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The Antibiotic Effects of Vitamin D 
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Abstract: The recent discovery that vitamin D regulates expression of the cathelicidin antimicrobial peptide gene has 
generated renewed interest in using vitamin D to fight infectious diseases. This review describes the historical use of 
vitamin D or its sources to treat infections, the mechanism of action through which vitamin D mediates its “antibiotic” 
effects, findings from epidemiological studies associating vitamin D deficiency with increased susceptibility to infection 
and clinical trials with vitamin D supplementation to treat or prevent infections. Furthermore studies examining an 
association between vitamin D levels and cathelicidin expression are discussed. The role of cathelcidin throughout the 
course of infection from the initial encounter of the pathogen to the resolution of tissue damage and inflammation 
indicates that individuals need to maintain adequate levels of vitamin D for an optimal immune response. In addition, for 
treating infections, carefully designed randomized, clinical trials that are appropriately powered to detect modest effects, 
target populations that are severely deficient in vitamin D,and optimized dose, dosing frequency and safety are needed.  
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“Sol est remediorum maximum” 
-Pliny the Elder 

HISTORY OF THE ANTIBIOTIC VITAMIN D 

 When the elder Pliny wrote ‘Sun is the best remedy’, 
discovery of vitamin D, the ‘sunshine vitamin’, was over two 
thousand years away. Nonetheless, sun light has been 
utilized to promote human health since the very beginning of 
medicine. Hippocrates pioneered heliotherapy as he prescribed 
sunbathing to restore health in Ancient Greece [1]. In the late 
1800s and early 1900s, sun exposure gradually became part 
of the standard treatment for tuberculosis [2, 3]. In 1903, the 
Nobel Prize in Physiology or Medicine was awarded to Niels 
Ryberg Finsen, who found that concentrated rays from 
carbon arc lights were effective in treating lupus vulgaris - a 
skin infection by Mycobacterium tuberculosis [4]. In the 
1920s and 1930s, the ‘sunshine vitamin’ was finally isolated 
and a mechanistic relationship between sun light and vitamin D 
was described as exposure of skin to ultraviolet (UV) radiation 
converted 7-dehydrocholesterol to vitamin D3 (Fig. 1) [5].  
 Another form of vitamin D, termed vitamin D2, is 
synthesized by yeast and fungi when ergosterol present in 
their cell membranes is exposed to UVB radiation [6]. For 
both 7-dehydrocholesterol and ergosterol, the B-ring of each 
molecule is cleaved by the UV-B rays and then a spontaneous 
isomerization event results in vitamin D (Fig. 1). Both forms 
of vitamin D are hydroxylated in the liver by the cytochrome 
P450 enzyme CYP27A1 to 25-hydroxyvitamin D (25(OH)D) 
in a substrate-dependent reaction and both forms are 
hydroxylated once more by the vitamin D-1α-hydroxylase  
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CYP27B1 in the kidney to produce the active form 1α,25-
dihydroxyvitamin D (1α,25(OH)2D) [6](Fig. 2). Circulating 
25(OH)Dis a reliable indicator of vitamin D status [7].  
 In the 1940s, physicians successfully treated lupus 
vulgaris with very high doses of vitamin D2 [8, 9]; however, 
lacking a clear mechanism of action, this treatment was 
quickly replaced by newly developed antibiotics that targeted 
M. tuberculosis [10, 11]. Almost four decades later, published 
epidemiology studies showed a correlation between vitamin 
D deficiency and a higher incidence of infections [12-14]. In 
1986, Rook and colleagues reported that vitamin D did not 
directly kill M. tuberculosis; instead it enhanced the 
intracellular killing by human monocytes [15]. Additionally, 
Rockett et al. demonstrated that 1,α 25-dihydroxyvitamin D3 
was capable of increasing production of nitric oxide (NO-) 
by activating inducible nitric oxide synthase (iNOS) in 
human macrophage-like HL-60 cells [16]. Reactive oxygen 
species (ROS), another important component of innate 
immunity were also induced by 1,α 25-dihydroxyvitamin D3 
in human monocyte-derived macrophages [17]. Nevertheless, 
these putative mechanisms were controversial since the role 
of NO- and ROS in bacterial killing by human macrophages 
is still debated [18, 19].  

