, MPH; Edward D. Gorham, PhD, MPH Cedric F. Garland, DrPH, MPH;

University of California San Diego Department of Family and Preventive Medicine, La Jolla, California June 12, 2013 Commonwealth Club 595 Market Street San Francisco, California 6/12/2013 v5 Research by Drs. Frank Garland, Cedric Garland, Edward Gorham and their colleagues encouraged research by other scientists, including Dr. Bill Grant

Thanks to Dr. Frank Garland, Epidemiologist, 1950-2010, to whom this lecture is dedicated.

Thanks to:

William B. Grant, Ph.D. SUNARC and the Commonwealth Club

> Carole Baggerly, Grassroots Health

A Quick End to Breast Cancer? The problem: How breast cancer arises Scientists are asked to help – 1974

The solution: <u>Scientists find the cause – 1990</u> A simple means of preventing the disease exists, yet virtually no one has acted on the science Needless cases and deaths continue, largely unabated Rescue action would be easy

US science focused on point for humanity was stimulated by Sputnik, in the past century, 1957

DINOMIT - Evolutionary theory of breast cancer (Darwin-Garland-Gorham)

- D-coupling Loss of tight junctions due to low vitamin D
- Initiation Genetic variation, mainly from infidelity of reproduction of DNA not mainly carcinogens
- Natural selection Competition for growth and aggression
- Overgrowth Palpable mass and invasion
- Metastasis Remote colonization
- Involution and transition to scar

And a JFK speech . . .

"We choose to go to the moon. We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one which we intend to win " Rice University, 1962

Angelina Jolie's Decision

Breast cancer

- Problem Solution
- Action

The problem

Cancer arises in terminal units

How it begins

Ductal carcinoma in situ Source: Radiographics 2010;30:1673-87

Breast cancer is the most common cause of cancer death in women

- Most common invasive cancer in women in the US, with an estimated 230,500 cases and 39,500 deaths per year ⁽³²⁾
- -- Approximately 450,000 deaths per year in world
- -- Breast cancer incidence and mortality rates are higher in areas with low levels of solar ultraviolet B irradiance ^(4,5)

Scientists are asked to help

Breast Cancer Mortality Rates, USA

Sun

DINOMIT - Evolutionary theory of breast cancer (Darwin Garland-Gorham)

- D-coupling Loss of tight junctions due to low vitamin D
- Initiation Genetic variation, mainly from infidelity of reproduction of DNA and mainly not carcinogens
- Natural selection Competition for growth and aggression
- Overgrowth Palpable mass and invasion
- Metastasis Remote colonization
- Involution and Transition to scar

Postmenopausal breast cancer incidence rates

New breast cancer cases among women 50 and older, per 100,000, United

21

Incidence rates of breast cancer, 1975-present

22

Breast cancer incidence rate trends by age

Breast cancer incidence rates, all ages

Low vitamin D causes ducts to fill

Low vitamin D causes overgrowth and invasion

Cloudiness (% overcast)

Sources: Karl T, Steurer P. Geophysical Research Letter 1990;17:1925-28, NASA /ISCCP(Rossow W, Schiffer R. Bulletin Am Meteorol Soc 1999;80:2261-87.

SIT nerecitar

Heredity plays a role, mostly in cancer families

• S mammography the answer?

Do mammograms help?

Benefits of mammography in UK Source: Siemens.com

Types of Epidemiological Studies That Have Been Done for Breast Cancer

_Ecological studies (countries)

Case-control studies (individual patients and matched controls)

__Nested case-control studies (of individuals from a cohort of people with stored samples of serum)

_Cohort studies (long-term)

_Meta-analysis

_Randomized controlled clinical trial

Solution

 The first recognition of the importance of vitamin D in the promotion of human health was made indirectly by Hippocrates in ancient Greece, who wrote that living on the south face of a hill, the side that receives the most sunlight, was the healthiest place one could live.

Is lower solar irradiance is associated with lower rates of breast cancer?

Source: Mohr S, Gorham E, Alcaraz J, et al. Ultraviolet B irradiance, modeled serum 25hydroxyvitamin D, and breast cancer mortality: an ecological analysis. Manuscript in preparation, 2012.

