Loading...
 
Toggle Health Problems and D

Vitamin D3 Attenuates Blood-Brain Barrier Disruption due to TBI (in rats) – Feb 2021

Vitamin D3 Supplement Attenuates Blood-Brain Barrier Disruption and Cognitive Impairments in a Rat Model of Traumatic Brain Injury

Neuromolecular Med. 2021 Feb 22. doi: 10.1007/s12017-021-08649-z
Jie Yang 1, Kunpeng Wang 2, Tiemin Hu 3, Guang Wang 3, Weixing Wang 3, Jiwei Zhang 3

This study was designed to study the effects of vitamin D3 supplementation on the cognitive dysfunction and neurological function of traumatic brain injury (TBI) and the possible underlying mechanisms. To this purpose, different doses of vitamin D3 were intraperitoneally injection to TBI rats for one week before TBI surgery and three consecutive weeks after TBI. Brain edema evaluation was conducted on the third day and Evans blue staining for blood-brain barrier (BBB) permeability on the seventh day after TBI. Rat behavior was assessed by evaluation of neurological scores and morris water maze.
It was revealed that vitamin D levels increased in serum after the administration of vitamin D3 for one week. TBI led to neurological deficit, together with brain edema, BBB disruption and inflammation.
Vitamin D3 supplement ameliorated neurological deficit and cognitive impairments induced by TBI.
Vitamin D3 administration reduced brain edema and impairments of blood-brain barrier induced by TBI, as well as decreased inflammatory response in TBI rat brain.
Our results showed that vitamin D3 administration alleviated neurobehavioral deficits and improved brain edema after TBI. Vitamin D3 inhibited inflammatory cytokines and decreased BBB disruption in TBI rats. Vitamin D3 may be used for the treatment of TBI as a protective intervention.
Image