RECENT FINDINGS ELUCIDATE THE ANTIBIOTIC 
MECHANISM OF VITAMIN D 

 The underpinning mechanism of vitamin D-induced 
bacterial killing in macrophages remained enigmatic until 
three independent groups simultaneously identified that 1,α 
25-dihydroxyvitamin D3 directly activated the human 
cathelicidin antimicrobial peptide gene (CAMP), an 
important effector peptide in innate immunity, through the 
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Fig. (1). Synthesis of vitamin D in response to sunlight or ultraviolet (UV) B rays. In skin, natural sunlight or artificial ultraviolet UV B 
rays cleave the B-ring of 7-dehydrocholesterol to produce cholecalciferol or vitamin D3. In a very similar reaction in yeast or fungi, ergosterol 
is cleaved to produce ergocalciferol or vitamin D2.  

 

 

Fig. (2). Vitamin D2 and D3 are converted into active vitamin D. Both vitamin D2 and D3 are hydroxylated in the liver by the enzyme 
CYP27A1 into 25(OH)D. This form circulates in the blood and serves as a reliable indicator of vitamin D status in people. 25(OH)D form is 
converted by the CYP27B1 enzyme into the bioactive form, 1α,25(OH)2D, that binds to the vitamin D receptor and activates gene expression. 
The kidney is a primary site for this synthesis, but it also occurs in extra-renal cells that express CYP27B1. Immune-activated macrophages 
produce significant amounts of CYP27B1 and 1α,25(OH)2D. 
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vitamin D receptor (VDR) [20-22]. Based on these findings, 
Liu et al. examined vitamin D-induced CAMP expression 
during M. tuberculosis infection and found that the Toll- 
like receptor 2 (TLR2) agonist 19-kD lipopeptide derived 
from M. tuberculosis induced CAMP expression in human 
monocytes only in the presence of adequate levels of 
25(OH)D3 [23]. This increase in CAMP gene expression, in 
turn, enhanced intracellular M. tuberculosis killing by 
monocytes [23]. The same group later demonstrated that M. 
tuberculosis killing by vitamin D was mainly mediated by 
CAMP [24]. Furthermore, CAMP-dependent autophagy also 
participated in intracellular killing of M. tuberculosis by 
vitamin D [25, 26]. It was shown that 1,25(OH)2D3 induced 
expression of the autophagy-related genes Beclin-1 and  
Atg and increased the colocalization of mycobacterial 
phagosomes with autophagosomes in human macrophages in 
a cathelicidin-dependent fashion. In addition, the anti-
mycobacterial activity in human macrophages mediated by 
physiological levels of 1,25(OH)2D3 required autophagy and 
CAMP. In addition, interferon-γ (INF-γ), the pivotal 
cytokine produced by T cells in response to M. tuberculosis, 
required vitamin D induced CAMP to enhance macrophage 
killing [27, 28]. Recently vitamin D was demonstrated to 
down-regulate the hepcidin antimicrobial peptide (HAMP) 
gene [29]. This would decrease ferroportin protein which 
could decrease intracellular iron levels. High intracellular 
iron levels are beneficial for M. tuberculosis growth; 
therefore, this down-regulation would help combat infection. 
The discovery that vitamin D regulates antimicrobial gene 
expression has spurred many recent epidemiology studies 
that have shown a correlation between vitamin D deficiency 
and increased risk or severity of tuberculosis, supporting 
similar findings made in the 1980s [30-39].  
 These new findings stimulated a renewed interest in using 
vitamin D to improve treatment outcomes in pulmonary 
tuberculosis patients, even though its effectiveness in clinical 
studies was ambiguous. Martineau et al., reviewed three 
randomized controlled trials and 10 case series and concluded 
that the prior studies were flawed methodologically [40]; 
nevertheless, two small randomized studies suggested 
beneficial effects of vitamin D on treatment of TB [41, 42]. 
Also, when patients were given a single oral dose of 2.5 mg 
vitamin D the ability of their whole blood to restrict BCG 
growth in vitro was greatly enhanced without affecting 
antigen-stimulated IFN-γ responses [40]. On the other hand, 
in a larger double-blind, randomized, placebo-controlled trial 
vitamin D did not improve clinical outcome or mortality 
among TB patients [43]. The authors concluded that the dose 
used was insufficient as both the placebo and treated groups 
had similar levels of vitamin D at the start of the trial and at 
two and eight months after treatment [43]. More recently, 
Martineau et al. reported that a 100,000 IU/week vitamin D 
supplement with standard pulmonary tuberculosis treatment 
significantly accelerated sputum culture conversion in 
patients with the tt genotype of the vitamin D receptor when 
compared to patients with placebo and standard treatment 
[44]. With the same treatment protocol and more rigorous 
data analysis methods, the same group conducted another 
clinical trial and concluded that vitamin D supplementation 
accelerated sputum smear conversion as well as other  
 