Breast cancer by latitudes

Breast Cancer Age-Standardized Incidence Rate Per 100,000

Solar ultraviolet B irradiance and other covariates in association with agestandardized breast cancer mortality rates, 107 countries

Covariate	Regression coefficient	Standard error	t	ρ
Solar UVB irradiance, Watts/m ²	-0.46	0.22	-2.10	0.04
Per capita alcohol consumption (no. of drinks per person per year)	0.01	0.01	1.56	0.12
Proportion of female population overweight (BMI > 25)	0.02	0.03	0.86	0.39
Per capita cigarette consumption (no. of cigarettes per person per year)	0.001	0.001	1.43	0.15

Solar ultraviolet B irradiance and other covariates in association with agestandardized breast cancer mortality rates, 107 countries, 2002, continued

	Regression	Standard			
Covariate	coefficient	error	t	p	
Total fertility rate per 1000 women	1.53	0.45	3.37	0.001	
Per capita health expenditure, dollars/yr	0.001	0.001	1.43	0.16	
Intercept	10.0	3.19	3.10	0.002	

 $R^2 = 0.34, p < 0.0001$

• Limitations cont.

No data on type of clothing worn

The Next Step

ANTICANCER RESEARCH 31: 2939-2948 (2011)

Serum 25-Hydroxyvitamin D and Prevention of Breast Cancer: Pooled Analysis

SHARIF B. MOHR¹, EDWARD D. GORHAM^{1,2}, JOHN E. ALCARAZ³, CHRISTOPHER J. KANE⁴, CAROLINE A. MACERA^{2,3}, J. KELLOGG PARSONS⁴, DEBORAH L. WINGARD¹ and CEDRIC F. GARLAND^{1,2}

¹Division of Epidemiology, Department of Family and Preventive Medicine, and ⁴Department of Surgery, School of Medicine, University of California San Diego, La Jolla CA, U.S.A.; ²Naval Health Research Center, San Diego, CA, U.S.A.; ³Department of Epidemiology and Biostatistics, Graduate School of Public Health, San Diego State University, San Diego CA, U.S.A.

Pooled analysis of studies of serum 25(OH)D level and risk of breast cancer Source: Mohr et al. *Anticancer Research* 2011

Odds ratio

Serum 25(OH)D level and risk of breast cancer, case serum drawn ≤ 90 days before diagnosis, 123 pairs

Randomized controlled trial performed (RCT) by Lappe et al, 2007, results shown below. An earlier trial of lower dose of vitamin D was inconclusive.

- Vitamin D metabolites may the greatest effect in preventing the last doubling before likely clinical detection of the tumor
 - Possibly due to inhibition of blood vessel recruitment (neoangiogenesis)^(44,45)
 - The most commonly observed doubling time is 3 months, although it can occur in as little as 1.2 months ^(46,47)

Biological Plausibility

- Laboratory studies have demonstrated anticarcinogenic properties of Vitamin D metabolites, especially 1,25(OH)₂D
 - Inhibit angiogenesis (44)
 - Induce apoptosis ⁽⁴⁵⁾
 - Inhibit cell proliferation (45)
 - Promote differentiation (49-51)
 - -Up-regulate e-cadherin
 - -Up-regulate tight junctions

Tight junctions binding cells

In the meantime, supplementation of vitamin D₃ in high risk populations should be started

_4000 IU/day is safe at ages 9 years and older according to National Academy of Sciences, and would boost population 25(OH)D levels to 40 – 60 ng/ml, well below the lowest adverse effect level of 150 ng/ml ⁽⁵⁷⁻⁵⁹⁾

Cancer and Vitamin D

Vitamin D Dosage and Toxicity Studies

Source: Vieth R. Vitamin D and cancer mini-symposium: the risk of additional vitamin D. Ann Epidemiol. 2009 19(7):441-5.

