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Abstract  

We study the effect of outdoor air pollution on the productivity of indoor workers at a pear-packing 
factory. We focus on fine particulate matter (PM2.5), a harmful pollutant that easily penetrates indoor 
settings. We find that an increase in PM2.5 outdoors leads to a statistically and economically signifi-
cant decrease in packing speeds inside the factory, with effects arising at levels well below current air 
quality standards. In contrast, we find little effect of PM2.5 on hours worked or the decision to work, 
and little effect of pollutants that do not travel indoors, such as ozone. This effect of outdoor pollu-
tion on the productivity of indoor workers suggests a thus far overlooked consequence of pollution. 
Back-of-the-envelope calculations suggest that nationwide reductions in PM2.5 from 1999 to 2008 
generated $19.5 billion in labor cost savings, which is roughly one-third of the total welfare benefits 
associated with this change. 
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1. INTRODUCTION 

Firms commit sizable resources to a wide range of activities aimed at increasing worker productivity, 

with U.S. workplace training alone accounting for $62 billion in 2012 (O’Leonard, 2013). According-

ly, researchers have examined the effect of various activities designed to increase employee effort 

and output, ranging from ergonomics and workspace design to payment contracts and telecommut-

ing (Lazear, 2000; Bloom et al., 2013; Bandiera et al., 2005; Pilcher et al., 2002; Levitt and List, 2011). 

One area that has received surprisingly little attention by both firms and researchers is pollution 

within the workplace. Yet, there is ample reason to believe that modest levels of pollution may im-

pair performance through changes in respiratory, cardiovascular, and cognitive function. Moreover, 

since pollution is largely generated well outside the boundaries of the individual firm, the degree to 

which firms can internalize pollution-related costs is limited. This underscores the importance of 

public policy in shaping outcomes in this area. 

In this paper, we present the first evidence on the impacts of outdoor pollution on the mar-

ginal productivity of indoor workers. This focus is important for two reasons. First, the majority of 

output among the richest nations is produced in indoor settings, with manufacturing alone account-

ing for roughly 10–25 percent of GDP.1 Previous evidence on the effect of pollution on the marginal 

product of labor has been limited to the agricultural sector (Graff Zivin and Neidell, 2012), which 

accounts for a small fraction of national income and thus provides limited guidance for policy mak-

ing in the developed world where the institutional capacity for regulating the environment is strong-

est.2 

                                                 
1 Estimates are from http://data.worldbank.org/. 
2 There is also a small literature that examines productivity indirectly through a focus on the extensive margin of labor 
supply. See Ostro, 1983; Hausman et al., 1984; Graff Zivin and Neidell, 2014; Carson et al., 2010; Hanna and Oliva, 
2011. 
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Second, the pollutant we examine, fine particulate matter (PM2.5), has unique properties that 

make it an especially important pollutant to study. The miniscule size of PM2.5 – approximately one-

thirtieth the width of a human hair – makes it particularly pernicious. It is inhaled deep into the 

lungs, where it accumulates and impairs respiratory function, and can also enter the bloodstream, 

where it causes cardiovascular complications. Exposure to high levels of PM2.5 causes severe health 

events, such as heart attacks and hospitalizations for asthma, but the degree to which modest expo-

sure to PM2.5 affects more subtle but still economically relevant outcomes, like productivity, is un-

known. Minimizing such effects is greatly complicated by the fact that PM2.5 can easily penetrate 

buildings (Thatcher and Layton, 1995; Ozkaynak et al., 1996; and Vette et al., 2001). This implies 

that, unlike many other pollutants, the most common form of ex-post avoidance behavior – going 

inside – will be of limited value.  

We perform our analysis using a unique panel dataset on the daily productivity of employees 

in a pear-packing facility in Northern California. The task of packing pears is a tedious one. Each 

individual piece of fruit is wrapped in paper and then packed tightly to ensure that the required 

quantity of pears fits the box. Importantly, workers are paid based on their daily productivity, there-

by minimizing moral hazard problems associated with imperfectly observed worker effort (Lazear, 

2000; Shi, 2010; Bandiera et al. 2005).  

Our empirical strategy exploits high-frequency fluctuations in ambient PM2.5 concentrations 

as measured by a federally administered PM2.5 monitor located near the factory. Those fluctuations 

are plausibly exogenous since they do not result from the activity of the factory itself, but rather em-

anate from sources in the hundreds of miles that surround the factory. In addition, there was a mas-

sive wildfire several hundred miles away that led to elevated PM2.5 levels during one of the packing 

seasons in our data. The fire, along with time-varying transportation and economic patterns in the 

larger cities within the region, generate considerable variation in pollution levels at our study site.  
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Our analysis reveals a statistically significant, negative impact of PM2.5 on the productivity of 

indoor workers. The negative effect occurs at pollution levels well below current National Ambient 

Air Quality Standards (NAAQS). An increase in PM2.5 pollution of 10 micrograms per cubic meter 

(µg/m3) reduces the productivity of workers by $0.41 per hour, approximately 6 percent of average 

hourly earnings. These effects first arise when PM2.5 exceeds 15 µg/m3 and increase thereafter, sug-

gesting a potential threshold effect. These findings are robust to numerous specification checks. Im-

portantly, we find that labor supply does not respond to PM2.5, suggesting our estimates are not con-

taminated by sample selection bias. Furthermore, we also find that outdoor conditions that do not 

affect the indoor work environment, such as solar radiation and ozone, do not impact worker 

productivity.  

We gauge the potential economy-wide importance of these productivity effects by applying 

our estimates to all manufacturing workers throughout the U.S., the bulk of whom perform tasks 

with similar physical demands as those faced by workers in our study. We find that reductions in 

PM2.5 between 1999 and 2008 generated $19.5 billion in labor cost savings. This value represents ap-

proximately one-third of the total estimated welfare benefits associated with these air quality im-

provements as captured by capitalization into housing prices. If these productivity impacts are not 

capitalized into housing prices, as may well be the case given the novelty of these findings and the 

localized nature of environmental quality capitalization (Bento et al., 2012, Currie et al., 2013), our 

results suggest that traditional methods for welfare assessment may substantially understate the ben-

efits from improvements in environmental quality.  

The paper proceeds as follows. The subsequent section describes background information 

on PM2.5, including potential mechanisms for a productivity effect. Section 3 describes the data that 

we use, and Section 4 describes our empirical strategy. Section 5 presents our core results along with 
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a series of robustness checks. Section 6 explores the implications of our empirical results for the US 

economy. Section 7 concludes. 

2. BACKGROUND ON PARTICULATE MATTER  

Particulate matter (PM) consists of solid and liquid particles in the air that can range considerably in 

size. The regulation of PM has evolved over time. Total Suspended Particulates (TSPs), which were 

first regulated in 1971, consists of particles less than 100 micrometers in size. In recognition of the 

growing evidence that only particles less than 10 micrometers penetrate into the lungs, regulations 

switched from TSPs to PM10 in 1987.3 Further research demonstrated that the smallest of these par-

ticles, those less than 2.5 micrometers, penetrate deep into the lungs and enter the bloodstream. As a 

result, the Environmental Protection Agency (EPA) began regulating PM2.5, in addition to PM10, in 

1997.4  

 The sources of PM2.5 consist of a wide range of both natural and anthropogenic sources. 

