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Abstract

Background: Metabolic homeostasis is substantially disrupted in critical illness. Given the pleiotropic effects of vitamin D,
we hypothesized that metabolic profiles differ between critically ill patients relative to their vitamin D status.

Methods: We performed a metabolomics study on biorepository samples collected from a single academic medical
center on 65 adults with systemic inflammatory response syndrome or sepsis treated in a 20-bed medical ICU between
2008 and 2010. To identify key metabolites and metabolic pathways related to vitamin D status in critical illness, we
first generated metabolomic data using gas and liquid chromatography mass spectroscopy. We followed this by partial
least squares-discriminant analysis to identify individual metabolites that were significant. We then interrogated the
entire metabolomics profile using metabolite set enrichment analysis to identify groups of metabolites and pathways
that were differentiates of vitamin D status. Finally we performed logistic regression to construct a network model of
chemical-protein target interactions important in vitamin D status.

Results: Metabolomic profiles significantly differed in critically ill patients with 25(OH)D ≤ 15 ng/ml relative to those
with levels >15 ng/ml. In particular, increased 1,5-anhydroglucitol, tryptophan betaine, and 3-hydroxyoctanoate
as well as decreased 2-arachidonoyl-glycerophosphocholine and N-6-trimethyllysine were strong predictors of
25(OH)D >15 ng/ml. The combination of these five metabolites led to an area under the curve for discrimination for
25(OH)D > 15 ng/ml of 0.82 (95% CI 0.71–0.93). The metabolite pathways related to glutathione metabolism and
glutamate metabolism are significantly enriched with regard to vitamin D status.

Conclusion: Vitamin D status is associated with differential metabolic profiles during critical illness. Glutathione and
glutamate pathway metabolism, which play principal roles in redox regulation and immunomodulation, respectively,
were significantly altered with vitamin D status.
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Background
Low vitamin D status is common in the intensive
care unit (ICU) [1–3]. Several observational studies in
critically ill cohorts suggest that vitamin D status is
associated with important clinical outcomes [1–3]. In
particular, low vitamin D status is associated with
increased risk of sepsis and with worse outcomes in

patients with sepsis [4, 5]. Moreover, recent studies
support vitamin D as a potential therapeutic agent in
hospitalized patients [6, 7].
Vitamin D has broad biological effects on nuclear

transcription, cell cycle regulation, differentiation,
and apoptosis [8]. Vitamin D metabolic enzymes and
vitamin D receptors have a wide tissue distribution,
reflecting the involvement of vitamin D in the
metabolism and function of many cell types [9].
Indeed, differential metabolic profiles are demon-
strated in ambulatory patients who respond to
vitamin D supplementation relative to those who do
not [10, 11]. Since metabolic homeostasis is often
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disrupted in critical illness, substantial alterations of
several intrinsic pathways can be expected in septic
patients [12]. Only a limited number of metabolomic
studies have been published to date in experimental
sepsis models [13], pediatric sepsis [14], and critic-
ally ill adults [15].
While some existing data support anti-inflammatory

and immune modulating effects related to vitamin D
supplementation [16], and while metabolomic ap-
proaches are used to understand the pleiotropic effects
of Vitamin D [17, 18], there is limited understanding of
the metabolic alterations associated with low vitamin D
status in critical illness. Therefore, we analyzed metabolite
profiles with regard to vitamin D status in a prospective
study of adult patients with systemic inflammatory re-
sponse syndrome (SIRS) and sepsis [19]. We hypothesized
that the metabolomic profile of patients with severe
critical illness near the time of ICU admission is influ-
enced by vitamin D status and that this metabolic differ-
ence in turn can illuminate important biologic pathways
that may contribute to pathogenesis and prognosis.

