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abstract BACKGROUND: Vitamin D deficiency may represent a modifiable risk factor to improve outcome in
severe illness. The efficacy of high-dose regimens in rapid normalization of vitamin D levels is
uncertain.

METHODS: We conducted a systematic review of pediatric clinical trials administering high-dose
vitamin D to evaluate 25-hydroxyvitamin D (25[OH]D) response and characteristics associated
with final 25(OH)D levels by using Medline, Embase, and the Cochrane Central Register of
Controlled Trials, including reference lists of systematic reviews and eligible publications.
Uncontrolled and controlled trials reporting 25(OH)D levels after high-dose ($1000 IU)
ergocalciferol or cholecalciferol were selected. Two reviewers independently extracted and
verified predefined data fields.

RESULTS: We identified 88 eligible full-text articles. Two of 6 studies that administered daily
doses approximating the Institute of Medicine’s Tolerable Upper Intake Level (1000–4000 IU)
to vitamin D–deficient populations achieved group 25(OH)D levels .75 nmol/L within 1
month. Nine of 10 studies evaluating loading therapy (.50 000 IU) achieved group 25(OH)D
levels .75 nmol/L. In meta-regression, baseline 25(OH)D, regimen type, dose, age, and time
factors were associated with final 25(OH)D levels. Adverse event analysis identified increased
hypercalcemia risk with doses .400 000 IU, but no increased hypercalcemia or hypercalciuria
with loading doses ,400 000 IU (or 10 000 IU/kg). Few studies in adolescents evaluated
loading dose regimens .300 000 IU.

CONCLUSIONS: Rapid normalization of vitamin D levels is best achieved by using loading therapy
that considers disease status, baseline 25(OH)D, and age (or weight). Loading doses.300 000
IU should be avoided until trials are conducted to better evaluate risk and benefit.
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The evidence for vitamin D in calcium
homeostasis, cardiovascular and
respiratory health, inflammation, and
innate immunity has led to questions
about whether deficiency might
represent a modifiable risk factor in
the prevention of or recovery from
acute and critical illness. A large body
of observational literature from adult
ICU and cardiovascular populations
has documented high vitamin D
deficiency (VDD) rates and
association between blood
25-hydroxyvitamin D (25[OH]D) and
organ dysfunction, health resource
utilization, and mortality. More
recently, pediatric observational
studies have supported these findings
in similar populations, including
patients with asthma, ICU patients,
and postsurgical patients with
congenital heart disease.1–5

Normalization of vitamin D status has
the potential to speed recovery and
improve outcomes in multiple acutely
unwell pediatric populations. Most of
the guidelines and clinical practice
surrounding vitamin D dosing involves
a daily intake of ,1000 IU.6,7 Because
these standard dosing strategies target
healthy children and require months
to restore normal levels, they are not
applicable to the acute and critical
care settings. Although other regimens
that involve the administration of
higher doses have been reported,
there remains concern about both
inadequate dosing and excessive doses
leading to toxicity.8,9 In the adult ICU
setting, pilot trials of loading dose
therapy have been completed, with
results from a large trial evaluating
clinical benefit completed but
unpublished.10–12 No PICU studies
have been completed.

To inform clinical practice and future
trials, we performed a systematic
review with the goal of identifying all
published pediatric trials that
reported on the administration of
high-dose vitamin D ($1000 IU). The
objectives of this review were as
follows: (1) to assess the ability of
different dosing regimens to

normalize vitamin D status, (2) to
determine study characteristics that
influence post–study drug 25(OH)D
levels, (3) to determine what high-
dose regimens are associated with
vitamin D–related adverse events,
and (4) to use the findings to
recommend a dosing regimen for
clinical practice and future clinical
trials in pediatric acute and critical
care settings.

METHODS

Study objectives and protocol were
determined a priori (PROSPERO
protocol registration number:
CRD42013006677) and reported
according to PRISMA (Preferred
Reporting Items for Systematic
Reviews and Meta-Analyses)
guidelines.13

Eligibility Criteria

Studies were eligible for inclusion in
the systematic review if they met all
of the following criteria: (1) an
uncontrolled, controlled, or
randomized controlled trial (RCT)
conducted in neonates, infants,
children, or adolescents; (2) the study
administered at least 1 dose of
cholecalciferol (vitamin D3) or
ergocalciferol (vitamin D2) $1000 IU;
and (3) the study evaluated the
effects of drug administration on
25(OH)D status. Studies were
excluded if the study population was
exclusively premature or of low birth
weight, had a genetic problem related
to vitamin D metabolism, or was
pregnant. Furthermore, studies were
excluded if they prescribed UV
exposure, gave vitamin D as part of
a food without precisely controlling
quantity, or administered vitamin D
with another vitamin or drug
(without a control arm).