Natural sources include volcanoes and wildfires, while anthropogenic sources are largely the result of 

fossil fuel combustion, particularly when gases from power plants, industries, and automobiles inter-

act to form PM2.5. Given its diminutive size, PM2.5 can remain suspended in the air for extended pe-

riods of time and can travel hundreds of miles. 

Particularly important for our study, PM2.5 can easily enter buildings, with penetration rang-

ing from 70–100 percent (Thatcher and Layton, 1995; Ozkaynak et al., 1996; and Vette et al., 2001). 

This makes PM2.5 hard to avoid. Unlike other pollutants, which either remain outside or rapidly 

break down once indoors, going inside may do little to reduce one’s exposure to PM2.5. This is par-

                                                 
3 Particles above 10 micrometers are typically expelled by coughing or are trapped in cilia. 
4 Particulates between 2.5 and 10 micrometers are commonly referred to as “coarse particulates,” while those less than 
2.5 are referred to as “fine particulates.” The air quality standard for PM2.5 was strengthened in 2006. 
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ticularly the case in a poorly insulated, well-ventilated setting, such as the one we study. Indoor pol-

lution measures are thus readily affected by outdoor conditions.  

A large body of toxicological and epidemiological evidence suggests that exposure to PM2.5 

harms health (see EPA, 2004 for a comprehensive review). These risks arise primarily from changes 

in pulmonary and cardiovascular functioning (Seaton et al., 1995). They may manifest themselves in 

respiratory episodes, such as asthma attacks, and cardiovascular events, such as heart attacks, that 

lead to hospitalizations and mortality (Dockery and Pope, 1994; Pope, 2000). They also lead to more 

subtle effects, such as changes in blood pressure, irritation in the ear, nose, throat, and lungs, and 

mild headaches (Pope, 2000; Ghio et al., 2000; Auchincloss et al, 2008). These milder effects, which 

arise from exposure to lower levels of PM2.5, are generally unobserved by the econometrician – they 

typically do not lead to healthcare encounters – and in some cases may be largely unnoticed by the 

individual experiencing them. Symptoms can arise in as little as a few hours after exposure, particu-

larly for people with existing cardiovascular and respiratory conditions, but PM2.5 can also generate 

effects several days after a period of elevated exposure. Particles also accumulate in the lungs, so ef-

fects may be triggered after several days of elevated exposure.5  

These changes in health from PM2.5 exposure can lead to changes in labor market outcomes 

through two channels. First, sickness related to PM2.5 exposure may lead to absenteeism, either by 

missing work entirely or by reducing the number of hours worked. Any resulting changes in produc-

tivity would therefore be due to changes in labor supply. Second, workers may suffer from reduced 

on-the-job productivity (i.e., “presenteeism”) due to the negative health effects of PM2.5 exposure. 

According to worker self-reports, presenteeism decreases U.S. economic output by $27 billion each 

year (Davis et al. 2005). Moreover, since the health effects of PM2.5 exposure may be so mild as to 

not even register for the impacted individual, such self-reported measures of presenteeism may un-

                                                 
5 Less relevant for our analysis, this accumulation in the lungs may also lead to long-term health effects over several 
years, such as chronic bronchitis and lung cancer. 
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derestimate the true on-the-job productivity effects of pollution. Since pear packing, like much as-

sembly line work, is a repetitive task that involves standing on one’s feet nearly all day, these subtle 

changes can plausibly lead to fatigue and related symptoms, thereby lowering the marginal product 

of labor. The goal of our analysis is to estimate the effect of PM2.5 on the marginal product of labor, 

independent from any possible effects of PM2.5 on labor supply. 

3. DATA 

In order to measure the effect of PM2.5 on productivity, we require both precise measures of produc-

tivity and precise measures of PM2.5. This section describes how we construct a dataset with both of 

those variables. 

 In most settings, labor productivity, particularly at the individual level, is unobservable to 

researchers. By focusing on a firm where workers are paid on a piece rate basis, our setting offers a 

unique opportunity to measure worker productivity on a daily basis. We focus on a large pear-

packing factory in northern California. The firm, which has since closed, was the largest pear-

packing factory in the area. The firm contracted with pear growers throughout Northern California. 

Pears would start arriving at the factory early each morning, well before packers arrive. After being 

cleaned and passing through a manual quality assurance check, the pears are mechanically sorted by 

size into large, rotating bins. Packers would then individually wrap each pear in tissue paper and ar-

range the pears in boxes.6 The boxes would then be sent to retailers around the country. 

 Packers were expected to work every day that the factory was open and to arrive by 7 AM, at 

the start of the day shift. In general, packers would work until all pears brought in during the day 

                                                 
6 The pears need to be individually wrapped in tissue paper, and then arranged in boxes according to specific patterns. 
While labor intensive, it allowed the factory to ship the pears across the country without damaging the produce. 
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had been packed. If the workday lasted longer than 8 hours, then the packers would be paid an over-

time rate that was 50 percent higher than during regular time.7  

 The factory provided us with payroll records for the 2001, 2002, and 2003 packing seasons. 

The payroll records contain all information that the firm needed in order to calculate paychecks. In 

particular, packers were paid via a “piece-or-hourly” system. The packers earned a piece rate for 

each box they packed. If their piece rate earnings for the day implied an hourly wage below Califor-

nia’s minimum wage, then the packers were paid an hourly rate for the day. Importantly, productivi-

ty is recorded even for those paid minimum wage, thus providing a comprehensive measure of daily 

productivity for all workers regardless of where they end up on the wage schedule.8 The dataset in-

cludes measures of regular-time boxes packed, overtime boxes packed, regular-time hours, and over-

time hours worked for each packer each day. Those variables compose the bulk of our data. 

 One complication in measuring productivity is that the workers packed different kinds of 

packages over time, both within and across days. Most packages were standard, four-fifths bushel 

boxes, but occasionally workers would pack trays or plastic bags for some retailers. Packers were 

paid a different piece rate for each package, with payroll records indicating the type of boxes packed 

and each packer’s piece earnings for each type of box. Given the different types of packaging, we 

use each packer’s total piece rate earnings per hour as our standardized measure of productivity. Im-

portantly, the type of box being packed on a given day is uncorrelated with PM2.5, so this standardi-

zation is unlikely to introduce a bias.9 For those workers paid minimum wage, we use their implied 

piece rate wage based on their actual productivity.  