clinical outcomes in pulmonary tuberculosis [45]. In a 
randomized double-blinded, multicenter, placebo-controlled 
clinical trial, 259 patients were given 600,000 IU vitamin D3 
two times (once per month for two months) intramuscularly. 
The vitamin D-treated patients showed a significantly greater 
average weight gain and lower residual disease by chest  
x-ray [46].  
 In addition to TB, low serum levels of vitamin D  
are associated with bacterial vaginosis in the first trimester  
of pregnancy [47] and negatively impact the progression  
of disease in HIV-infected individuals [48, 49]. A higher 
incidence of influenza A infections was observed in deficient 
individuals [50] and a randomized, double-blind, placebo-
controlled study showed that a 1,200 IU/day supplement of 
vitamin D lowered the incidence of seasonal flu in school 
children [51]. Similarly, vitamin D was found protective 
against flu in both elderly people and African American 
women [52-54]. Also, vitamin D deficiencies were 
associated with an increased incidence of respiratory tract 
infections [55] and a clinical trial showed that 4,000 IU/day 
of vitamin D lowered the severity of upper respiratory tract 
infections [56]. On the other hand, no obvious difference in 
the incidence and duration of severity of upper respiratory 
tract infections (URIs) between vitamin D (2000 IU/day) and 
placebo groups was observed after 12 weeks [57] and 
another study found that vitamin D status was not a risk 
factor in hospitalization for ALRI [58]. In summary, the role 
of vitamin D in infectious diseases has been increasingly 
recognized, but is clear that further controlled, randomized, 
clinical trials need to be appropriately powered to detect 
modest effects and investigators need to optimize the dose, 
dosing frequency and target populations that are severely 
deficient in vitamin D. 

THE HUMAN CATHELICIDIN ANTIMICROBIAL 
PEPTIDE (CAMP) GENE 

 Regulation of CAMP gene expression by vitamin D is 
thought to mediate many of its antibiotic effects. The role of 
the CAMP gene in immune function and its regulation by 
vitamin D is reviewed in the following sections. 
 In 1991, the first mammalian cathelicidin was identified 
in rabbit bone marrow as an 18kD lipopolysaccharide (LPS)-
neutralizing protein and named CAP18 [59]. Later, the same 
group reported that the C-terminal 37 amino acids of CAP18 
not only bound to LPS but also directly killed both gram-
positive and gram-negative bacteria [60, 61]. In 1995, two 
independent groups cloned the human cathelicidin gene from 
granulocytes [62, 63]. The newly identified protein was 
named hCAP18. Like its counterpart in rabbit, the C-terminal 
37 amino acids of hCAP18 (later named LL-37) also 
conferred its bactericidal activity [64]. Several cathelicidins 
were also identified in other mammals and Zanetti et al. 
recognized the structural similarity of these proteins and 
named the family of proteins cathelicidin [65]. Cathelicidins 
have an N-terminal signal sequence targeting the endoplasmic 
reticulum (ER) and a highly conserved cathelin domain 
followed by a positively charged C-terminal antimicrobial 
domain (Fig. 3). 
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LL-37 is an Antimicrobial Peptide 