Identification of Studies

Medline (1946–2014; week 2,
January 10th), Embase (1974–2014;
week 3, January 17th), and the
Cochrane Central Register of
Controlled Trials (December 2013)
were searched by using the Ovid

interface. The Medline search strategy
was developed by a librarian
experienced in systematic review
searching (M.S.) and peer-reviewed
by another librarian (Lorie Kloda,
MLIS, PhD), using the PRESS (Peer
Review of Electronic Search
Strategies) standard.14 The Medline
search was then adapted for the other
databases. No date, language, or study
design limits were applied. We
searched conference abstracts from
2010 to 2013 through Scopus. The
search strategies are presented in
the Supplemental Information. The
initial search was conducted on
April 30, 2013, and updated on
January 21, 2014. We also
conducted a gray literature search
by reviewing ongoing trials
registered with clinicaltrials.gov, the
citations of all eligible articles, and
24 systematic reviews of vitamin D
in children.

Unless otherwise noted, 2 of the
study authors independently
reviewed the citations sequentially
through 3 sets of screening questions
to determine eligibility (Supplemental
Table 6). Level 1 screening was
performed by using Mendeley
(Mendeley Desktop, version 1.10.3),
and those citations that could not be
excluded were uploaded to
DistillerSR (Evidence Partners, Inc,
Ottawa, Canada) for level 2 and
3 screening. The full text of all
potentially eligible citations was
independently appraised by at least
2 of 3 reviewers (K.I., K.O., J.D.M.).
Conflicts between reviewers were
resolved through discussion, with
a third author available to resolve
disagreement (M.S.). The eligibility
of articles not in English, French,
or Spanish was determined by
a single author after written
translation or with the assistance of
a translator.

Data Collection and Risk of Bias

Extraction of data from full text, with
independent verification, was shared
by four review authors (J.D.M, K.I.,
K.O., S.P.). Data were collected and
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managed by using REDCap (Research
Electronic Data Capture) hosted at
the Children’s Hospital of Eastern
Ontario.15 Vitamin D or calcium data
values that were only published
graphically were extracted from
figures by using DigitizeIt software
(http://www.digitizeit.de/;
Germany). During the data collection
process, 18 authors were contacted to
clarify or request additional 25(OH)D
study data, 5 of whom responded.
Study quality was described by using
the Cochrane risk of bias assessment
tool.16

Data Analysis and Reporting

Summary statistics and data from
eligible studies and independent
arms were described as text, through
tables and figures. Clinical
heterogeneity between studies was
assessed by using information on
population (age, disease status,
baseline vitamin D), dosing regimen
(dose, frequency, form, route), and
measurement features (time, assay
type). Regimens were considered
intermittent if they provided
a vitamin D dose in excess of
40 000 IU as a single administration
(or divided over 2 days) or were
repeated with a frequency .1 month.
Methodologic heterogeneity was
evaluated by using information
collected on study type (single arm,
RCT, controlled non–randomized
trial) and the Cochrane risk of bias
tool. For specific dosing regimens,
25(OH)D response was presented
using figures (Sigma plot, version 12.3)
and the success of each dosing regimen
was defined as achieving a group
25(OH)D average .75 nmol/L.

Given significant heterogeneity in
post–25(OH)D administration levels,
we performed random-effects meta-
regression to evaluate the
contributions of specific study-level
population, dosing, and methodologic
characteristics. This analysis included
study arms reporting a group
25(OH)D level between 1 and
13 weeks after drug initiation and for
which an accurate cumulative dose

could be calculated. An assessment of
heterogeneity and meta-analysis was
performed by using Comprehensive
Meta-Analysis (version 2) with meta-
regression performed using the PROC
MIXED function in SAS (version 9.3;
SAS Institute, Cary, NC). Analysis used
group mean or median 25(OH)D
levels and within-study variance with
the use of provided or calculated
SEs.17,18 For age, if the median or
mean was not provided we used the
midpoint of the age range as an
approximation.19 Initially, single-
variable random-effects meta-
regression was performed and
potentially significant variables were
then tested in a multivariable meta-
regression analysis. A potential
interaction was sought between
cumulative dose and age, and an
interaction term was included in the
regression analysis to control for and
evaluate for how timing from a single
or divided loading dose influences the
25OHD levels influenced the level. No
new variables were to be added to the
multivariable model once the ratio of
variables to eligible 25(OH)D
measurements exceeded 10:1. The
final multivariate model was used to
predict group 25(OH)D levels after
4 loading doses in 4 age groups of
VDD children with disease (Table 5).