Methods
Study design and patients
The Registry of Critical Illness (RoCI) is a registry of
adult medical ICU patients based at the Brigham and
Women’s Hospital (Boston, MA, USA), created to
record patient data and store samples for plasma,
RNA/DNA analysis, and protein isolation. The proto-
col for patient recruitment has been previously de-
scribed at length [19]. Between September 2008 and
May 2010, 90 medical ICU patients had metabolic
profiling: 29 of these patients satisfied SIRS criteria,
30 satisfied criteria for sepsis, and 31 satisfied criteria
for sepsis and acute respiratory distress syndrome
(ARDS) [20]. Patients were not selected with regard
to risk of death or any known metabolic feature. We
conducted a sub-analysis involving 65 RoCI patients
who had been selected for metabolic profiling, and in
whom plasma was available for measuring 25(OH)D
levels (Additional file 1, Fig. 1).
Demographic and physiologic data were collected from

the clinical record as described previously [19]. In addition
to data collected by the RoCI, additional data on all
patients were compiled through a well-described comput-
erized registry, called the Research Patient Data Registry
(RPDR) [21] as outlined in Additional file 1.
Plasma 25(OH)D level was measured using plasma

samples from the same day as the plasma sample that
was used for metabolic profiling. All 25(OH)D levels
were measured via the competitive chemiluminescence
immunoassay (CLIA) using the DiaSorin LIAISON
25-OH Vitamin D Total assay [22, 23]. Serum 25(OH)D
levels were dichotomized a priori into low (≤15 ng/ml)

and normal (>15 ng/ml) groups based on large studies
performed by our group in the ICU under study,
which consistently found differential outcomes at this
cut point [2–4, 24].
Metabolomic profiling identified 411 metabolites for

the complete RoCI cohort (N = 90 plasma samples
within 72 hours of ICU admission) using Metabolon,
Inc. [20]. Gas and liquid chromatography mass spectros-
copy (GC-MS, LC-MS) were performed as described
previously [25, 26]. We removed metabolites with the
lowest IQR of variability in the RoCI data, leaving 308
metabolites. All metabolite concentrations were log2
transformed to normalize the data, which were utilized
for all of the models and all of the metabolite data ana-
lyses. Details on metabolomic sample processing have
been previously described at length [20].
We utilized MetaboAnalyst 3.0 software (www.meta-

boanalyst.ca) to identify key metabolism alterations re-
lated to vitamin D status [27]. We identified the group
of metabolites that best discriminate between individuals
with low and normal vitamin D status using partial least
squares-discriminant analysis (PLS-DA) (Fig. 2) and
identified the metabolites responsible for the overall
discrimination ability (Fig. 3). PLS-DA model validation
was determined by permutation tests based on separ-
ation distance. In each permutation, a PLS-DA model
was built between the data and the permuted class labels
using the optimal number of components determined by
cross-validation for the model based on the original class
assignment [28]. Metabolite set enrichment analysis
[29] was then performed by mapping the metabolite data
on the Human Metabolome Database (HMDB) [30].
Significantly enriched metabolites were identified using
the global test [31] and the “betweenness centrality” meas-
ure to estimate metabolite importance followed by an
assessment of pathway importance of each identified

Fig. 1 Flow chart of the cohort. ARDS acute respiratory distress
syndrome, SIRS systemic inflammatory response syndrome, RoCI
Registry of Critical Illness
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metabolite [32]. P values were adjusted for multiple testing
using the Holm-Bonferroni method [33].
Similar to our previous work, single metabolite associ-

ations were evaluated using multivariable logistic regres-
sion models [20]. Specifically, for each metabolite we
performed logistic regression with 25(OH)D >15 ng/ml
as the outcome, after adjustment for age, gender, race,
malignancy status, sepsis, and renal function (as esti-
mated by glomerular filtration rate-modification of diet
in renal disease (GFR-MDRD)). Additionally, for each
metabolite we performed logistic regression with 28-day
mortality as the outcome, after adjustment for Acute
Physiology and Chronic Health Evaluation II (APACHE II)
scores. Analyses were performed using STATA 14.1MP
(College Station, TX, USA). A network of protein-protein
and metabolite-protein interactions was then generated
using the Search Tool for Interactions of Chemicals
(STITCH) database, version 4.0 [34, 35]. STITCH active

prediction methods are based on neighborhood, gene fu-
sion, co-occurrence, co-expression, experiments, databases,
text mining, and predictions, with a required confidence
threshold (score) of 0.40 [34, 35].

Results
Table 1 shows the demographic characteristics of the
study cohort. Most patients were male (58%) and white
(83%). The mean (SD) age at ICU admission was 55 (15)
years. The mean (SD) 25(OH)D concentration was 20
(16) ng/ml, and 63% of cohort patients were diagnosed
with sepsis. The mean APACHE II score was 26 (10).
The 28-day mortality within the cohort was 35%.
There were no significant differences between patients
with 25(OH)D ≤ 15 ng/ml relative to those 25(OH)D >
15 ng/ml regarding any key baseline characteristic or
for 28-day mortality.