Bactericidal Function of LL-37  

 Larrick et al. reported that LL-37 was capable of killing 
both gram-positive and gram-negative bacteria, including 
Staphylococcus aureus, Klebsiella pneumoniae, Escherichia 
coli, Pseudomonas aeruginosa and Salmonella typhimurium 
[64]. Over the years, LL-37 has demonstrated broad spectrum 
antimicrobial capacity against bacteria. Notably, LL-37 
killed several antibiotic resistant bacterial strains such as 
methicillin-resistant S. aureus (MRSA), suggesting that 
activating the human CAMP gene may be an effective way 
to combat drug-resistant bacterial infections [66, 67]. As 
with most antimicrobial peptides, LL-37 kills bacteria by 
disrupting the cell membrane [66, 68]. 
Anti-Biofilm Effect of LL-37 

 Many bacterial species that cause persistent infections 
form biofilms. Recently, LL-37 was found to inhibit  
P. aeruginosa biofilm formation, which is the critical factor 
leading to chronic infections in cystic fibrosis patients [69, 
70]. LL-37 suppresses biofilm formation in other microbes 
including Francisella novisida [71], uropathogenic E. coli 
[72], S. aureus[73], Aggregatibacter actinomycetemcomitans 
[74], Stenotrophomonas maltophilia [75] and Burkholderia 
pseudomallei [76]. Several factors contribute to LL-37’s role 
in inhibiting P. aeruginosa biofilms. Overhage et al. showed 
that LL-37 suppressed the quorum-sensing systems in P. 
aeruginosa by down-regulating lasI and rhlR. In addition, 
LL-37 also inhibited genes required for assembling of 
flagella - a crucial component in initiating adherence during 
biofilm formation [69]. Dean et al. showed that LL-37 also 
altered the expression of rhlA and rhlB, two other genes 
implicated in biofilm formation by P. aeruginosa [73]. 
Nevertheless, the mechanism by which LL-37 blocks biofilm 
formation by other bacteria remains largely unknown. 

Interestingly, LL-37 usually inhibits biofilms at sub-
microbicidal concentrations. For example, LL-37 prevented 
P. aeruginosa biofilm formation at 0.5 µg/ml, whereas the 
minimum inhibitory concentration for P. aeruginosais 64 
µg/ml [69]. Similar findings were reported for inhibition of 
other biofilms (A. actinomycetemcomitans [74], uropathogenic 
E. coli [72]), suggesting that biofilm inhibition might be a 
more physiologically relevant function of LL-37 rather than 
direct bacterial killing which usually requires higher 
concentrations of the peptide.  
Other Antimicrobial Functions of LL-37 

 LL-37 inhibits the growth of viruses. In 2004, Howell  
et al. published the first report showing that LL-37 directly 
kills vaccinia virus [77]. The list of viruses susceptible to 
LL-37 killing has expanded over the years. To date, LL-37 is 
known to inhibit growth of herpes simplex virus type 1 
(HSV-1), adenovirus (Ad19), human immunodeficiency 
virus 1 (HIV-1), influenza A virus (IAV) and varicella zoster 
virus (VZV) [78-83]. In addition to viruses, LL-37 also kills 
fungi and parasites. Candida albicans was inhibited by  
LL-37 through membrane disruption [66, 84]. Rico-Mata  
et al. discovered that LL-37disrupted the membrane integrity 
of Entamoebahistolytica trophozoites [85]. 