RESULTS

Search Strategy

Figure 1 shows the flow of studies
through the identification and review
process. A total of 2453 unique
records were identified for screening.
Of the 367 full-text citations that
remained after initial screening, 256
articles describing clinical trials were
identified. Of these, 88 full-text
publications8,20–107 and 10
conference abstracts (Supplemental
Table 7) met all population, dosing,
and 25(OH)D outcome-related
eligibility criteria. The flow of eligible
articles and study arms is presented
in Supplemental Figure 5. The 88 full-
text articles reported on 96 eligible
study populations and included 199

different arms. Of these 199 arms,
3 were ineligible due to UV exposure
(n = 2) or administration of active
vitamin D (n = 1). Of the remaining
arms, 62 involved the administration
of no vitamin D (eg, placebo) or
a dose ,1000 IU. Of the 134 high-
dose arms, 22% (n = 29) and 78%
(n = 105) were from uncontrolled and
controlled studies, respectively.

Patient Populations

Tables 1 and 2 relevant clinical and
methodologic characteristics of the
eligible high-dose arms. Of the eligible
high-dose study arms, 73% involved
administration of vitamin D to
healthy children (49%), children with
rickets (16%), or pediatric
populations with subclinical VDD
(8%). Populations of children with
“other” disease states (eg, HIV,
arthritis, seizures) accounted for 19%
of the study arms (Supplemental
Table 8). As shown in Table 1, studies
included children from all age ranges,
with neonates being evaluated in
15% (n = 20) and adolescents in 50%
(n = 67) of high-dose study arms.
Vitamin D dosing regimens evaluating
intermittent loading therapy
accounted for 46% (n = 62) of the
eligible study arms, with daily
regimens representing 38% (n = 51).
A minority of the eligible high-dose
arms (14%; n = 19) described
a dosing regimen that varied
depending on factors including
baseline 25(OH)D, weight, or age. The
number of participants in each arm
ranged from 5 to 233, with a median
size of 27 (interquartile range:
13–40).

At least 1 measure of average
post–study drug group absolute
25(OH)D (or change) was available
from all but 1 of the high-dose study
arms. Of the 134 high-dose arms,
35% (n = 48) and 76% (n = 106)
measured 25(OH)D within 1 and
3 months of study drug initiation.
Supplemental Tables 9–16 show
relevant information on population,
dosing regimen, and 25(OH)D
response for each study arm that
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reported 25(OH)D within 3 months of
study drug initiation.8,20–90

Evaluation of 25(OH)D Response by
Dosing Regimen

Six independent treatment arms were
identified that evaluated response to
daily vitamin D between 1000 and
4000 IU in a group of children who
were vitamin D deficient and
reported 25(OH)D levels within the
first month.42,50,75,79,84,108 As shown
in Fig 2, none of the arms achieved
a group 25(OH)D level .75 nmol/L
with the first measurement, and
2 (33%) achieved this target within the

first month. A single weekly dosing
regimen was identified that enrolled
VDD children and performed blood
work within 1 month; this study
reported an increase in 25(OH)D
from 22 to 143 nmol/L with 4 weekly
doses of 60 000 IU. Ten independent
study arms were identified that
evaluated oral loading doses with
VDD populations and measured
25(OH)D within 1 month
(Fig 3).42,58,68,73,76,81,109,110 As
shown in Fig 2, 9 (90%) achieved an
average post–study drug group level
.75 nmol/L, with 3 arms exceeding
200 nmol/L.42,68,76 Five additional

arms calculated 25(OH)D change
after oral vitamin D loads and
reported increases ranging from 45 to
73 nmol/L.56,72,77 All arms with
.1 post–study drug measurement
showed a decline between the first
and subsequent measurements.
Dosing regimens that reported
multiple measurements during the
first week after oral loading
suggested that 25(OH)D peaks on day
3 and declines from days 3 to 7 by an
average of 15% (Supplemental
Figure 6).73,81

Evaluation of Variable Loading Dose
Regimens

Seven independent arms were
identified that evaluated 25(OH)D
response in vitamin D–deficient
children by using a variable
intramuscular dosing strategy
(10 000 IU/kg).64,65,67,78,111 The
single 10 000 IU/kg intramuscular
dosing regimen that reported 25(OH)D
within 1 month of therapy achieved
a mean group level .75 nmol/L.111

No published studies or conference
abstracts evaluating 25(OH)D
response within 1 month of a variable
oral load were identified. One of the
conference abstracts, Frizzell et al,112

evaluated response to an age-based
loading regimen (,3 years:150 000 IU;
3–12 years: 300 000 IU; .12 years:
600 000 IU) among 40 children;
∼6 weeks after treatment, the group
average increased from 27 to
93 nmol/L, with at least 1 participant
exceeding 300 nmol/L.