                                                 
7 Further details on how the factory operated are described by Chang and Gross (2014). Our description here is also 
based on interviews with the factory’s former CEO. 
8 Since workers may have an incentive to shirk when facing a fixed hourly wage, we directly test this assumption using 
the methodology outlined by Graff Zivin and Neidell (2012). As described below, we find no such evidence of shirking. 
9 We regressed the share of four-fifths boxes packed on a given day on all covariates (described below), and find that a 1 
unit increase in PM2.5 is associated with a 0.002 decrease in the share of four-fifths boxes, with a t-statistic of 0.52. Using 
a fractional logit model yielded identical results. 
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 Figure 1 plots the variation in productivity as measured by earnings.10 The first panel plots 

the productivity across workers by taking the mean earnings per hour for each worker. The second 

plots the productivity across days by taking the mean earnings of all workers on a given day. Imme-

diately evident is that the variation across workers is as large as the variation across days, suggesting 

a potentially important role for day-to-day factors, such as pollution, in determining productivity. 

 This analysis also requires measures of the environmental shocks faced by the packers. The 

pear-packing factory was located 2.7 miles from a weather and pollution station. This monitor is 

maintained by the California Air Resources Board, and is used for determining compliance with 

both state and national air quality standards. Based on the station’s records, we compiled data on the 

area’s rain fall, temperature, wind speed, dew point, and solar radiation. From the pollution station, 

we compiled data on 5 pollutants: fine particulate matter (less than 2.5 micrometers in diameter), 

coarse particulate matter (between 2.5 and 10 micrometers in diameter), ozone, carbon monoxide, 

and nitrogen dioxide.  

While nearly all environmental data were collected at the hourly level during the time period 

of our analysis, particulate matter was only measured every 6 days, thus producing a 6-day daily aver-

age measure.11 This measure has three implications for our analysis. First, the grouping of PM2.5 

measures can lead to a “Moulton effect” (Moulton, 1986), so we cluster standard errors on each 6-

day measure of PM2.5. Second, this 6-day measure means that our measure of worker exposure is 

based on time both at work and at home, and both indoors and outside. As previously mentioned, 

effects from PM2.5 may arise both immediately and over several days. Therefore, it is not possible for 

us to ascertain which source and what timing of exposure over the 6-day period can explain the 

                                                 
10 We drop from the sample workers who worked fewer than 14 days. We also drop worker-days with implausibly high 
earnings values, greater than 3 standard deviations above the mean. 
11 PM2.5 was commonly measured every 6 days after its initial regulation in 1997, but is now routinely measured on an 
hourly basis in light of growing evidence of more immediate effects. The 6-day measurement was accomplished by plac-
ing a filtered unit that only allowed PM2.5 to pass, with the accumulated amount after 6 days then measured and divided 
by 6 to give an average daily measure. The same process was used for PM10. 
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productivity effects we find. Third, while the factory is reasonably close to the monitor, there may be 

measurement error in our assignment of exposure to workers during non-work hours. If classical, 

this measurement error will bias our estimates down. Table 1 presents summary statistics for the da-

ta, both at the individual worker level and at the unit of PM2.5 measurement. 

4. EMPIRICAL STRATEGY 

Our goal is to estimate the effect of fine particulate matter on worker productivity. We estimate the 

following hybrid production function: 

 yit = β × (PM2.5)t + Xt 'γ + δt + εit. 

The outcome yit is the measure of hourly productivity denominated in hourly earnings for worker i 

on date t.12 The covariate PM2.5 is a daily average of particulate matter (based on the 6-day measure), 

and β captures the effect of PM2.5 on earnings. The vector Xt consists of daily wind speed, a quadrat-

ic function of temperature, dew point, rain, solar radiation, and ozone to account for other envi-

ronmental factors that may affect productivity. 13 The fixed effects, δ, include day-of-week and year-

month indicator variables to account for trends within the week and over time, respectively. Since 

the error term, ε, likely exhibits auto-correlation between observations based on the same worker or 

same 6-day PM2.5 measurement period, we allow for two-way clustering (Cameron et al., 2011) along 

those dimensions.  

We face two main obstacles in estimating β. First, our goal is to estimate the effect of pollu-

tion on the marginal product of labor, so we need to isolate changes in productivity that are not con-

taminated by changes in labor supply. If hours worked responds to changes in pollution, then any 

                                                 
12 As noted earlier, for those who fall under the minimum wage portion of the wage schedule, our productivity measure 
corresponds to the earnings implied by the worker’s actual packing rate. 
13 Below, we also include controls for other pollutants as a robustness check. 
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estimated effects of pollution on productivity could suffer from sample selection bias. In particular, 

we want to separate the direct effects of pollution from workers decision to work and their shift 

length. To limit this concern, we focus our analysis on the productivity of workers during the regu-

lar-time day shift. Overtime hours are more discretionary and can, in fact, depend directly on 

productivity during the regular-time shift.14 While it is still possible that labor supply during the regu-

lar shift could respond to pollution (Hanna and Oliva, 2011), the levels of pollution found in this 

region are remarkably low (with one important exception, described below). Therefore, it is unlikely 

that pollution led workers to reduce time at work. Importantly, since we follow workers over time 

and observe hours worked, we explicitly test these assumptions by examining whether PM2.5 relates 

to the probability of working and the number of hours worked.  

The second challenge involves endogeneity of pollution. In general, pollution levels are in-

fluenced by local business activity, so an increase in pollution could in fact result from higher levels 

of economic activity. Furthermore, individuals can sort into locations based on the amount of pollu-

tion in that area, leading to non-random assignment of pollution. These and other concerns are un-

likely to arise in our setting for several reasons. Since PM2.5 travels far and remains suspended in the 

air for extended periods of time, the levels of PM2.5 at the factory are largely driven by factors out-

side the firm, including traffic conditions and business activity in neighboring areas, such as Sacra-

mento and the Bay Area, both of which are more than 100 miles away.15 In addition, since the de-

mand for the pears comes from retailers around the country, and the supply of pears is from farms 

throughout the region, factory activity is not likely to be driven by local economic activity. Moreo-

                                                 
14 We nonetheless present evidence on overtime outcomes, noting this limitation. The factory also utilized a night shift, 
which was designed to absorb any unexpected productivity shocks experienced during the regular day shift. We unfortu-
nately do not possess data on the night shift.  
15 Although not specific to our setting, numerous studies document that the majority of air pollution levels are not 
caused by local sources. See, for example, Ault et al. (2009) and Brook et al. (2007).  
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ver, our focus on the high-frequency variation in pollution limits concerns regarding residential sort-

ing, which is largely based on average pollution levels.  

Figures 2 and 3 provide some empirical evidence regarding the exogeneity of PM2.5. Figure 2, 

which plots PM2.5 over time, shows that it varies considerably from one period to the next. Figure 3, 

which plots PM2.5 against temperature, shows that the variation in PM2.5 is not correlated with tem-

perature, a potentially important factor in productivity.16 In fact, PM2.5 is not correlated with any of 

the environmental covariates in our analysis. When we regress PM2.5 on all of the environmental co-

variates, the covariates are neither jointly nor individually statistically significant at even the 10 per-

cent level (not shown). While we cannot rule out the possibility of omitted variables bias, this prima 

facie evidence, supported by additional evidence below, suggests that this threat is minimized in our 

setting.  