Fig. 2 Partial least squares-discriminant analysis (PLS-DA). Cross-validated PLS-DA score plot for comparison of the global metabolite profiles of 24
patients with 25(OH)D ≤ 5 ng/ml (red) and 41 patients with 25(OH)D >15 ng/ml (green) shows the separation achieved according to vitamin D
status. The p value based on permutation is 0.033 (66/2000). Colored circles represent 95% confidence intervals. Colored dots represent individual
samples: 4.5% and 5.3% are the scores of component 1 and component 2, respectively, in the PLS-DA analysis
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Primary outcome
Metabolomic profiles differed in critically ill patients
with 25(OH)D ≤ 15 ng/ml relative to those with
levels >15 ng/ml. The supervised PLS-DA showed
that the two different groups were well-clustered,
with specific metabolic profiles for each (Fig. 2).
Group membership (25(OH)D ≤ 15 ng/ml vs. >15 ng/ml)
is illustrated by the 95% confidence ellipses calculated
from PLS-DA scores. The permutation test with a
p value of 0.033 indicates that the classification of

global metabolite profiles by 25(OH)D is significantly
different.
We utilized the random forest (RF) learning algo-

rithm to select relevant variables for vitamin D status
classification by estimating the importance of each
metabolite to vitamin D status. In the RF analysis the
“mean decrease accuracy” indicates how much a
certain metabolite contributes to separation of the
25(OH)D groups, and the overall “predictive accuracy”
is indicative of the accuracy for a set of metabolites

Fig. 3 Vitamin D deficiency biomarker identification by global metabolomics. To relate vitamin D status to the blood metabolite data, we used
random forest (RF) predictors. An RF importance measure was used to rank metabolites according to their prognostic importance for vitamin D
status. The colored boxes on the right indicate the relative concentrations of the corresponding metabolite in the vitamin D groups. Metabolite
classes (amino acid metabolic, carbohydrate metabolism, lipid metabolism) are indicated by the colored circles

Table 1 Cohort characteristics stratified by vitamin D status

25(OH)D ≤15 ng/ml
N = 24

25(OH)D >15 ng/ml
N = 41

Total
N = 65

P value

Age years, mean ± SD 54.6 ± 13.7 55.8 ± 16.2 55.3 ± 15.2 0.77

Male gender, N (%) 16 (67) 22 (54) 38 (58) 0.30

White race, N (%) 19 (79) 35 (85) 54 (83) 0.71

APACHE II, mean ± SD 26.7 ± 8.4 25.0 ± 10.4 25.6 ± 9.7 0.52

Peak creatinine, mean ± SD 2.7 ± 2.8 1.9 ± 1.5 2.2 ± 2.1 0.15

Malnutrition, N (%) 9 (38) 16 (39) 25 (38) 0.90

Malignancy, N (%) 10 (42) 15 (37) 25 (38) 0.68

Glomerular filtration rate, mean ± SD 62.7 ± 49.9 57.8 ± 39.2 59.6 ± 43.1 0.66

Sepsis, N (%) 13 (54) 28 (68) 41 (63) 0.26

Sepsis with ARDS, N (%) 8 (33) 15 (37) 23 (35) 0.63

Sepsis without ARDS, N (%) 5 (21) 13 (32) 18 (28) 0.63

APACHE II Acute Physiology and Chronic Health Evaluation, ARDS acute respiratory distress syndrome. Plasma vitamin D deficiency is defined as 25(OH)D ≤ 15 ng/
ml and vitamin D sufficiency is defined as 25(OH)D > 15 ng/ml
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to discriminate vitamin D status [32]. RF analysis of
blood-targeted metabolomics data defined a set of 15 me-
tabolites that constitute the best predictors of vitamin D
status (Fig. 3). In particular, increased 1,5-anhydroglucitol,
tryptophan betaine and 3-hydroxyoctanoate and de-
creased 2-arachidonoylglycerophosphocholine and N-6-
trimethyllysine were strong predictors of 25(OH)D
>15 ng/mL. These metabolites are products of carbohy-
drate, amino acid, lipid, lipid and amino acid metabolism,
respectively. We found that in logistic regression, the
combination of these 5 metabolites produced an area
under the curve (AUC) for discrimination for
25(OH)D > 15 ng/ml of 0.82 (95% CI 0.71–0.93).
We next sought to identify differential biologically