LL-37 Modulates Innate and Adaptive Immune Reponses 

 LL-37 exhibits a wide range of immune modulatory 
functions [86]. As an alarmin, LL-37 signals danger and 
chemoattracts immune cells including monocytes, neutrophils, 
T cells and mast cells and regulates cytokine production in 
these cells [87]. LL-37 also regulates apoptosis and promotes 
angiogenesis and wound healing [88]. LL-37 exerts these 
functions through an array of transmembrane receptors as 
highlighted in the following sections. 

 

Fig. (3). Domain structure of the cathelicidin family. A) The cathelicidin pro-peptide is composed of three domains: 1) the N-terminal 
signal sequence, 2) the cathelin domain and 3) the C-terminal antimicrobial peptide domain. B) The cathelicidin pro-peptide is stored in 
specific granules of neutrophils and is referred to as hCAP18. C) The active C-terminal peptide is referred to as LL-37 in humans. 
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Formyl Peptide Receptor 2 (FPR2) 

 FPR2 is a pertussis toxin (PTX) sensitive Gi protein-
coupled transmembrane receptor [89]. Upon LL-37 binding, 
FPR2 mobilizes Ca2+ and initiates chemotaxis [90]. It is 
widely expressed in neutrophils, monocytes and T cells [91, 
92]. LL-37 recruitment of neutrophils and monocytes is 
important in clearing invading microbes or dead host cells. 
Mice lacking cathelicidin exhibit a delayed neutrophil 
infiltration in lung and as a result experience more severe 
infections [93]. Along with chemotaxis, activation of FPR2 
in neutrophils inhibits apoptosis, enabling these cells to 
produce more cytokines [94]. FPR2 is also expressed  
by endothelial cells and activation by LL-37 promotes 
proliferation of endothelial progenitor cells and enhanced 
angiogenesis [95]. Interestingly, activation of FPR2 by  
LL-37 enhances epithelial cells lifespan by suppressing 
apoptosis and secondly, FPR2 signaling feeds into pathways 
that up-regulate cell migration and proliferation, both of 
which are crucial to wound healing [96, 97].  
Toll-Like Receptors (TLRs) 

 LL-37 interacts with TLR ligands and modulates TLR 
signaling. As noted previously, LL-37 binds TLR4 ligand 
LPS and neutralizes its down-stream signaling in 
macrophages including the release of tumor necrosis factor 
alpha (TNFα) and NO- production [66, 98-100]. Blocking of 
TLR signaling by LL-37 protects mice and rats from gram-
negative bacterial sepsis [101, 102]. LL-37 also forms 
complexes with negatively charged DNA or RNA molecules, 
which are recognized by TLR7, TLR8, TLR9 or TLR3. In 
psoriatic skin, LL-37 binds to self-DNA molecules released 
from damaged cells, delivers the otherwise extracellular 
molecules across the membrane and presents them to the 
intracellular TLR7/8 receptors. The activation of TLR7/8 
enhanced type I interferon production in plasmacytoid 
dendritic cells contributes to the pathogenesis of psoriasis 
[103, 104]. Via the same mechanism, LL-37 augments TLR9 
induced type I interferon production in keratinocytes [105]. 
LL-37 complexes with the TLR3 agonist polyinosine-
polycytidylic acid (poly(I:C)); however, LL-37’s effect on 
TLR3 signaling seems to be cell-type specific. In human 
fibroblasts, LL-37 was reported to suppress poly(I:C) 
induced interleukin 6 (IL6), interleukin 8 (IL8), and C-X-C 
motif chemokine 10 (CXCL10) expression [106], but IL6 
and IL8 production was up-regulated in human bronchial 
epithelial cells by the combination of poly(I:C) and LL-37 
[107, 108]. On the other hand, Hasan et al. showed LL-37 
blocked poly(I:C) mediated TLR3 signaling in mouse 
macrophages, dampening type I interferon production in 
these cells.  
P2X7 

 Purinergic receptor P2X7 participates in transmembrane 
signaling of LL-37, although its legitimacy as a LL-37 
receptor remains controversial [109]. LL-37 induced IL1 
release from human monocytes depends on P2X7 [110]. In 
addition, LL-37 activation of P2X7 increases cell migration 
in intestinal epithelial cells [111] and stiffness in endothelial 
cells [112] as well as IL8, cyclooxygenase-2 (COX-2) and 
prostaglandin E2 (PGE2) production in gingival fibroblasts 
[113, 114].  