Notably, a massive wildfire (the “Biscuit Fire”) several hundred miles away on the border be-

tween northern California and Oregon dramatically increased PM2.5 levels across the region during 

the study period. The fire started on July 12–15, 2002, as a result of a series of lightning storms, and 

was not fully contained until December 31, 2002. While pollution levels in our study area were large-

ly unaffected by the fire, there was a brief period when emissions from the fire traveled near the fac-

tory and increased pollution levels considerably. As a result, air quality at our study site exceeded 

national ambient air quality standards for a two-week period in August of 2002, as shown in Figure 

2.  

While the fire provides an exogenous source of variation in PM2.5, one concern is that it 

could have led to behavioral responses that affected worker productivity. If some workers altered 

the time they allocate to labor in response to higher pollution levels, estimated effects on the inten-

                                                 
16 We also interviewed the former CEO of the factory and asked how the factory handled environmental shocks. He told 
us that the factory would occasionally pause work during heat waves, but not for pollution-related incidents. In fact, he 
was entirely unaware of a potential relationship between pollution and worker productivity. 
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sive margin of productivity could be contaminated by changes in the composition of labor. Fortu-

nately, our analysis of labor supply responses, as described above, allows us to directly address this 

concern.17 We also note that during the two-week period when national air quality standards were 

violated, air quality alerts were issued to raise public awareness about potential health risks. Given 

the gravity of these alerts, worker anxiety and distractions could have contributed to productivity 

impacts on the intensive margin that are not purely the result of elevated pollution levels, so that the 

alerts themselves may have affected productivity. For that reason, we present estimates that both 

include and exclude the time period when fire-related alerts were issued. Furthermore, we model 

PM2.5 with a series of indicator variables to allow for a non-linear effect of PM2.5. This enables us to 

not only isolate PM2.5 levels during the alert period, but also to explore the dose-response relation-

ship at lower levels of PM2.5.  

5. EMPIRICAL RESULTS 

 

A. Labor Supply Responses 

We begin our analysis by assessing whether labor supply responds to PM2.5. Table 2 provides esti-

mates of our regression equation using an indicator variable for working or hours worked condition-

al on working as the dependent variable. We begin with our linear-in-PM2.5 model, both with and 

without those weeks in which there was at least one air quality alert as a result of the Biscuit Fire, 

and then estimate the nonlinear model both with and without the fire-related alert.  

Focusing on the probability worked, the first column demonstrates that each 1-unit increase 

in PM2.5 has no effect (0.00) on the likelihood of working. Excluding the two weeks with air quality 

alerts resulting from the Biscuit Fire (column 3) raises this estimate to 0.001 though it remains statis-

                                                 
17 Similarly, to the extent that the elevated PM2.5 levels induced sickness, we would detect this in our measures of days 
and hours worked. 
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tically insignificant. Columns 3 and 4 present the results for the nonlinear model and here again we 

find no significant impact of pollution on turning up at work.  

The last four columns in Table 2 focus on hours worked conditional on working, for the 

same model specifications as before. Column 5 shows that a 1-unit increase in PM2.5 leads to a statis-

tically insignificant decrease of 0.002 hours worked. Excluding alert weeks (column 6) flips the sign 

but, again, the effect is both small and statistically insignificant. When we allow PM2.5 to enter non-

linearly (columns 7 and 8), we continue to find no evidence that hours worked responds to PM2.5. 

This lack of impact on the extensive margin, even during alert periods associated with the Biscuit 

Fire, implies that our estimates of the impact of PM2.5 on labor productivity will not be biased by 

changes in labor force composition. 

 

B. Marginal Product of Labor 

As a first pass at establishing the relationship between productivity and PM2.5, Figure 4 plots PM2.5 

versus earnings. The figure uses data aggregated to the level of the firm and the 6-day PM2.5 meas-

urement period, which is our effective level of variation in PM2.5.
18 The figure plots unadjusted sam-

ple means for the 6-day periods, and includes a linear prediction. Even with no controls, the raw da-

ta suggest a negative relationship: as PM2.5 levels rise, workers produce less. 

 Estimates of our regression equation are shown in Table 3, which make up the core findings 

of our analysis. As with labor supply, we present results from four specifications, focusing on earn-

ings both in levels and in logs. Turning to levels, we find that PM2.5 has a statistically significant, neg-

ative effect on earnings per hour. Each additional unit of PM2.5 decreases hourly earnings by $0.041. 

When we exclude weeks with air quality alerts because of the fire, our estimate is no longer statisti-

cally significant at conventional levels, but it remains of comparable magnitude. Thus, while PM2.5 

                                                 
18 For ease of exposition, we exclude the Biscuit Fire from this plot.  
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levels during the alerts improve the precision of our estimates, they do not appear to be biasing 

them; additional estimates below support this claim. This, in turn, implies that any behavioral re-

sponses that might have resulted from the fire-related alerts did not affect worker productivity, 

strengthening our claim that the fire during this period provides a useful source of identifying varia-

tion in PM2.5 for our analysis. 

 The next two columns in Table 3 allow PM2.5 to have a non-linear effect on productivity. 

This also allows us to isolate the effect of air quality alerts stemming from the fire, which only oc-

curred when PM2.5 levels were greater than 25 µg/m3. We find that PM2.5 levels between 15–20 

µg/m3 decreases earnings by $0.53 per hour, though this effect is not statistically significant at con-

ventional levels. When PM2.5 reaches 20–25 µg/m3, the effect increases to $1.03 per hour and be-

comes statistically significant. Importantly, this level of PM2.5 is well below the current air quality 

standard of 35 µg/m3. The effect further increases to $1.88 per hour when PM2.5 exceeds 25 and re-

mains statistically significant. Excluding the two weeks with air quality alerts yields virtually identical 

results, suggesting again that our results are not driven solely by alert-induced effects. 

These results provide clear evidence of a dose-response relationship between PM2.5 and 

productivity, with a possible threshold at 15–20 µg/m3. To further illustrate this, Figure 5 plots the 

linear and nonlinear estimates. The nonlinear estimates suggest a possible threshold around 15 

µg/m3
 with a roughly linear effect beyond the threshold. While we cannot be certain of a threshold 

at this point – measurement error may bias the estimates towards zero – we note that this pattern is 

roughly consistent with evidence on the PM2.5-mortality relationship, which suggests a possible 

threshold effect at around 20 µg/m3
 (Smith et al., 2000).19  

The next set of columns present estimates using the logarithm of earnings as our measure of 

productivity. As with the estimates based on productivity in levels, we find a very similar pattern 

                                                 
19 It seems quite plausible that a lower threshold exists for productivity, since it is a significantly less harmful outcome. 
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across the four specifications. When we convert the estimates using levels into percent by dividing 

by the mean hourly earnings of $6.93 in our sample, the estimates suggest a roughly 0.6 percent ef-

fect from a 1 unit change in PM2.5. Using the logarithm of earnings, we obtain an estimate of 0.8 

percent. Compared to the nonlinear-in-PM2.5 model, the implied percent effect for the 3 highest 

PM2.5 bins are 0.08, 0.15, and 0.27, respectively, which is also quite close to the estimates from the 

log model of 0.08, 0.15, and 0.35. Hence our results do not appear to be driven by the functional 

form of the dependent variable. 