Factors Associated With Post–Study
Drug 25(OH)D Levels

Significant heterogeneity in
post–study drug 25(OH)D was
evident, with group average levels
ranging from 30 to 399 nmol/L, and
a calculated I2 value of 99. Single-
variable random-effects meta-
regression identified 8 variables as
statistically significant, with 2
additional variables approaching
significance (Table 3). Multivariate
random-effects meta-regression
performed by using data available
from 102 independent arms

FIGURE 1
Flowchart of study selection based on inclusion and exclusion criteria. The stages of a systematic
selection scheme include identification, screening, eligibility, and final included studies. aNumbers
will not total 168 because studies could be excluded for multiple reasons.
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identified 7 variables that were
independently statistically significant
in either the main effects or through
an interaction (Table 4) (Table 5).
The interaction term between age and
cumulative dose determined that the
0.27-nmol/L increase in final group
25(OH)D per 1000 IU was reduced by
0.013 nmol/L for every 1-year
increase in age. Similarly, the
interaction term between dosing
regimen and time showed that the
group mean 25(OH)D gradually
decreased after a loading dose by
5.6 nmol/L per week (confidence
interval 95%[CI]: 27.7 to 23.48).
Inclusion of the study type variable
showed that nonrandomized controlled
studies, but not uncontrolled studies,
were associated with higher postdrug

25(OH)D levels. After including the
variable for study design, no other
measure of study methodologic
quality from the Cochrane risk of bias
tool was statistically significant. The
exclusion of the obese or
malabsorption studies did not
significantly change any of the
parameter estimates.

The final multivariate model was used
to predict group 25(OH)D levels after
4 loading doses in 4 age groups of
VDD children with disease. Regression
analysis was also performed to model
post–study drug 25(OH)D standard
deviations (SDs). The SD was best
predicted by the equation SD = 0.42 3
final 25(OH)D (R2 = 0.81); no other
variable significantly improved the
model R2 value.

Thresholds for Potentially Toxic
Vitamin D Levels

Of the 88 eligible studies, 9 defined
thresholds above which 25(OH)D was
toxic or potentially toxic (range:
125–374 nmol/L).26,43,57,63,70,86,102,108,109

The most common definition was
250 nmol/L (n = 6) and another
2 used definitions of 374 and
375 nmol/L.

Adverse Event Analysis

There were 39 study arms that
reported on high-dose ($1000 IU)
vitamin D regimens that provided
hypercalcemia data within 3 months
of drug initiation. Information on
relevant population, dosing, and
adverse events measurements is
provided in Supplemental Tables 17
and 18. There were 23 study arms
who received intermittent, weekly,
or daily high-dose loading regimens.
Significant heterogeneity in
hypercalcemia rates was calculated
(I2 = 61%; see Fig 4). Random-
effects meta-analysis identified
a statistically significant difference
in hypercalcemia rates between
accepted daily dosing (2.6%; CI:
1.1%–5.9%) and intermittent,
weekly, and daily high-dose loading
regimens (7.6%; CI: 4.1%–13.7%;
P = .041). Further analysis identified
higher hypercalcemia rates for the
arms $400 000 IU (23.8%; CI:
16.3%–33.3%) when compared with
doses #300 000 IU (4.2%; CI:
2.0%–8.8%; P = .0001). Subgroup
analysis using 25(OH)D data
revealed that hypercalcemia was
more likely among studies with
average group levels .200 nmol/L
compared with those with levels
,200 nmol/L (3.9% vs 19.6%; P =
.006). Pooled hypercalcemia rates
were similar for groups with levels
,100 nmol/L and those with levels
between 100 and 200 nmol/L.
Further subgroup analysis by age
was not possible due to the limited
number of loading regimens
administering doses .300 000 IU.