Other Transmembrane Receptors 

 Several alternative LL-37 receptors have also been 
identified. LL-37 stimulates monocyte migration through 
chemokine (C-X-C motif) receptor 2 (CXCR2) [115]. Mas-
related gene X2 (MrgX2) mediated LL-37 induced chemotaxsis 
and degranulation in mast cells [116]. LL-37 transactivates 
epidermal growth factor receptor (EGFR) in airway epithelial 
cells and keratinocytes, stimulating cell migration and 
proliferation [117-120]. Interestingly, activation of EGFR 
appears to be independent of the structure of LL-37 since the 
peptide made of enantiomers also activated EGFR [121].  
 These additional biological activities of LL-37 raise an 
interesting question: does the vitamin D-CAMP pathway 
mediate additional health outcomes beyond immune response 
in which vitamin D has been implicated? To address this 
question it is important to understand what impact vitamin D 
has on in vivo expression of the CAMP gene. 

THE EFFECT OF VITAMIN D ON HUMAN 
CATHELICIDIN EXPRESSION 

 Human CAMP is widely expressed by the cells 
comprising the first line of defense against invading 
microbes. Neutrophils are the predominant source of 
hCAP18 (about 0.6 µg/106 cells), where it is packaged in 
specific granules [63]. Secretion from bone marrow is 
believed to be the major contributor of hCAP18 in blood 
(about 1.2 µg/ml), which is higher than many other specific 
granule proteins in the serum [122]. To a lesser extent, other 
immune cells including macrophages [22], dendritic cells 
[123], mast cells [124], monocyte, natural killer cells, γδ T 
cells and B cells [125] all produce CAMP. A hierarchy of 
expression exists in peripheral blood cells with neutrophils 
expressing the most hCAP18, monocytes the next most and 
lymphocytes the least [126]. In skin, keratinocytes produce 
hCAP18 and store it in lamellar bodies [127]. Additionally, 
CAMP is expressed by epithelial cells in the intestinal [128], 
respiratory [129] and urogenital tracts [130]. 
 CAMP expression is regulated by cytokines, bacterial 
components and environmental stimuli [131]. For example, 
skin injury causes keratinocytes to release CAMP [132, 133]. 
Psychological stress, on the other hand, decreases CAMP 
expression in skin [134]. The centerpiece of transcriptional 
regulation of CAMP expression is the vitamin D signaling 
pathway [20-22]. As shown in Fig. 4, 1α,25(OH)2D, the 
active hormone of vitamin D, up-regulates CAMP expression 
through a VDR/RXR heterodimer binding to the CAMP 
promoter. Much of the regulation of CAMP expression is 
through the modulation of the vitamin D signaling pathway 
(Fig. 5). A key regulatory point is expression of the CYP27B1 
gene which produces 1α,25(OH)2D. TLR2 ligand 19-kD M. 
tuberculosis derived lipopeptide increases the expression of 
CYP27B1 and thus in situ production of 1α,25(OH)2D in an 
IL15 dependent manner [23, 135]. Induction of CYP27B1 
and augmentation of vitamin D-induced CAMP expression 
was also found in TLR8 agonist treated human macrophages 
[136] and in response of lung cells to RSV infection via 
TLR3 [137]. Transforming growth factor beta 1 (TGF-β1), a 
growth factor that keratinocytes release in response to skin 
injury, induce CYP27B1 levels and thus increased CAMP 
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expression in keratinocytes [138]. The T cell cytokine 
interferon-γ also activates vitamin D-induced CAMP expression 
by up-regulating CYP27B1 in macrophages [139], as did 
IL13 in bronchial epithelial cells [140]. In contrast, fibroblast 
growth factor 23 (FGF23), IL10 and interferon-β (IFNβ) 
suppress CYP27B1 in human monocytes. This suppresses 
vitamin D induced CAMP expression [28, 141].  