 The coefficients on the other covariates in Table 3 also reveal a pattern of results that rein-

force the plausibility of our econometric model.20 Environmental conditions vary in the degree to 

which they influence the indoor work environment, and thus productivity should vary accordingly. 

Ozone, which is a highly volatile pollutant, rapidly breaks down indoors as it interacts with other 

surfaces. Likewise, solar radiation, a measure of available sunlight, is also unlikely to affect indoor 

conditions given the presence of opaque roofing and walls at the factory. Consistent with this, we 

find that the coefficients on ozone and solar radiation are both small and statistically insignificant. 

 On the other hand, outside temperature directly affects working conditions inside the facto-

ry, which is not air conditioned, so it may be related to productivity. Consistent with this, we find 

that the coefficient on the first-order term for temperature is positive, although not statistically sig-

nificant at conventional levels, and the quadratic term is negative and statistically significant. Based 

on these estimates, we find an inflection point at roughly 72 degrees Fahrenheit. This is consistent 

with a large body of ergonomic evidence that finds that task performance exhibits an inverted U-

shaped relationship with temperature at a similar inflection point (Hancock et al., 2007).  

 

                                                 
20 Many of these variables are also likely to be exogenous for similar reasons as PM2.5, allowing us to interpret the coeffi-
cients as causal (Lu and White, 2014). 
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C. Robustness Checks 

One concern with interpreting our estimate for PM2.5 as a causal effect on factory production is that 

PM2.5 could be influencing factory productivity indirectly by affecting outdoor workers who harvest 

the fruit. If harvest production declines with PM2.5, this could reduce the queue of pears available for 

factory workers to pack, thereby lowering their productivity indirectly. While we have no way of di-

rectly testing this since we do not have measures of the pear queue, there are three reasons this is 

unlikely to hinder inference.  

First, the pears that arrive at the factory are harvested all around the region.21 Given the tre-

mendous spatial variation in PM2.5, levels at the farms are likely to exhibit low correlation with PM2.5 

at the factory. Second, the factory’s operational procedures limit the potential effect of harvest 

productivity on pear-packer productivity. Since the harvesters start earlier in the day than the pack-

ers, the queue is unlikely to be empty, thereby shielding the packers from negative shocks in harvest 

productivity. Furthermore, the workers on the overtime and night shifts handle any pears left over 

by the regular shift, so shocks in harvest productivity will be absorbed by these later shifts, and not 

the regular-time day shift on which we focus. Third, we can also use our estimate for ozone to di-

rectly test for this indirect channel. Ozone is likely to affect harvest productivity (Graff Zivin and 

Neidell, 2012), but it does not penetrate indoors, so it should not affect packer productivity. A sig-

nificant effect of ozone on factory productivity would therefore suggest indirect effects due to losses 

in harvest productivity. The lack of a significant effect of ozone, shown in Table 3, however, sug-

gests that this is not the case. This suggests that our results for PM2.5 are indeed being driven by di-

rect effects on the productivity of workers inside the factory rather than external factors that might 

be disrupting the queue of fruit to be processed.  

                                                 
21 The factory packed pears from Contra Costa, El Dorado, Lake, Mendocino, Sacramento, San Joaquin, Solano, Yolo 
counties.  Together these counties cover 12,187 square miles and span 6 air basins. 
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Table 4 presents a series of additional robustness checks. Column 1 repeats the baseline re-

sults for the linear-in-PM2.5 models with alert weeks stemming from the fire included. Since daily 

variation in PM2.5 may be driven by other environmental conditions that may also affect productivity, 

it is essential that we control for those other environmental conditions adequately; the next 3 col-

umns explore this. Column 2 completely excludes all of the meteorology variables, while column 3 

controls for temperature more flexibly by including a series of indicator variables, and column 4 

adds three additional pollutants to the model (nitrogen dioxide, carbon monoxide, and coarse PM).22 

The effect of PM2.5 on productivity remains similar in magnitude across all three models, suggesting 

environmental confounding is limited in our setting.  

 Since we follow workers over time, we add worker fixed effects to our model to control for 

all time-invariant characteristics of the workers, shown in Column 5. The estimated effect of PM2.5 is 

unaffected by this additional control. Although we argue that worker exposure to PM2.5 is exoge-

nous, the fact that our estimates are unchanged by including fixed effects further supports our con-

tention that worker selection is not related to PM2.5.  

 Recall that while worker productivity is measured every day, PM2.5 is only measured every 6 

days. Although we perform a daily analysis and cluster standard errors on these 6-day periods, we 

also perform an alternative analysis aggregated to the 6-day period. The results from this analysis, 

reported in Column 6, show a very similar estimate that remains statistically significant at the 1 per-

cent level. 

 A complication with payroll at the factory is that earnings per hour are bounded from below 

by the California minimum wage. When the minimum wage binds, workers may shirk since they no 

longer receive additional compensation per piece. If PM2.5 lowers productivity such that workers are 

more likely to be in the minimum wage regime, and then shirking further lowers productivity, this 

                                                 
22 Coarse PM is PM between 2.5 and 10 microns. 
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will bias our estimates (in absolute value) upward. While shirking should be limited in our setting by 

the employer’s ability to observe individual output and easily terminate workers on short-term con-

tracts, we cannot entirely rule it out. Therefore, to assess the degree to which shirking might be hap-

pening, we artificially censor earnings at the minimum wage for all observations where workers fall 

into the minimum wage regime, and estimate censored regression models (Graff Zivin and Neidell, 

2012). If shirking increases with PM2.5 when workers earn the minimum wage, estimates from cen-

sored models will be unbiased because the precise measure of productivity for workers earning the 

minimum wage no longer contribute to the point estimate; it only contributes to the probability of 

earning minimum wage. Since parametric censored regression models may be biased under misspeci-

fication, we estimate semi-parametric censored median regressions (Chernozhukov and Hong, 

2002). For a point of comparison, we first show estimates from a median regression, in column 7, 

which at -0.044 is quite close to our baseline estimates. The censored median result of -0.040, shown 

in column 8, is slightly smaller, though the difference is not statistically significant. This suggests that 

shirking is unlikely to play a significant role in our analysis. 

 Workers may also respond to decreased performance by cutting corners when packaging 

boxes. The firm performs random inspections of boxes as a way of eliminating this concern. If the 

inspectors find a box is packed inappropriately, then the worker receives a wage penalty for the day.  

Such violations occurred in approximately 5 percent of the worker day observations. We estimate 

our regression equation using the probability of a penalty on a given day as the dependent variable. 

Shown in column 8, we find that PM2.5 is not significantly related to the probability of a penalty. 