For hypercalciuria (29 study arms;
Supplemental Tables 19–21),

TABLE 1 Patient, Dosing, and Study Characteristics of High-Dose Study Arms

Study Characteristic Vitamin D Dosing Regimen, n

Daily (n = 51) Weekly (n = 19) Intermittent (n = 64)

Age groupa

Neonates 12 1 7
Infants 7 2 14
Toddlers 17 4 28
School age 33 18 37
Adolescents 23 17 33

Diagnostic category
Healthy 25 12 29
VDD (no rickets) 4 1 6
Rickets 3 0 19
Malabsorption 3 0 2
Renal disease 2 1 2
Other diseaseb 14 5 6

Dosing regimen
Variable 4 2 13
Constant 47 17 51
1000–4000 IU 41 4 0
4000–10 000 IU 1 1 0
10 000–40 000 IU 2 6 0
40 000–1 000 000 IU 3 6 51

Enteral 51 19 49
Intramuscular 0 0 15
Vitamin D2 (ergocalciferol)

c 12 3 9
Vitamin D3 (cholecalciferol) 35 16 49

Geography
North America 23 5 2
Central/South America 0 0 2
Europe 15 1 12
East Asia 2 0 0
Rest of Asia 4 4 9
Africa 0 0 11
Australia/New Zealand 0 0 2
Middle East 7 9 26

a Counts will exceed 134 because the population could include multiple age groups.
b Supplemental Table 8 lists other diseases.
c In 18 cases, vitamin D form was unclear.
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13 distinct groups were identified
that provided regimens
corresponding to intermittent,
weekly, or daily loading doses. Of
these, 10 reported no episodes of
hypercalciuria, and meta-analysis
determined a pooled rate of 2.7%
(CI: 0.8%–8.9%). Exclusion of the
study by Shajari et al, who reported
hypercalciuria in 28 of 30 children,
reduced the pooled rate to 1.5%
(CI: 0.5%–4.5%).61 Of note, the
Shajari study was an RCT and the
daily dosing arms reported
hypercalciuria in 23 (200 IU/day)
and 25 (400 IU/day) of the
30 children. Finally, our review did
not identify any reported cases of
nephrocalcinosis in the clinical
trials that administered
intermittent, weekly, or daily
loading dose regimens.

DISCUSSION

The evaluation of daily vitamin D
administration showed that a dosing
strategy approximating the Institute
of Medicine’s Tolerable Upper Intake
Level (1000–4000 IU) will not rapidly
normalize vitamin D levels in
deficient children. However,
administration of a loading dose of
.40 000 IU can rapidly elevate
25(OH)D concentrations. Our analysis
also identified baseline 25(OH)D, age,
cumulative dose, regimen type,
disease status, time from loading
dose, and study type as independent
predictors of final 25(OH)D level.
Adverse event analysis found no
increased hypercalcemia or
hypercalciuria risk with loading doses
#300 000 IU, whereas a significant
increase in hypercalcemia risk was
observed with doses $400 000 IU.

This systematic review identified
88 full-text publications that reported
25(OH)D levels after the prospective
administration of high-dose vitamin D
to $1 groups of children. Daily
administration and loading dose
therapy each accounted for ∼40% of
the eligible study arms. The rarity of
loading dose arms originating from

TABLE 2 Assessment of Study Design and Methodologic Quality

Study Characteristic Vitamin D Dosing Regimen, n

Daily (n = 51) Weekly (n = 19) Intermittent (n = 64)

Year
1970–1979 1 0 1
1980–1989 9 0 6
1990–1999 2 0 8
2000–2009 11 10 16
2010–2013 28 9 33

Study design
Single arm 8 1 20
RCT/quasi-RCTa 36 15 37
Controlled, other 7 3 7

25(OH)D assay
Immunoassay 37 18 47
LC-MS/MS 8 1 9
Unclear 6 0 4

25(OH)D measurement
Within 3 months 41 10 51
Within 1 month 17 3 28

Randomized trial quality
Low risk 15 1 8
Medium risk/unclear 20 14 28
High risk 1 0 1

Cochrane risk of biasb

Generation adequate 26 (13) 8 (7) 26 (15)
Concealment adequate 17 (22) 7 (8) 13 (27)
Blinding adequate 19 (9) 8 (2) 12 (7)
Outcome report complete 33 (6) 15 (1) 45 (5)
Outcome not selective 26 (5) 7 (2) 24 (7)

LC-MS/MS, liquid chromatography–tandem mass spectrometry.
a Only 1 study arm originated from a quasi-RCT.
b Values represent the number of arms, whereas values in parentheses indicate unable to determine.