meaningful metabolite pathways in the cohort with regard
to vitamin D status. Metabolite set enrichment analysis
identified metabolites that were significantly enriched in
patients with 25(OH)D > 15 ng/ml, with the strongest en-
richment identified for glutathione metabolism (p = 0.020)
and glutamate metabolism (p = 0.039). The metabolite sets
related to glutathione metabolism (inclusive of cysteinyl-
glycine, pyroglutamine, and L-cysteine) and glutamate
metabolism (inclusive of glutamate and α-ketoglutarate)

were enriched with regard to vitamin D status more than
expected by chance (Additional files 2 and 3).
Twenty metabolites were associated with vitamin D

status at a nominal significance level (p < 0.05) in the
RoCI cohort, after adjusting for age, race, malignancy
status, sepsis, and renal function (Table 2). Seven of
these metabolites were associated with vitamin D sta-
tus and 28-day mortality: (1) glucuronate; (2) 1-
palmitoyl-glycerophosphoinositol; (3) bilirubin (E,E)
isomer; (4) pyroglutamine; (5) 2-hydroxybutyrate; (6)
biliverdin; and (7) tryptophan (Table 2, Additional file 4).
Network modeling of chemical-protein interactions
was then utilized to illustrate the importance of the
relationship between 25(OH)D and the metabolism of
bilirubin, fatty acid derivatives, and bile acids through
glucuronidation (Fig. 4).

Discussion
In the present study, our goal was to investigate whether
vitamin D status in the early course of severe critical
illness was associated with differences in the metabolic
profiles of critically ill patients. Utilizing several analytic
strategies, we demonstrated that the metabolic profile of

Table 2 Top 20 associated metabolites by logistic regression analysis

Metabolite Odds ratio adjusted
vitamin D sufficiencya

P Odds ratio adjusted
28-day mortalityb

P value Class

1,5-Anhydroglucitol 2.92 0.001 0.97 0.85 Carbohydrate

Methylglutaroylcarnitine 0.31 0.002 1.07 0.70 Amino acid

Glucuronate 0.52 0.005 1.54 0.018 Carbohydrate

2-Hydroxyisobutyrate 0.52 0.011 1.32 0.20 Amino acid

1-Palmitoylglycerophosphoinositol 2.36 0.018 1.95 0.028 Lipid

4-Methyl-2-oxopentanoate 2.77 0.019 1.20 0.63 Amino acid

C-glycosyltryptophan 0.34 0.020 1.57 0.14 Amino acid

Bilirubin (E,E) isomer 2.18 0.021 2.36 0.005 Cofactors

Pyroglutamine 1.99 0.023 2.51 0.004 Amino acid

Tryptophan betaine 1.60 0.026 1.03 0.86 Amino acid

4-Acetamidobutanoate 0.50 0.027 1.36 0.20 Amino acid

3-Hydroxyoctanoate 2.46 0.030 1.55 0.17 Lipid

Prolylhydroxyproline 0.53 0.036 1.27 0.30 Peptide

Pseudouridine 0.38 0.038 1.55 0.17 Nucleotide

N-acetylalanine 0.23 0.045 2.53 0.081 Amino acid

2-Hydroxybutyrate 1.90 0.046 1.84 0.044 Amino acid

Biliverdin 1.72 0.048 2.34 0.003 Cofactors

N-acetylneuraminate 0.49 0.048 1.38 0.24 Carbohydrate

Tryptophan 2.39 0.049 2.83 0.031 Amino acid

4-Androsten-3beta,17beta-diol disulfate 1 0.66 0.050 1.09 0.57 Lipid

Metabolite levels were log-transformed for analysis. The seven metabolites significantly associated with vitamin D status and 28-day mortality are shown in italic
text under “Metabolite”. Odds ratios <1.00 indicate association between a metabolite and 25(OH)D ≤ 15 ng/ml. The significance threshold was set at p < 0.05
aOdds ratios and p values are for association with plasma vitamin D sufficiency (25(OH)D > 15 ng/ml), after adjustment for age, gender, race, sepsis, glomerular
filtration rate and malignancy status
bOdds ratios and p values are for association with 28-day mortality after adjustment for Acute Physiology and Chronic Health Evaluation II
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critically ill patients differs based on their vitamin D status
and there is evidence that metabolites related to vitamin D
status are most prominently related to glutathione and
glutamate metabolism and glucuronidation.
In humans, 25(OH)D is the major circulating form of