Next, we turn to overtime hours. For the bulk of our analysis, we focused on the regular 

shift when labor supply is more likely to be fixed. For completeness, we also measure the relation-

ship between PM2.5 and overtime (OT) outcomes, recognizing that OT hours are more likely to be 

endogenous. A day with high PM2.5 may lower productivity, and the firm may compensate by in-
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creasing the demand for OT hours, particularly when contracts with retailers specify fixed delivery 

dates and quantities. Alternatively, if a day with high PM2.5 increases worker fatigue, workers may be 

less willing to supply the additional hours and/or firms may be less likely to request them. Similarly, 

higher PM2.5, particularly during the alert periods due to the Biscuit Fire, may increase the time allo-

cated to family members who need assistance because of health problems or activity rescheduling, 

and thus drive down the supply of OT hours through increases in the opportunity cost of time. 

Shown in column 10, we find that OT hours decrease as PM2.5 increases: a 1 µg/m3 increase in PM2.5 

decreases OT hours worked by -0.023 hours. Since OT hours is sensitive to PM2.5, any effects on 

OT productivity is potentially biased by sample selection. 

To explore whether selection into overtime induces bias in overtime productivity estimates, 

we examine the effect of PM2.5 on regular-time productivity solely for those who work any overtime. 

If there is selection bias into OT, the effect of PM2.5 on regular-time productivity should differ for 

those who work OT versus those who do not. Shown in column 11, we find that the effect of PM2.5 

on regular time productivity for those who work OT is identical to the overall estimate, suggesting 

that any selection into OT is in fact not inducing bias for estimates of the effect of PM2.5 on OT 

productivity. 

Given the apparent absence of selection bias into OT, we measure the effects of PM2.5 on 

OT productivity.23 Column 12 suggests that PM2.5 has a significant, negative effect on productivity. 

OT productivity decreases by -0.099 for each additional unit of PM2.5, which is larger than the effect 

of PM2.5 on productivity during regular time. One explanation for this pattern is that increased fa-

tigue at the end of a day limits workers’ ability to compensate for the physiological effects of PM2.5. 

Last, we explore heterogeneity in the effects of PM2.5 by estimating quantile regression mod-

els for each decile of regular-time worker productivity, focusing on the log of productivity to ac-

                                                 
23 Although the overtime piece rate is 1.5 times the regular-time piece rate, we divide overtime earnings by 1.5 to obtain 
a coefficient that is directly comparable to the regular-time coefficients. 
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count for different baseline levels of productivity across workers. Plotted in Panel A of Figure 6, 

which assumes a linear effect for PM2.5, we see that the effect on productivity is statistically signifi-

cant in all deciles. The effect is largest for the lowest productivity decile, slightly increases until 

roughly the median level of productivity, and remains flat beyond the median. Importantly, this find-

ing suggests that the effect of PM2.5 on worker productivity is not driven by a handful of workers 

who are particularly susceptible to pollution, but rather affects the entire distribution of workers. By 

contrast, Panel B plots quantile results for ozone, and finds that the effect of ozone on packer 

productivity is never statistically significant, further supporting our contention that the packers are 

directly affected by PM2.5.  

6. IMPLICATIONS 

A key innovation in our analysis is the focus on PM2.5, which can easily penetrate indoors and thus 

affect a large fraction of the economy. In light of this, it is useful to place our findings in a larger 

context. We estimate that a 1 µg/m3 change in PM2.5 decreases worker productivity by roughly 0.6 

percent. As a first step, we assess the productivity effects at a national level from the changes in 

PM2.5 concentrations across the US from 1999 to 2008.24  

We assume that our estimate of the effect of PM2.5 on the marginal product of labor applies 

to all workers in the US manufacturing sector. Although we cannot directly verify this assumption, 

we believe it is a reasonable first-order approximation based on the following logic. The physiologi-

cal effects from PM2.5 are similar across populations throughout the US. Since the effects that we 

estimate are likely to be driven by physiological changes that impair workers’ ability to complete 

physically demanding tasks, occupations with physical requirements similar to pear packing are likely 

                                                 
24 We focus on the years 1999 and 2008 because, for these two years, we have measures of PM2.5 for all counties in the 
US. Pollution monitors provide incomplete coverage for the US, so we use estimates inferred from emissions data (Mul-
ler, 2013). We thank Nick Muller for generously sharing this data. Data from pollution monitors led to almost identical 
estimates to the inferred data for counties where monitors were available.  



 22 

to be similarly affected by PM2.5. Hence, our assumption rests on the idea that all workers in manu-

facturing are, on average, performing tasks that are similar to pear packing in the degree to which 

they are physically demanding. While the assumption may not hold for some workers in manufactur-

ing, such as supervisors and office workers, it is, on the other hand, likely to apply to many affected 

but excluded workers in other industries, such as construction workers and most forms of outdoor 

work.25  

As shown in Figure 7, there is considerable variation in county-level changes in fine particu-

late matter pollution over this time period, with a national average decline of 2.79 µg/m3. We merge 

this pollution data with county-level mean manufacturing earnings from the Bureau of Labor Statis-

tics in 2000. We calculate that the decrease in PM2.5 led to an aggregate labor savings of $19.5 billion. 

This represents a 2.67 percent increase in manufacturing earnings, which translates to a 0.5 percent 

increase in economy-wide earnings.  

While those numbers are large in absolute terms, it is instructive to compare them to the 

other welfare benefits associated with reducing PM2.5. In addition to affecting mortality and several 

dimensions of morbidity, pollution also leads to numerous behavioral responses to limit exposure 

(Harrington and Portney, 1987; Neidell, 2009; Deschenes et al., 2012; Graff Zivin and Neidell, 

2013). Given the disparate range of health and behavioral effects that must be considered, the most 

frequently used method for quantifying the overall welfare benefits of pollution reduction is to use 

the hedonic price method by studying the effect of PM2.5 on housing values. Under the assumption 

of complete and transparent markets, all of the effects of PM2.5 should be capitalized into house 

prices (Rosen, 1974).  

While we are unaware of any studies that link PM2.5 and housing values, Bento et al. (2013) 

have estimated this relationship for PM10, which is closely related to PM2.5. Exploiting plausibly ex-

                                                 
25 There is also growing evidence that PM2.5 affects cognitive performance (Lavy et al., 2012), which implies potential 
productivity impacts across high-skilled workers as well. 
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ogenous changes in PM10 induced by the Clean Air Act, they find that a 4.7 unit decrease in PM10 

increases housing values by $43.9 billion. PM2.5 is the subset of PM10 that is smaller than 2.5 mi-

crons26, with evidence suggesting that roughly 60 percent of PM10 concentrations in the US are 

comprised of PM2.5 (Eldred et al., 1997).27 Applying this number to the estimates from Bento et al. 

suggests that the changes in PM2.5 from 1999–2008 increased housing values by approximately $57.3 

billion (in year 2000 dollars).28 

Thus, if we assume that our estimated labor impacts are capitalized into housing prices, they 

account for approximately 34 percent of the total benefits associated with reductions in PM2.5 pollu-

tion. That said, there is reason to believe that these labor impacts may not be fully reflected in hous-

ing values. The average American lives 12 miles from their workplace (Santos et al., 2011), and the 

large spatial variation in pollution implies that pollution exposure faced at work may be quite differ-

ent from that faced at home. Yet, empirical studies suggest that the impact of pollution on housing 

values is quite localized. Indeed, Bento et al. (2013) finds that housing values more than 5 miles 

from a pollution monitor are unaffected by air quality levels. Currie et al. (2013) find a similar result 

for air toxics, with housing impacts limited to a 0.5 mile radius around an emitting factory. Moreo-

ver, this paper is the first to document indoor productivity effects from pollution and thus it seems 

quite plausible that individuals are unaware of such impacts when they determine their willingness to 

pay for residential property. As such, it appears likely that much, if not all, of our estimated impacts 

on labor productivity are overlooked by hedonic valuation approaches. In that case, housing price 

based estimates understate the total benefits from reducing PM2.5 by more than 25 percent.  