FIGURE 2
Short-term 25(OH)D response to high-dose daily vitamin D intake. Six study arms evaluated 25(OH)D
response in VDD children within 1 month of initiating dosing that approximated the Institute
of Medicine’s daily Tolerable Upper Intake Level (1000–4000 IU). (d) Holst-Gemeiner, 197842;
(s) Markestad, 19878; (D) Leger, 198950; (▼) Vervel, 199775; (n) Dong, 201032; (N) Park, 2010.84
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North America may explain why
vitamin D position statements from
Canadian and American pediatric
societies make no mention of this
therapy.6,113 Slightly more than 75%
of the eligible study arms included
healthy, VDD, or children with rickets
or kidney disease. None of the studies
were from acute or critical care
settings, with the most relevant study
being a pilot RCT that suggested long-
term clinical benefit in stable
outpatient congestive heart failure.62

Inspection of excluded studies did not
identify any performed in the
pediatric critical care setting, with the
most relevant studies evaluating
high-dose intake in pneumonia and
severe asthma.114–116

The examination of post–study drug
25(OH)D levels from high-dose study
arms revealed a wide range of final
group levels. To remove some
heterogeneity related to clinical and
methodologic factors, we evaluated
the short-term response to daily
vitamin D approximating the Institute
of Medicine’s Tolerable Upper Intake
Level (1000–4000 IU/day).7 Overall,
the results strongly advise that this
approach will not normalize levels
(.75 nmol/L) in a time frame
appropriate to potentially benefit
acute and critically ill
populations.42,50,75,79,84,108 These
findings are important because they
will inform future studies and help in
the understanding of the results of
published RCTs. For example, these
findings might call into question the
validity of the pediatric RCT by
Choudhary and Gupta114 evaluating
the effect of 5 days of vitamin D
(1000-2000 IU/day) on recovery
from pneumonia.

Conversely, there was convincing
evidence that single or divided dose
loading therapy is an effective means
of rapidly increasing 25(OH)D levels.
We also observed that numerous
studies generated levels well in
excess of the 75 nmol/L target.
Multiple study arms administering
loading doses of vitamin D achieved

FIGURE 3
Short-term 25(OH)D response to vitamin D loading therapy. Ten study arms were identified that
evaluated 25(OH)D response in VDD children within 1 month of administering a loading dose of
vitamin D. (d) Holst-Gemeiner, 197842; (N) Zeghoud, 199476; (▼) Stogmann, 198568 (s) Raghur-
amulu, 198258; (n) Zeghoud, 199476; (v) Manaseki-Holland, 2012109; (:) Thacher, 201073;
(D) Zeghoud, 199476; (⋄) Thacher, 200681; (Cross) Kari, 2013.110

TABLE 3 Single-Variable Meta-regression of Post–Study Drug 25(OH)D

b SE 95% CI

Population
Pre-25(OH)D (per nmol/L) 0.58 0.22 0.15 to 1.01
Age (per year) 22.66 0.79 24.21 to 21.11
Diseased (versus healthy) 214.5 9.4 232.9 to 3.92

Regimen
Cumulative dose (per 1000 IU) 0.12 0.019 0.083 to 0.16
Intramuscular versus enteral 27.52 19.68 246.03 to 30.99
Vitamin D3 versus vitamin D2 29.68 13.86 236.85 to 17.49
Single load versus placebo 61.08 11.26 39.01 to 83.15
Regular/repeat versus placebo 38.68 9.9 19.28 to 58.08
Loading dose versus other 36.88 10.01 17.26 to 56.5

25(OH)D measurement
Time from initiation (in weeks) 24.02 1.07 26.12 to 21.92
Immunoassay versus LC/MS 4.98 12.15 218.83 to 28.79

Study type
Uncontrolled versus RCT 44.68 12.25 20.67 to 68.69
Non–randomized-controlled versus RCT 52.82 13.50 26.38 to 79.26

Study quality
Overall assessment
High versus low risk 21.84 9.97 2.30 to 41.38
Medium/unclear versus low 23.80 11.20 1.85 to 45.75

Components
Allocation generation (adequate versus not) 234.89 8.98 252.49 to 217.29
Allocation concealment (adequate versus not) 216.89 9.59 235.69 to 1.91
Blinding (adequate versus not) 215.88 9.69 234.87 to 3.11
Outcome reporting (adequate versus not) 9.47 11.76 213.58 to 32.50
Selective reporting (adequate versus not) 21.16 9.31 219.41 to 17.09

The b estimate provides the change (per 1 mmol/L) in post–study drug 25(OH)D for each variable. Study quality was
determined by using the Cochrane risk of bias tool. LC/MS, liquid chromatography/mass spectrometry.
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potentially toxic levels (group
average of $200 nmol/L).42,68,76

Three of these administered doses in
excess of 200 000 IU to neonates or
infants, and the fourth evaluated
600 000 IU in toddlers and

preschool-aged children.58 In
contrast, the administration of
50 000 IU to a group of toddlers and
preschool-aged children did not
achieve levels of 75 nmol/L in more
than half of the patients.81 These

results suggest that, with appropriate
dose selection, single or divided
loading regimens have the ability to
rapidly normalize vitamin D status and
may explain the positive benefits
observed in clinical trials evaluating
a loading dose in children with
pneumonia and severe asthma.114–116