Image

Image

References

  1. Annweiler, C., Milea, D., Whitson, H. E., Cheng, C. Y., Wong, T. Y., Ikram, M. K., et al. (2016). Vitamin D insufficiency and cognitive impairment in Asians: a multi-ethnic population-based study and meta-analysis. Journal of Internal Medicine, 280(3), 300–311. https://doi.org/10.1111/joim.12491 . - DOI - PubMed
  2. Bikle, D. D. (2010). Vitamin D: newly discovered actions require reconsideration of physiologic requirements. Trends Endocrinol Metab, 21(6), 375–384. https://doi.org/10.1016/j.tem.2010.01.003 . - DOI - PubMed - PMC
  3. Budinich, C. S., Tucker, L. B., Lowe, D., Rosenberger, J. G., & McCabe, J. T. (2013). Short and long-term motor and behavioral effects of diazoxide and dimethyl sulfoxide administration in the mouse after traumatic brain injury. Pharmacol Biochem Behav, 108, 66–73. https://doi.org/10.1016/j.pbb.2013.04.001 . - DOI - PubMed
  4. Chen, Y., Liu, W., Sun, T., Huang, Y., Wang, Y., Deb, D. K., et al. (2013). 1,25-Dihydroxyvitamin D promotes negative feedback regulation of TLR signaling via targeting microRNA-155-SOCS1 in macrophages. Journal of Immunology, 190(7), 3687–3695. https://doi.org/10.4049/jimmunol.1203273 . - DOI
  5. Clelland, J. D., Read, L. L., Drouet, V., Kaon, A., Kelly, A., Duff, K. E., et al. (2014). Vitamin D insufficiency and schizophrenia risk: evaluation of hyperprolinemia as a mediator of association. Schizophrenia Research, 156(1), 15–22. https://doi.org/10.1016/j.schres.2014.03.017 . - DOI - PubMed - PMC
  6. Corps, K. N., Roth, T. L., & McGavern, D. B. (2015). Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol, 72(3), 355–362. https://doi.org/10.1001/jamaneurol.2014.3558 . - DOI - PubMed - PMC
  7. Cui, C., Cui, Y., Gao, J., Sun, L., Wang, Y., Wang, K., et al. (2014). Neuroprotective effect of ceftriaxone in a rat model of traumatic brain injury. Neurological Sciences, 35(5), 695–700. https://doi.org/10.1007/s10072-013-1585-4 . - DOI - PubMed
  8. Cui, C., Song, S., Cui, J., Feng, Y., Gao, J., & Jiang, P. (2017). Vitamin D receptor activation influences NADPH oxidase (NOX2) activity and protects against neurological deficits and apoptosis in a rat model of traumatic brain injury. Oxidative Medicine and Cellular Longevity, 2017, 9245702. https://doi.org/10.1155/2017/9245702 . - DOI - PubMed - PMC
  9. Dang, R., Jiang, P., Cai, H., Li, H., Guo, R., Wu, Y., et al. (2015). Vitamin D deficiency exacerbates atypical antipsychotic-induced metabolic side effects in rats: involvement of the INSIG/SREBP pathway. European Neuropsychopharmacology, 25(8), 1239–1247. https://doi.org/10.1016/j.euroneuro.2015.04.028 . - DOI - PubMed
  10. Eyles, D. W., Burne, T. H., & McGrath, J. J. (2013). Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Frontiers in Neuroendocrinology, 34(1), 47–64. https://doi.org/10.1016/j.yfrne.2012.07.001 . - DOI - PubMed
  11. Feng, Y., Gao, J., Cui, Y., Li, M., Li, R., Cui, C., et al. (2017). Neuroprotective effects of resatorvid against traumatic brain injury in rat: Involvement of neuronal autophagy and TLR4 signaling pathway. Cellualr and Molecular Neurobiology, 37(1), 155–168. https://doi.org/10.1007/s10571-016-0356-1 . - DOI
  12. Finnie, J. W. (2014). Pathology of traumatic brain injury. Veterinary Research Communications, 38(4), 297–305. https://doi.org/10.1007/s11259-014-9616-z . - DOI - PubMed
  13. Holick, M. F. (2004). Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. American Journal of Clinical Nutrition, 80(6 Suppl), 1678S-1688S. https://doi.org/10.1093/ajcn/80.6.1678S . - DOI
  14. Hollis, B. W. (1996). Assessment of vitamin D nutritional and hormonal status: What to measure and how to do it. Calcified Tissue International, 58(1), 4–5. https://doi.org/10.1007/BF02509538 . - DOI - PubMed
  15. Hua, F., Reiss, J. I., Tang, H., Wang, J., Fowler, X., Sayeed, I., et al. (2012). Progesterone and low-dose vitamin D hormone treatment enhances sparing of memory following traumatic brain injury. Hormones and Behavior, 61(4), 642–651. https://doi.org/10.1016/j.yhbeh.2012.02.017 . - DOI - PubMed - PMC
  16. Imazeki, I., Matsuzaki, J., Tsuji, K., & Nishimura, T. (2006). Immunomodulating effect of vitamin D3 derivatives on type-1 cellular immunity. Biomedical Research (Tokyo, Japan), 27(1), 1–9. https://doi.org/10.2220/biomedres.27.1 . - DOI
  17. Jha, R. M., Kochanek, P. M., & Simard, J. M. (2019). Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology, 145(Pt B ), 230–246. https://doi.org/10.1016/j.neuropharm.2018.08.004 . - DOI - PubMed
  18. Jorde, R., Mathiesen, E. B., Rogne, S., Wilsgaard, T., Kjaergaard, M., Grimnes, G., et al. (2015). Vitamin D and cognitive function: The Tromso Study. Journal of the Neurological Sciences, 355(1–2), 155–161. https://doi.org/10.1016/j.jns.2015.06.009 . - DOI - PubMed