 Vitamin D supplementation would be a cheap, effective, and safe intervention

 Raising population serum 25(OH)D concentrations through supplementation has the potential to save hundreds of thousands of lives around the globe

Hazard of death, 512 women with breast cancer, by 25(OH)D level at diagnosis, median follow-up 11.6 years, Toronto, Canada

Hazard ratio and 95% confidence intervals for overall survival by 25(OH)D serum level at diagnosis, Toronto, Canada (latitude 43^o 40 N') ⁵³ *8 ANTICANCER RESEARCH 31: 2939-2948 (2011)

Serum 25-Hydroxyvitamin D and Prevention of Breast Cancer: Pooled Analysis

SHARIF B. MOHR¹, EDWARD D. GORHAM^{1,2}, JOHN E. ALCARAZ³, CHRISTOPHER J. KANE⁴, CAROLINE A. MACERA^{2,3}, J. KELLOGG PARSONS⁴, DEBORAH L. WINGARD¹ and CEDRIC F. GARLAND^{1,2}

¹Division of Epidemiology, Department of Family and Preventive Medicine, and ⁴Department of Surgery, School of Medicine, University of California San Diego, La Jolla CA, U.S.A.; ²Naval Health Research Center, San Diego, CA, U.S.A.; ³Department of Epidemiology and Biostatistics, Graduate School of Public Health, San Diego State University, San Diego CA, U.S.A.

Author(s) (ref)	f) Year		Year	Year	Year	Study design	Country	Matching criteria	Number of cases/controls	Quantile cut-points	Relative risk	95% Confidence interval	
						ng/ml		Lower	Upper				
Engel et al. (22)	2010	NCC	France	Age, menopausal status,	636/1272	<19.8	1.00	-	-				
226				age at menopause, center		19.8-27	0.87	0.68	1.1				
				and year of blood draw		>27	0.80	0.62	1.0				
Almquist et al. (29)	2010	NCC	Sweden	Age, date of blood	764/764	18.1†	1.00	-	-				
3				collection,		24.8	0.84	0.6	1.2				
				menopausal status		29.5	0.84	0.6	1.2				
						37.4	0.93	0.7	1.3				
Abbas et al. (16)	2009	CC	Germany	Age, study region	289/595	<12	1.00	-	-				
						12-18	0.68	0.4	1.1				
						18-24	0.59	0.4	0.9				
						>24	0.45	0.3	0.7				
Crew et al. (21)	2009	CC	USA	Age	1026/1075	<20	1.00	-	-				
				5		20-29	0.80	0.6	1.0				
						30-39	0.83	0.6	1.1				
						>40	0.56	0.4	0.8				
Reinmark et al. (28)	2009	NCC	Denmark	Age, menopausal	142/420	<24	1.00						
,	2202253		10001000000000000000000000000000000000	status, season of		24-33.6	0.94	0.6	1.5				
				blood draw		>33.7	0.52	0.3	0.9				

Table I. Case-control and nested case-control studies of serum 25-hydroxyvitamin D metabolites and risk of cancer of the breast, ICD-CM Code 174, according to PubMed search, 1966-2010.

Author(s) (ref)	f) Year		Year	Year	Year	Study design	Country	Matching criteria	Number of cases/controls	Quantile cut-points	Relative risk	95% Confidence interval	
						ng/ml		Lower	Upper				
Engel et al. (22)	2010	NCC	France	Age, menopausal status,	636/1272	<19.8	1.00	-	-				
226				age at menopause, center		19.8-27	0.87	0.68	1.1				
				and year of blood draw		>27	0.80	0.62	1.0				
Almquist et al. (29)	2010	NCC	Sweden	Age, date of blood	764/764	18.1†	1.00	-	-				
3				collection,		24.8	0.84	0.6	1.2				
				menopausal status		29.5	0.84	0.6	1.2				
						37.4	0.93	0.7	1.3				
Abbas et al. (16)	2009	CC	Germany	Age, study region	289/595	<12	1.00	-	-				
						12-18	0.68	0.4	1.1				
						18-24	0.59	0.4	0.9				
						>24	0.45	0.3	0.7				
Crew et al. (21)	2009	CC	USA	Age	1026/1075	<20	1.00	-	-				
				5		20-29	0.80	0.6	1.0				
						30-39	0.83	0.6	1.1				
						>40	0.56	0.4	0.8				
Reinmark et al. (28)	2009	NCC	Denmark	Age, menopausal	142/420	<24	1.00						
,	2202253		10001000000000000000000000000000000000	status, season of		24-33.6	0.94	0.6	1.5				
				blood draw		>33.7	0.52	0.3	0.9				

Table I. Case-control and nested case-control studies of serum 25-hydroxyvitamin D metabolites and risk of cancer of the breast, ICD-CM Code 174, according to PubMed search, 1966-2010.