This study also sought to further
explain heterogeneity in post–study
drug 25(OH)D levels due to
population, dosing, and methodologic
characteristics. Single and
multivariable random-effects meta-
regression identified that baseline
vitamin D status, cumulative dose, age,
regimen type, healthy versus diseased
status, and study type were significantly
associated with post-25(OH)D
level. Most important, we identified
a statistically significant interaction
between cumulative dose and
population age, showing that the
25(OH)D response per dose declines
as age increases. Although this
observation is most likely related to
the high correlation between age and
weight, differences in developmental
pharmacokinetics may contribute.117

Furthermore, our regression analysis
identified lower post–study drug
25(OH)D levels in study arms
originating from diseased
populations, when compared with
healthy children. There are multiple
potential explanations, including
differential compliance,
malabsorption, increased losses
(eg, capillary leak), and altered hepatic
or end-organ metabolism.118–122

Together, these findings suggest that
rapid normalization of vitamin D
status may require consideration of
age (or weight), baseline 25(OH)D
level, and disease status. Prediction of
25(OH)D levels by using the
multivariate model suggested that
50 000 IU is appropriate in young
infants, whereas doses in the 300 000
to 600 000 IU range may be required
in adolescents. Because weight-based
dosing represents the standard of
care in pediatric medicine, these
findings might be approximated to

TABLE 4 Multivariate Meta-Regression Predicting Post–Study Drug 25(OH)D

Model 1 Model 2

b (95% CI) b (95% CI)

Intercept 41.3 (24.0 to 58.6) 28.34 (12.2 to 44.4)
Baseline 25(OH)D 0.79 (0.54 to 1.05) 0.84 (0.62 to 1.06)
Age (per year) 20.68 (21.80 to 0.44) 20.54 (21.5 to 0.42)
Diseased (versus healthy) 218.6 (229.0 to 28.15) 219.5 (228.6 to 210.4)
Dose (per 1000 IU) 0.29 (0.22 to 0.36) 0.27 (0.21 to 0.34)
Loading dose (versus other) 32.6 (10.1 to 55.1) 43.8 (22.6 to 65.0)
Time from initiation (weeks) 20.54 (22.10 to 1.01) 0.02 (21.37 to 1.41)
Cumulative dose 3 age 20.014 (20.020 to 20.008) 20.013 (20.019 to 20.007)
Loading dose 3 time (weeks) 25.27 (27.98 to 22.57) 25.6 (27.7 to 23.48)
Study type
Uncontrolled (versus RCT) — — 23.53 (219.13 to 12.07)
Non–randomized-controlled

(versus RCT)
— — 34.95 (21.19 to 48.71)

Model 1 considered relevant population, dosing, and 25(OH)D measurement variables. Model 2 also considered study
design and quality features. The b estimate represents the change (per 1 mmol/L) in post–study drug 25(OH)D levels.

TABLE 5 Predicted Final Group 25(OH)D Levels After Vitamin D Loading Therapy

Age Group 50 000 IU 150 000 IU 300 000 IU 600 000 IU

Infant (3 mo), nmol/L 86 (35) 112 (45) 152 (60) 232 (91)
Preschool age (2 y), nmol/L 83 (34) 108 (43) 144 (57) 217 (85)
School age (9 y), nmol/L 76 (29) 93 (34) 118 (43) 168 (61)
Adolescents (15 y), nmol/L 66 (24) 73 (27) 82 (31) 101 (40)

The predicted group 25(OH)D levels 1 week after 4 different loading doses of vitamin D are shown. The population was
considered to be unhealthy and to have an average baseline 25(OH)D level of 30 nmol/L. Predicted SDs are shown in
parentheses.

FIGURE 4
Forest plot of hypercalcemia rates by dosing regimen. Random-effects meta-analysis was used to
calculate pooled hypercalcemia rates and 95% CIs for all high-dose vitamin D regimens ($1000 IU)
and regimen subgroups. Point estimates are shown as the vertical lines in the boxes, and 95% CIs
are represented by the edge of the boxes. The y-axis describes the various subgroup analyses.
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10 000 IU/kg. A review of published
variable high-dose regimens
identified 7 independent pediatric
populations with 25(OH)D
measurements after the
administration of 10 000 IU/kg
intramuscular vitamin D. These
studies suggest that intramuscular
dosing might rapidly normalize
vitamin D status, although the lack of
measurements within the first month
and paucity of enteral studies prevent
definitive conclusions. Nevertheless,
results from the intramuscular
studies are relevant because many
acute and hospitalized patients suffer
significant malabsorption and/or are
not able to take food and medication
enterally.123,124 The need for
pediatric studies evaluating
10 000 IU/kg using the enteral route
is reinforced by evidence from adult
studies that show significant
differences in short-term response
between enteral and intramuscular
routes.125,126