                                                 
26 Recall that “coarse” particulate matter refers to those particles between 2.5 and 10 microns in diameter, e.g. PM10 
measures net of PM2.5. 
27 This number is calculated by averaging concentrations across study sites and seasons for which elemental data were 
available as reported in Table 3 of Eldred et al. (1997). 
28 We arrive at the estimate of $57.3 billion as follows. We divide the $43.9 billion estimate from Bento et al. (2013) by 
the 4.7 unit decline in PM10 to obtain the value per unit change in PM10. We then multiply it by 0.6 to convert it to a unit 
change in PM2.5. We then multiply by 2.79 to estimate the implied housing change associated with improvements in 
PM2.5 from 1999–2008. Lastly, we adjust for inflation by multiplying by the CPI growth from 1990 to 2000 of 1.32. 
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7. CONCLUSION 

In this paper, we analyze the relationship between PM2.5, a ubiquitous pollutant that penetrates into 

indoor settings, and individual-level productivity inside a pear packing factory. We find that a 10-unit 

change in PM2.5 significantly decreases worker productivity by roughly 6 percent. Importantly, PM2.5 

begins to affect productivity at levels well below current US air quality standards. These findings 

build upon extensive laboratory and epidemiological evidence on the relationship between PM2.5 and 

individual health outcomes by providing the first evidence that outdoor environmental pollution can 

adversely affect the productivity of indoor workers.  

Since these productivity effects also affect firm profits, firms may internalize some of these 

costs by reducing worker exposure to PM2.5. While the installation of sophisticated filtration systems 

has the potential to remove PM2.5 from the air, current technology is limited in its ability to fully re-

move PM2.5, particularly the smallest and most pernicious particulates (Mostofi et al., 2010; Shi et al., 

2013). Moreover, since PM2.5 accumulates in the body over several days, exposure away from the 

office, where workers spend the majority of their time, cannot be controlled via investments in these 

technologies. Reductions of source emissions are also a challenge for the private sector since most 

occur outside the boundary of the firm, and the multitude of emitters introduces a coordination 

problem that limits the scope for Coasean bargains to reduce emissions. Thus, productivity-

enhancing investments in this context are likely to be more efficient through publicly coordinated 

reductions in contamination rather than unilateral efforts by firms. 

The determination of optimal regulatory standards requires policy makers to balance the 

costs and benefits of additional regulations. Our results indicate that pollution has an important cost 

beyond the health effects and quality of life issues typically considered in the calculus of both aca-

demics and policymakers. Indeed, applying our estimated effects to all of US manufacturing suggests 
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that the modest decline in PM2.5 pollution from 1999 to 2008 generated nearly $20 billion in benefits. 

In light of growing evidence that PM2.5 exposure can affect cognitive performance (Lavy et al., 2012), 

the aggregate productivity benefits may have, in fact, been substantially larger. The impacts of fine 

particulate matter pollution on high skilled labor and human capital accumulation are fruitful areas 

for future research. 
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Figure 1. Variation in Productivity Across Workers and Across Days 

 
Note: This figure presents the variation in earnings across workers (Panel A) by taking each worker’s 
mean earnings across all time periods, and across days (Panel B) by taking each day’s mean earnings 
across all workers. 
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Figure 2. PM2.5 Levels by Date 

 
Note: This figure presents PM2.5 levels for six-day PM measurement intervals for the 2001, 2002, and 
2003 packing seasons. The dotted line corresponds to the one-hour National Ambient Air Quality 
Standards for PM2.5 of 35 µg/m3. 
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Figure 3. The Relationship between PM2.5 and Temperature 

 
Note: This figure presents PM2.5 levels for six-day PM measurement intervals versus the average tem-
perature during those six-day periods. The sample consists of the 2001, 2002, and 2003 packing sea-
sons. We exclude two observations during which the air quality alerts occurred as a result of the Bis-
cuit Fire. 
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Figure 4. The Relationship between PM2.5 and Productivity 

 
Note: This figure presents PM2.5 levels for six-day PM measurement intervals versus the average earn-
ings per hour of pear packers during that time period. The sample consists of the 2001, 2002, and 
2003 packing seasons. We exclude two observations during which air quality alerts occurred as a re-
sult of the Biscuit Fire. 
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Figure 5. Linear and Non-Linear Effects of PM2.5 on Productivity 

 
Note: This figure presents the implied effects of PM2.5 on productivity based on estimates reported in 
Table 3, columns 1 (linear) and 3 (nonlinear). 
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Figure 6. Quantile Regression Results 

  
Note: This figure presents the quantile estimates for productivity based on a linear control for PM2.5 

(panel A) or Ozone (panel B). 
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Figure 7. Variation in Change in PM2.5, 1999–2008, By County 

 
Note: This figure presents the variation in county-level changes in PM2.5 across the US between 1999 
and 2008. All changes are expressed in micrograms per meter cubed as inferred from emissions data. 
See Muller (2013) for details.  
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Table 1. Summary Statistics 
 
 Obs. Mean Std. 

Dev. 
Min. Max. 

Worked that day 8,222 0.95 0.22 0.00 1.00 
Regular-time hours per day 7,242 6.93 1.66 0.25 8.50 
Regular-time earnings per hour 7,242 6.99 2.79 0.04 17.18 
Worked overtime that day 7,230 0.28 0.45 0.00 1.00 
Overtime hours if overtime that day 2,058 1.80 1.49 0.25 9.75 
Overtime hours per day 7,242 0.51 1.13 0.00 9.75 
Overtime earnings per hour 2,058 11.50 5.37 0.14 41.40 
Penalty 5,677 0.05 0.22 0.00 1.00 
      
PM2.5 (µg/m3) 49 10.06 9.50 1.90 59.70 
Ozone (ppb) 49 31.60 9.77 9.88 55.13 
Nitrogen Dioxide (ppb) 49 9.02 3.74 1.88 17.63 
Carbon Monoxide (ppm) 49 0.55 0.21 0.18 1.11 
Coarse PM (µg/m3) 49 10.19 5.52 1.50 36.40 
Dewpoint (°F) 49 9.25 4.15 -4.00 15.00 
Rain (in.) 49 0.04 0.20 0.00 1.00 
Wind speed (mph) 49 4.06 1.23 1.54 7.68 
Solar radiation/1,000 (Wh/m2) 49 0.62 0.18 0.12 0.85 
Temperature (°F) 49 74.41 10.22 55.70 92.75 