McCullough et al. (27)	2009	NCC	USA	Age, race, date of	516/516	<14.7	1.00	-	-
2				blood draw		14.7-19.1	1.29	0.9	1.9
						19.9-24.3	1.14	0.8	1.7
						24.3-29.2	1.44	1.0	2.2
						>29.2	1.09	0.7	1.7
Abbas et al. (17)	2008	CC	Germany	Age, study region	1394/1365	<12	1.00	23	
						12-18	0.57	0.5	0.7
						18-24	0.49	0.4	0.6
						24-30	0.43	0.3	0.6
						>30	0.31	0.2	0.4
Chlebowski et al. (19)	2008	NCC	USA	Age, latitude of clinic,	895/898	9.44†	1.00	-	-
				race, date of blood		15.4	0.96	0.7	1.3
				draw		19.7	1.08	0.8	1.4
						24.4	0.93	0.7	1.4
						32.8	1	0.6	1.3
Freedman et al. (23)	2008	NCC	USA	Age, year of entry	1005/1005	<18.3	1.00	-	-
				2.75		18.3-23.4	1.02	0.75	1.4
						23.5-28.2	1.36	0.99	1.9
						28.3-33.6	1.13	0.82	1.6
						>33.7	1.04	0.75	1.5
Bertone-	2005	NCC	USA	Age, date of blood	701/701	<22†	1.00	_	_
Johnson et al. (18)				draw, time of blood		25.8	0.95	0.7	1.4
				draw, PMH use,		31.7	0.74	0.5	1.1
				menopausal status,		37.6	0.77	0.5	1.1
				fasting status		41.7	0.73	0.5	1.1
Lowe et al. (26)	2005	CC	UK	Age, date of blood	179/179	<20	1.00	-	-
				draw, menopausal		20-40	0.34	0.2	0.6
				status		40-60	0.31	0.2	0.6
						>60	0.20	0.1	0.5

CC, Case-control; NCC, nested case-control; [†]median values, cut-off points were not provided.

McCullough et al. (27)	2009	NCC	USA	Age, race, date of	516/516	<14.7	1.00	-	-
2				blood draw		14.7-19.1	1.29	0.9	1.9
						19.9-24.3	1.14	0.8	1.7
						24.3-29.2	1.44	1.0	2.2
						>29.2	1.09	0.7	1.7
Abbas et al. (17)	2008	CC	Germany	Age, study region	1394/1365	<12	1.00	23	
			-			12-18	0.57	0.5	0.7
						18-24	0.49	0.4	0.6
						24-30	0.43	0.3	0.6
						>30	0.31	0.2	0.4
Chlebowski et al. (19)	2008	NCC	USA	Age, latitude of clinic,	895/898	9.44†	1.00	-	-
				race, date of blood		15.4	0.96	0.7	1.3
				draw		19.7	1.08	0.8	1.4
						24.4	0.93	0.7	1.4
						32.8	1	0.6	1.3
Freedman et al. (23)	2008	NCC	USA	Age, year of entry	1005/1005	<18.3	1.00	-	-
				2.7% X.741 C.0. 117 C. 1175		18.3-23.4	1.02	0.75	1.4
						23.5-28.2	1.36	0.99	1.9
						28.3-33.6	1.13	0.82	1.6
						>33.7	1.04	0.75	1.5
Bertone-	2005	NCC	USA	Age, date of blood	701/701	<22†	1.00	_	_
Johnson et al. (18)				draw, time of blood		25.8	0.95	0.7	1.4
				draw, PMH use,		31.7	0.74	0.5	1.1
				menopausal status,		37.6	0.77	0.5	1.1
				fasting status		41.7	0.73	0.5	1.1
Lowe et al. (26)	2005	CC	UK	Age, date of blood	179/179	<20	1.00	-	-
				draw, menopausal		20-40	0.34	0.2	0.6
				status		40-60	0.31	0.2	0.6
						>60	0.20	0.1	0.5

CC, Case-control; NCC, nested case-control; [†]median values, cut-off points were not provided.