The current review also examined
whether high-dose loading regimens
were associated with vitamin
D–related adverse events and toxicity.
Vitamin D toxicity is characterized by
hypercalcemia and hypercalciuria
with the classic symptoms
(eg, abdominal pain, anorexia,
constipation, polyuria) directly
attributable to these abnormalities.
Presently, there is no accepted
25(OH)D threshold that identifies
increased adverse event risk. The lack
of certainty is emphasized by our
finding that 90% of studies did not
use or cite a specific threshold. For
the few that did report a threshold,
250 nmol/L was the most common
value.26,43,57,63,70,86,102,108,109

A review of these articles identified
that the more recent trials did not
select thresholds on the basis of
known toxicity, but the idea that
supraphysiologic levels (not
achievable with sun exposure or
healthy diets) are unlikely to be of
benefit.41,86,127,128 Our analysis
supports a 200 to 250 nmol/L
threshold because dosing regimens

with averages .200 nmol/L were
associated with increased
hypercalcemia risk.

To better inform selection of dosing
regimens, we also sought to
understand whether there was
a cumulative loading dose associated
with increased hypercalcemia and
hypercalciuria. Our evaluation did not
identify increased risk of
hypercalcemia with loading doses
#300 000 IU (4%) but did find
a significantly higher risk for doses
$400 000 IU. In addition, our review
identified only 3 cases of
hypercalciuria among the 878 study
participants who received
intermittent, weekly, or daily loading
regimens (after exclusion of Shajari
et al61). Furthermore, none of the
eligible clinical trials reported a case
of nephrocalcinosis with loading
dose therapy. Together, these findings
are consistent with the
nephrocalcinosis literature, in which
most cases potentially associated
with vitamin D occurred in children
with rare genetic disorders129–135 or
after the intake of doses .600 000 IU
in healthy children.132,136,137 On the
basis of these findings, we would
suggest age- or weight-based loading
doses not exceeding 400 000 IU or
25(OH)D levels of 200 nmol/L. Of
note, the increased hypercalcemia
risk shown with doses $400 000 IU
is largely driven by multiple studies
in young children and only 1 study
that administered 1.8 million IU to
older children. Consequentially, our
findings should not be interpreted to
state that doses in the 400 000 to
600 000 IU range are toxic in
adolescents. In fact, multiple adult
studies, including pilot trials in the
critical care setting, have not
identified significant adverse events
with loading dosing to adults in this
range.10–12,138–141

Although this systematic review
summarizes a large body of
literature and provides valuable
information, a number of limitations
must be acknowledged. First,

accurate information on a number of
potentially relevant characteristics
was not available, including race, UV
exposure, diet, compliance, and
blood collection techniques.108,142

Second, study size was often small,
with the associated random error in
the determination of group 25(OH)D
levels potentially negatively
influencing our ability to quantify
associations. Third, there were
relatively few studies compared with
the number of potentially relevant
characteristics and interactions. For
example, due to the absence of
appropriate 25(OH)D measurements
after intramuscular administration,
no conclusions can be made about
the rapidity at which this regimen
achieves peak 25(OH)D levels.
Furthermore, to accommodate the
discrepancy between potentially
relevant factors and study number,
we had to combine patient groups
into broad categories (eg, diseased
versus healthy). Because regression
results generated by using patient-
and study-level variables are not
always consistent, our results and
recommendations will need to be
affirmed through future clinical
studies. Finally, our adverse event
analysis was limited by lack of
reporting in close to half of the
studies for measures of
hypercalcemia and hypercalciuria. In
addition, the lack of studies with
loading doses $400 000 IU to older
children and adolescents prevents
a more definitive statement of risk
and benefit.

CONCLUSIONS

This systematic review provides
valuable information on the ability of
different dosing regimens to rapidly
restore vitamin D levels. Our study
findings indicate that age- or weight-
based loading therapy of 10 000 IU/kg
(maximum: 400 000 IU) would be
most appropriate. Given the absence
of studies administering this dose
enterally, and no studies in critically ill
children, this dose along with vitamin
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D–related adverse events including
hypercalcemia and hypercalciuria
should be evaluated in prospective
RCTs before widespread use.
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