vitamin D3. Steady-state plasma 25(OH)D concentra-
tions represent a balance between formation and
clearance activities, which are mediated by phase I
and phase II oxidation and conjugation processes.
Variation in the efficiency of these detoxification reac-
tions contributes to variability in circulating plasma
concentrations of 25(OH)D, thereby altering the
activity of this prohormone. Based on the results of
this metabolomic profiling study, we have identified
two important phase II metabolism pathways for glu-
tamate, glucuronidation and glutathione cycling that
are associated with vitamin D homeostasis in critically
ill ICU patients.
By MSEA, we identified the overlapping pathways for

glutathione and glutamate metabolism as the most highly
enriched pathways in our metabolite data. Pyroglutamine,

a cyclic metabolite of glutamine and component of the
glutathione cycle, was identified in PLS-DA analysis as a
classifier of vitamin D status (Fig. 3). Glutathione, a major
cellular thiol antioxidant, is a cofactor of the enzymatic
detoxification of oxygen radicals [36, 37]. In vitro data
suggest that vitamin D upregulates cellular glutathione
[36]. Furthermore, in community-dwelling adults, serum
25(OH)D levels are associated with increased circulating
glutathione [38]. Though the redox state of reduced/oxi-
dized glutathione (GSH/GSSG) is closely regulated, it
decreases with tissue injury, inflammation, sepsis, and
toxin exposure [39–41]. Oxidative stress is well-described
in patients with sepsis, with supporting evidence for pro-
duction of reactive oxygen species (ROS) and associated
damage [42]. In patients with sepsis, inflammatory
response initiation via oxidative stress occurs through
redox pathway activation of nuclear factor κB (NFκB) and
expression of a substantial number of genes involved in
the immune response and cell survival [43, 44].
Glutamate, a highly concentrated intracellular amino

acid is important for biosynthesis of multiple amino

Fig. 4 Network of metabolite-protein interactions inferred by metabolomics analysis. The names of the seven metabolites associated with vitamin D
status and 28-day mortality (listed in Table 2), in addition to “vitamin D”, were used as input to generate a network of protein-protein
and metabolite-protein interactions using the Search Tool for Interactions of Chemicals (STITCH) database. Network nodes are represented
as either cylinders (chemicals) or circles (proteins, i.e. predicted functional partners), where nodes are colored if they are directly linked to
the input, or white if they are of a higher iteration/depth (i.e. inferred by the network). Lines between nodes (edges) indicate predicted
functional links, where stronger associations are represented by thicker lines; protein-protein interactions are shown in blue, chemical-
protein interactions are shown in green, and interactions between chemicals are shown in red. Links between chemicals are not used to
extend the network
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acids, nucleic acids, nucleotides and metabolites [45].
Though glutamate has a low concentration in plasma
[46] it has an important role in peripheral organs and
tissues as an extracellular signal mediator [47]. More
germane to the severely ill cohort under study, ionotro-
pic glutamate receptors are expressed on T cells and B
cells. Dendritic cells and macrophages and glutamate
serve as an immunomodulator in the initiation and de-
velopment of T-cell-mediated immunity in peripheral
tissues [48, 49]: α-ketoglutarate, a Krebs cycle intermedi-
ate, is produced in a glutamine-dependent fashion and
regulates the T helper 1 cell and regulatory T cell gener-
ation balance [50].
Glucuronidation is crucial for the hepatic and renal

metabolism of compounds, including bile acids, steroids,
bilirubin, and fatty acids, to facilitate their elimination
from the body and to improve the disposition and activity
of drugs and hormones across tissues. Glucuronidation is
an essential chemical reaction for rendering 1, 25(OH)2D3