Figure 3. Pooled odds ratios of breast cancer risk according to serum 25-hydroxyvitamin D, 1966-2010, comparing highest vs lowest quintile, studies based on populations residing at >37 degrees N latitude

25(OH)D and all cause mortality

Age-adjusted hazard ratio for lowest (reference group) vs. highest quantile of serum 25(OH)D with 95% confidence interval

25(OH)D and risk of asthma

First Author,	25(OH)D	Cases/controls	Relative risk/Hazard ratio	Type of	
year	range ng/ml	or cases/total	(95% confidence interval)	study	Disease outcome
Ng	16.5	34/76	1.00 (referent)	Cohort	Colorectal cancer
2008	40	24/76	0.52 (0.29 - 0.94)		mortality
Ng	23.3	29/204	1.00 (referent)	Cohort	Colorectal cancer
2009	31	19/203	0.50 (0.26 - 0.95)		mortality
		101/212			
Fedirko	11.4	104/242	1.00 (referent)	Cohort	Colorectal cancer
2012	39.7	82/240	0.69 (0.52 - 0.92)		mortality
Ren	< 20	114	1.00 (referent)	Cohort	Gastric cancer
2012	≥ 20	83	0.59 (0.37 - 0.91)		survival

Serum 25(OH)D and risk of death in colorectal cancer patients

Hazard of death, 512 women with breast cancer, by 25(OH)D level at diagnosis, median follow-up 11.6 years, Toronto, Canada

Hazard ratio and 95% confidence intervals for overall survival by 25(OH)D serum level at diagnosis, Toronto, Canada (latitude 43^o 40 N')

Latitude and pancreatic cancer

25(OH)D and risk of pancreatic cancer

Hazard of death, 512 women with breast cancer, by 25(OH)D level at diagnosis, median follow-up 11.6 years, Toronto, Canada

Hazard ratio and 95% confidence intervals for overall survival by 25(OH)D serum level at diagnosis, Toronto, Canada (latitude 43^o 40 N')

25(OH)D and risk of mortality from colorectal cancer

Breast cancer in TDU

5 B

н,

Action

An End to Breast Cancer by 2020

- Breast Cancer Coalition has asked Pres. Bill Clinton to lead a program to defeat breast cancer by 2020
- An end by 2020 does not require a cure
- Actions we're taking against now and reasons they work badly, or not at all: Mammography, weak estrogen agonists, breast self-exam, physician breast exam, MRI, metformin
- New plans of action

Ineffective approaches

- Mammography Useless below age 50 and probably above age 70; misses 85% of fatal cases; in some countries it does nothing; it does not prevent breast cancer in any setting
- Weak estrogen agonists Produce early menopause and cause blood clots and pulmonary embolisms
- BSE, physician breast exam Too little too late
- MRI, beter than mammo but not good enough
- Metformin, suspected of causing Alzheimer's 72
An End to Breast Cancer by 2020

- About 900 relevant studies have been done, and > 80% are positive
- A few null studies are expected but clinically are meaningless
- Once an association is found in a human population study, it is almost always real (Mount Everest effect)
- Further studies, while desirable, are not necessary

Plans of action

Project Mary Lasker – Save **Cancer Patient Lives -- Measure** 25(OH)D in every breast cancer patient and start on vitamin D3. Most will need immediate repletion, with 50,000 IU/day, then 2000-8000 IU/day after repletion, with 25(OH)D monitoring and a check on serum calcium.

Plans of action

Project Da Vinci – Primary Prevention -- Measure 25(OH)D in every female and restore to normal (40-80 ng/ml)

Plans of action

Project Ramazzini - Develop a nationwide real time database for each breast cancer patient in the USA that includes serum 25(OH)D at diagnosis and active follow-up for survival and recurrences with 24/7 hour phone and live chat internet access