 Two other points for modulation of the vitamin D 
pathway are regulation of expression of the vitamin D-24-
hydroxylase (CYP24A1) an enzyme that initiates catabolism 
of 1α,25(OH)2D and 25(OH)D and expression of the VDR. 
For example, the T cell cytokine IL4 lowered 1α,25(OH)2D3 
concentration by up-regulating CYP24A1 activity in 
macrophages, thereby suppressing CAMP gene expression 

 

Fig. (4). CAMP is a VDR target gene. Upon ligand binding, VDR dimerizes with RXR and migrates into nucleus, where the VDR/RXR 
dimer binds to a vitamin D response element (VDRE) and initiates CAMPgene expression. The ligand for VDR is 1α,25(OH)2D, which is 
produced by hydroxylation of 25(OH)D. This reaction is performed by CYP27B1 and can occur in either the kidney or locally in immune 
activated macrophages.  

 

 

Fig. (5). Regulation of the CAMP gene through modulation of the vitamin D pathway. CYP27B1 is the rate-limiting enzyme controlling 
in situ production of active 1α,25(OH)2D. CYP24A1 hydroxylates both 25(OH)D and 1α,25(OH)2D and initiates its catabolism. These two 
cytochrome P450 enzymes control the availability of 1α,25(OH)2D locally. Expression of these enzymes is targeted by various growth 
factors and cytokines as described in the text. Expression of the VDR/RXR transcription factor and its associated coregulators are targeted by 
proteins and other factors that can modulate expression of vitamin D target genes as described in the text. 
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[139] and bufalin, a compound isolated from traditional 
Chinese medicine, augmented 1α,25(OH)2D induced CAMP 
by increasing VDR expression (Fig. 5) [142]. 
 In addition to increasing VDR levels regulating 
expression of coactivators/corepressors that interact with the 
VDR can modulate vitamin D-induced CAMP gene expression. 
In keratinocytes, hairless (HR), a coregulator of VDR, suppressed 
vitamin D induced CAMP expression by enhancing VDR 
binding to the nuclear receptor corepressor (NRC). This 
formed a repressive complex and subsequently decreased 
CAMP expression [143]. Similarly, TNFα inhibited expression 
of the VDR coactivator steroid receptor coactivator-3 (SRC-3) 
in human alveolar macrophages and suppressed vitamin D-
induced CAMP expression (Fig. 5) [144].  
 The regulation of CAMP gene expression is conserved 
only in humans and primates; therefore, an animal model to 
study this pathway does not exist [22, 145]. Thus, elucidating 
the importance of this biological pathway requires carefully 
designed studies in humans and primates. 

VITAMIN D STATUS AND CATHELICIDIN LEVELS 

 Because 1α,25(OH)2D increases CAMP gene expression, 
regulating in vivo hCAP18 levels may be possible with 
vitamin D. In an early study, only a modest positive 
correlation between hCAP18 and 1α,25(OH)2D levels, but 
not 25(OH)D levels was observed in kidney dialysis patients 
measured at the beginning of their treatment; however, high 
levels of hCAP18 were associated with a significant decrease 
in 1-year mortality [146]. For sepsis patients, decreased levels 
of 25(OH)D, vitamin D binding protein (DBP) and hCAP18 
were associated with more severe illness and a positive 
association between 25(OH)D and cathelicidin levels was 
observed in all patients [147]. In healthy individuals, a 
positive association between circulating 25(OH)D and 
hCAP18 levels was observed when 25(OH)D levels were 
below 32 ng/ml, but not above [148, 149]. An additional 
study that did not apply a cut-off described a positive 
correlation [150]. In atopic dermatitis patients a positive 
correlation of serum 25(OH)D3 with cathelicidin levels was 
observed [151]. In contrast, no association was observed in 
cord-blood samples or in patients with active TB [37, 152]. 
Also, in patients with community acquired pneumonia a 
correlation was not observed [153]. The current studies 
suggest that serum levels of vitamin D may be associated 
with hCAP18 levels, but the mixed findings indicate that 
additional research with both healthy individuals and those 
suffering from various disease conditions is needed. 
 Several studies suggest that supplementation with vitamin 
D may increase CAMP expression. Atopic dermatitis patients 
supplemented with 4,000 IU/day of oral vitamin D for 21 
days showed increased cathelicidin expression in skin lesions 
and a mild increase in unaffected skin, but a decrease in skin 
infection was not determined [154]; however, in a second 
study with more patients this was not observed [155]. A 
study of deficient patients visiting a bone clinic did not show 
an increase in hCAP18 levels after supplementation for  
five weeks with 50,000IU twice weekly [156]. High dose 
supplementation (50,000 IU/week for 12 weeks) of patients 
with early chronic kidney disease did not increase cathelicidin 