Note: The sample consists of worker-day pear packer payroll records. Coarse PM is defined as PM10 
– PM2.5. 
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Table 2. Relationship between PM2.5 and labor supply 
 
 (1) (2) (3) (4) (5) (6) (7) (8) 

Dep. Var: Working that day Hours 
PM2.5 (µg/m3) 0.000 0.001   -0.002 0.010   
 (0.000) (0.001)   (0.005) (0.027)   
PM2.5 10–15   0.022 0.022   0.080 0.100 
   (0.013) (0.013)   (0.188) (0.182) 
PM2.5 15–20   0.026 0.030   0.089 0.102 
   (0.017) (0.016)   (0.479) (0.441) 
PM2.5 20–25   0.029 0.027   -0.389 -0.252 
   (0.023) (0.020)   (0.261) (0.239) 
PM2.5 >25   0.011    -0.291  
   (0.020)    (0.200)  
Ozone (ppb) 0.000 0.000 0.000 0.000 -0.002 -0.004 0.000 -0.003 
 (0.001) (0.001) (0.001) (0.001) (0.008) (0.009) (0.008) (0.009) 
Solar Rad./1,000  0.099 0.116 0.106 0.118 0.769 1.070 0.749 0.986 
  (Wh/m2) (0.060) (0.061) (0.061) (0.061) (1.220) (1.164) (1.200) (1.138) 
Temperature (°F) 0.004 0.007 0.006 0.008 0.234 0.222 0.222 0.206 
 (0.006) (0.005) (0.005) (0.005) (0.141) (0.136) (0.146) (0.144) 
Temperature  0.000 0.000 0.000 0.000 -0.002 -0.001 -0.001 -0.001 
  Squared (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) 
Mean of Dep. Var. 0.947 0.949 0.947 0.949 6.934 6.955 6.934 6.955 
Includes Alert-Days  Y N Y N Y N Y N 
  from Biscuit Fire         
R2 0.081 0.079 0.083 0.081 0.352 0.404 0.354 0.405 
N 8,222 7,729 8,222 7,729 7,242 6,808 7,242 6,808 

Note: Standards errors based on estimates clustered by date of PM2.5 assignment and worker in 
brackets. *,** indicates significant at 5 percent or 1 percent, respectively. The sample consists of 
worker-day observations over the 2001, 2002, and 2003 pear-packing season. Columns 1 through 4 
present marginal effects based on a logit model, and columns 5 through 8 present results from ordi-
nary least squares regressions. All regressions include wind speed, dew point, rain, day of week 
dummy variables, and year-month dummy variables. 
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Table 3. Relationship between PM2.5 and productivity 
 
 (1) (2) (3) (4) (5) (6) (7) (8) 

Dep. Var.: Productivity Logarithm of Productivity 
PM2.5 (µg/m3) -0.041** -0.054   -0.008** -0.007   
 (0.008) (0.034)   (0.001) (0.006)   
PM2.5 10–15   -0.074 -0.081   -0.013 -0.013 
   (0.247) (0.247)   (0.040) (0.040) 
PM2.5 15–20   -0.527 -0.494   -0.084 -0.078 
   (0.471) (0.479)   (0.075) (0.076) 
PM2.5 20–25   -1.028** -1.048**   -0.146* -0.146* 
   (0.325) (0.331)   (0.059) (0.061) 
PM2.5 >25   -1.875**    -0.347*  
   (0.309)    (0.047)  
Ozone (ppb) 0.014 0.017 0.013 0.017 0.004 0.004 0.003 0.004 
 (0.015) (0.016) (0.018) (0.016) (0.003) (0.003) (0.003) (0.003) 
Solar Rad./1,000  -0.249 -0.248 -0.170 -0.174 -0.004 0.021 0.020 0.028 
  (Wh/m2) (1.293) (1.309) (1.298) (1.309) (0.245) (0.244) (0.245) (0.246) 
Temperature  0.312* 0.305* 0.302 0.289 0.051* 0.049* 0.052* 0.047 
  (°F) (0.153) (0.154) (0.159) (0.160) (0.025) (0.025) (0.026) (0.026) 
Temperature  -0.002* -0.002* -0.002* -0.002* 0.000* 0.000* 0.000* 0.000* 
  Squared (0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) 
Mean of Dep.    6.994 6.994 6.955 6.955 1.878 1.878 1.879 1.879 
  Var.         
Includes Alert-  Y N Y N Y N Y N 
  Days from Biscuit Fire        
R2 0.181 0.181 0.171 0.171 0.127 0.127 0.123 0.123 
N 7,242 7,242 6,808 6,808 7,242 7,242 6,808 6,808 

Note: Standards errors based on estimates clustered by date of PM2.5 assignment and worker in 
brackets. *,** indicates significant at 5 percent or 1 percent, respectively. The sample consists of 
worker-day observations over the 2001, 2002, and 2003 pear-packing season. All columns present 
results from ordinary least squares regressions. All regressions include wind speed, dew point, rain, 
day of week dummy variables, and year-month dummy variables. Productivity is measured as earn-
ings per hour. 
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Table 4. Robustness checks 
 
 (1) (2) (3) (4) (5) (6) 
 Baseline 

estimates 
Exclude me-
teorological 

controls 

Control 
flexibly for 
temperature 

Control for 
additional 
pollutants 

Add worker 
fixed ef-

fects 

Aggregate to 
6-day PM- 

periods 

PM2.5  -0.041** -0.036** -0.039** -0.040** -0.039* -0.046** 
  (µg/m3) (0.008) (0.009) (0.008) (0.009) (0.016) (0.012) 
R2 0.181 0.172 0.188 0.184 0.445 0.309 
N 7,242 7,242 7,242 7,242 7,242 1,810 

       
 (7) (8) (9) (10) (11) (12) 
 Median 

regression 
Censored me-
dian regres-

sion 

Low-quality 
packing 

OT hours RT produc-
tivity when 
OT exists 

OT produc-
tivity 

PM2.5  -0.044** - 0.040 - 0.001 -0.023* -0.043* -0.099** 
  (µg/m3) (0.009) (0.035) (0.002) (0.010) (0.020) (0.026) 
R2 - - 0.161 0.174 0.198 0.191 
N 7,242 5,084 3,046 7,242 2,058 2,058 

Note: Standards errors based on estimates clustered by date of PM2.5 assignment and worker in 
brackets. *,** indicates significant at 5 percent or 1 percent, respectively. The sample consists of 
worker-day observations over the 2001, 2002, and 2003 pear-packing season. All regressions include 
data from the entire sample period, including the two weeks in which air quality alerts were issued 
due to the Biscuit fire. All regressions include ozone, solar radiation, a quadratic in temperature, 
wind speed, dew point, and rain, except column 2. Column 4 includes nitrogen dioxide, carbon 
monoxide, and coarse PM. All regressions include day of week dummy variables and year-month 
dummy variables. In all regressions except for columns 9, 10, and 12 the dependent variable is 
productivity during the regular-time shift. Productivity is measured as earnings per hour. Column 9 
present marginal effects from a logit model. RT indicates regular time, and OT indicates overtime. 
 