(the most metabolically active vitamin D metabolite) to a
water-soluble, biologically inactive form, but may also
serve as a reservoir for enterohepatic circulation [51]. This
conjugation reaction is performed by UDP glucuronosyl-
transferase (UGT) enzymes in the liver. In addition to
glucuronate, we also identified bilirubin and biliverdin as
important metabolite predictors of vitamin D status.
Bilirubin, a metabolite of the heme end product biliverdin,
is glucuronidated by UGT1A isoforms, chiefly UGT1A1,
in addition to UGT1A4.
While UGTs catalyze the conjugation of a wide variety

of endogenous substrates, recent studies have identified
UGT1A4 as the primary catalyst of 25(OH)D glucuronida-
tion in vivo [52]. Failure to recycle glucuronides could
contribute to low vitamin D status through promoting the
metabolism of 25(OH)D to its inactive, polar forms, which
are more readily excreted, thereby reducing its levels in
the systemic circulation. In addition, as UGT enzymes are
highly polymorphic, and “gain-of-function” variants with
high substrate clearance activity have been described in
humans [52, 53], inter-individual variation in 25(OH)D
levels due to variable UGT1A4 activity could contribute
to lower 25(OH)D levels in circulation. Because homozy-
gous carriers of UGT1A4*3 demonstrate enhanced
25(OH)D glucuronidation activity, patients with this geno-
type might be expected to have lower circulating levels of
25(OH)D and may therefore be at greater risk of low vita-
min D status [52, 53]. In addition to UGT1A4, UGT1A1
was also predicted by network modeling of chemical-
protein interactions for all seven metabolites, in addition
to vitamin D metabolites, to co-interact with
1,25(OH)2D3, bilirubin, and glucuronic acid (Fig. 4). A
specific role for UGT1A1 in glucuronidation of vita-
min D has not been investigated but may contribute
to vitamin D status in critically ill patients.

Two additional metabolites, 1-palmitoyl-
glycerophosphoinositol and 2-hydroxybutyrate, were
also associated with 25(OH)D plasma levels
(Table 2). While little is known about the specific
roles of 1-palmitoyl-glycerophosphoinositol in
vitamin D metabolism, this compound belongs to
the glycerophosphoinositol family and, along with
pyroglutamine and 2-hydroxyisobutyrate (a deriva-
tive of 2-hydroxybutyrate), was associated with
anti-hypertensive and lipid-lowering drugs in serum
samples from a study of 1762 participants in the
Cooperative Health Research in the Region of
Augsburg (KORA) study [54].
The present study is not without potential limita-

tions. Metabolites were measured early in the ICU
course of severe critical illness, from a relatively small
number of patients, at a single time point, and from
a single biofluid (plasma). As the timing of plasma
collection was within 72 hours of ICU admission and
not at a uniform time point, the potential for variabil-
ity and switches in metabolic pathways during the
course of critical illness cannot be excluded. Our ob-
servational study included patients who were critically
ill for various reasons, creating a heterogeneous study
sample with high severity of illness. Further, selection
bias may be present as we are analyzing only a subset
of patients in the RoCI cohort. Without a control
population of healthy vitamin-D-sufficient individuals,
we do not have comparative metabolomic information
on vitamin D status in the critically ill relative to the
control. We are unable to account for the impact of
race on metabolic profiles as our cohort was mostly
white. Though we do have information on nutrition
status, we do not have information related to nutri-
tion intake, body mass index (BMI) or alcohol intake
at the time metabolomic profiles were obtained. As
our study was performed on a convenience sample,
our results may not be generalizable to all critical
care patients. Our bioinformatics approaches, while
robust, are not without risk of introducing sources of
bias. Although PLS-DA is well-suited for metabolomic
data with much larger numbers of predictors than
observations and multi-collinearity [55], it may be
subject to over-fitting; to limit this, we performed
cross-validation and permutation testing [56, 57]. Our
measurement of 25(OH)D in a critically ill population
with a mean estimated GFR of 59.6 ml/minute may
not accurately account for the biologically active form
of vitamin D. Our data do not allow for the distinc-
tion between metabolites that may be on a causal
pathway or simply confounders of the association
between vitamin D and outcome. Further, though
aging is noted to be an important factor in metabolic
homeostasis [25, 58] our study age range cannot
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account for such alterations. Finally, we cannot fully
account for potential confounding, reverse causation,
and the lack of a randomly-distributed exposure [59].

Conclusion
In summary, vitamin D status is associated with differential
metabolic profiles in early severe critical illness. Glutathione
and glutamate metabolism, which play principal roles in
redox regulation and immunomodulation, respectively,
were significantly altered with vitamin D status.
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