serum levels [157]. In vitamin D deficient healthy women 
receiving 60,000 IU vitamin D3 per week, cathelicidin  
levels did not increase [158]. Interestingly, narrowband UV-B 
treatment of atopic dermatitis and psoriasis patents improved 
serum 25(OH)D3 levels and increased cathelicidin levels in 
the skin or serum [159, 160]. In contrast to these findings, 
the same treatment did not increase the levels of cathelicidin 
in the skin of hemodialysis patients [161]. One explanation 
for the conflicting reports may be that for cathelicidin levels 
to increase, it is necessary for cells to be activated by TLR 
signaling or inflammation. For example, ex vivo infection of 
urinary bladder biopsies from post-menopausal women after 
vitamin D supplementation resulted in an increased induction 
of the CAMP gene and protein expression when compared  
to biopsies taken prior to supplementation [162]. According 
to the current model, the induction of cathelicidin is 
mediated by 1α,25(OH)2D which is synthesized by cells 
after immune activation and induction of CYP27B1 activity 
[23]. Investigators need to design future studies to test this 
possibility. Also, it is important to determine if therapeutic 
use of the bioactive forms of vitamin D will boost levels of 
cathelicidin and thus increase protection against infection 
and/or sepsis. 

CONCLUSIONS 

 In vitro studies of the past 30 years have identified 
numerous mechanisms for the antibiotic effects of vitamin D 
in humans with induction of antimicrobial or bactericidal 
peptides being of greatest interest. In addition, historically, 
sources of vitamin D have shown efficacy in treating 
infectious diseases primarily pulmonary and cutaneous 
(lupus vulgaris) mycobacterium tuberculosis infections. The 
improvement of lupus vulgaris patients with very high dose 
vitamin D therapy was quite striking. More recent studies 
with pulmonary tuberculosis use much lower doses of 
vitamin D in combination with current antibiotic therapies 
and the findings are mixed. Studies with other infectious 
conditions suggest that adequate vitamin D levels or 
supplementation with vitamin D may be important in 
reducing respiratory tract and vaginal infections. Again, 
other studies have shown no benefit, thus researchers need to 
carefully design future studies that are well-controlled, 
randomized, clinical trials that are appropriately powered to 
detect modest effects. Also, investigators need to target 
populations that are severely deficient in vitamin D, optimize 
the dose, dosing frequency and safety. While direct killing  
of pathogens by cathelicidin may explain, in part, the 
antibiotic properties of vitamin D, the activation of various 
transmembrane receptors, dampening of TLR signaling and 
induction of autophagy mediated by this peptide need to be 
explored more fully to understand how vitamin D functions 
in modulating the immune response. Because the cathelicidin 
peptide combats infection at all stages from the initial 
response of killing microbes and inhibiting biofilms to 
resolution through recruitment of other immune cells and 
healing by promoting angiogenesis and migration of epithelial 
cells in wound healing, it is important for individuals to 
maintain adequate levels of vitamin D for an optimal 
immune response. 
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