  19. Latimer, C. S., Brewer, L. D., Searcy, J. L., Chen, K. C., Popovic, J., Kraner, S. D., et al. (2014). Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats. Proceedings of the National Academy of Sciences of the United States of America, 111(41), E4359-4366. https://doi.org/10.1073/pnas.1404477111 . - DOI - PubMed - PMC
  20. Lee, J. M., Jeong, S. W., Kim, M. Y., Park, J. B., & Kim, M. S. (2019). The effect of Vitamin D supplementation in patients with acute traumatic brain injury. World Neurosurgery, 126, e1421–e1426. https://doi.org/10.1016/j.wneu.2019.02.244 . - DOI - PubMed
  21. Mahon, B. D., Wittke, A., Weaver, V., & Cantorna, M. T. (2003). The targets of vitamin D depend on the differentiation and activation status of CD4 positive T cells. Journal of Cellular Biochemistry, 89(5), 922–932. https://doi.org/10.1002/jcb.10580 . - DOI - PubMed
  22. Masel, B. E., & DeWitt, D. S. (2010). Traumatic brain injury: a disease process, not an event. Journal of Neurotrauma, 27(8), 1529–1540. https://doi.org/10.1089/neu.2010.1358 . - DOI - PubMed
  23. McGuire, T. F., Trump, D. L., & Johnson, C. S. (2001). Vitamin D(3)-induced apoptosis of murine squamous cell carcinoma cells. Selective induction of caspase-dependent MEK cleavage and up-regulation of MEKK-1. Journal of Biological Chemistry, 276(28), 26365–26373. https://doi.org/10.1074/jbc.M010101200 . - DOI
  24. Miller, J. W., Harvey, D. J., Beckett, L. A., Green, R., Farias, S. T., Reed, B. R., et al. (2015). Vitamin D status and rates of cognitive decline in a multiethnic cohort of older adults. JAMA Neurology, 72(11), 1295–1303. https://doi.org/10.1001/jamaneurol.2015.2115 . - DOI - PubMed - PMC
  25. Mokhtari-Zaer, A., Hosseini, M., Salmani, H., Arab, Z., & Zareian, P. (2020). Vitamin D3 attenuates lipopolysaccharide-induced cognitive impairment in rats by inhibiting inflammation and oxidative stress. Life Sciences, 253, 117703. https://doi.org/10.1016/j.lfs.2020.117703 . - DOI - PubMed
  26. Park, E., Bell, J. D., & Baker, A. J. (2008). Traumatic brain injury: can the consequences be stopped? CMAJ: Canadian Medical Association Journal, 178(9), 1163–1170. https://doi.org/10.1503/cmaj.080282 . - DOI - PubMed
  27. Pittas, A. G., Harris, S. S., Stark, P. C., & Dawson-Hughes, B. (2007). The effects of calcium and vitamin D supplementation on blood glucose and markers of inflammation in nondiabetic adults. Diabetes Care, 30(4), 980–986. https://doi.org/10.2337/dc06-1994 . - DOI - PubMed
  28. Prins, M., Greco, T., Alexander, D., & Giza, C. C. (2013). The pathophysiology of traumatic brain injury at a glance. Disease Models & Mechanisms, 6(6), 1307–1315. https://doi.org/10.1242/dmm.011585 . - DOI
  29. Roozenbeek, B., Maas, A. I., & Menon, D. K. (2013). Changing patterns in the epidemiology of traumatic brain injury. Nature Reviews: Neurology, 9(4), 231–236. https://doi.org/10.1038/nrneurol.2013.22 . - DOI - PubMed
  30. Segaert, S., Degreef, H., & Bouillon, R. (2000). Vitamin D receptor expression is linked to cell cycle control in normal human keratinocytes. Biochemical and Biophysical Research Communications, 279(1), 89–94. https://doi.org/10.1006/bbrc.2000.3892 . - DOI - PubMed
  31. Sharma, S., Kumar, A., Choudhary, A., Sharma, S., Khurana, L., Sharma, N., et al. (2020). Neuroprotective role of oral vitamin D supplementation on consciousness and inflammatory biomarkers in determining severity outcome in acute traumatic brain injury patients: A double-blind randomized clinical trial. Clinical Drug Investigation, 40(4), 327–334. https://doi.org/10.1007/s40261-020-00896-5 . - DOI - PubMed - PMC
  32. Tang, H., Hua, F., Wang, J., Yousuf, S., Atif, F., Sayeed, I., et al. (2015). Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury. Brain Injury, 29(10), 1165–1174. https://doi.org/10.3109/02699052.2015.1035330 . - DOI - PubMed - PMC
  33. Thota, C., Farmer, T., Garfield, R. E., Menon, R., & Al-Hendy, A. (2013). Vitamin D elicits anti-inflammatory response, inhibits contractile-associated proteins, and modulates Toll-like receptors in human myometrial cells. Reproductive Sciences, 20(4), 463–475. https://doi.org/10.1177/1933719112459225 . - DOI - PubMed - PMC
  34. Toffanello, E. D., Coin, A., Perissinotto, E., Zambon, S., Sarti, S., Veronese, N., et al. (2014). Vitamin D deficiency predicts cognitive decline in older men and women: The Pro.V.A. Study. Neurology, 83(24), 2292–2298. https://doi.org/10.1212/WNL.0000000000001080 . - DOI - PubMed
  35. Unterberg, A. W., Stover, J., Kress, B., & Kiening, K. L. (2004). Edema and brain trauma. Neuroscience, 129(4), 1021–1029. https://doi.org/10.1016/j.neuroscience.2004.06.046 . - DOI - PubMed
  36. Winkler, E. A., Minter, D., Yue, J. K., & Manley, G. T. (2016). Cerebral edema in traumatic brain injury: Pathophysiology and prospective therapeutic targets. Neurosurgery Clinics of North America, 27(4), 473–488. https://doi.org/10.1016/j.nec.2016.05.008 . - DOI - PubMed
  37. Yan, L., Wu, P., Gao, D. M., Hu, J., Wang, Q., Chen, N. F., et al. (2019). The impact of vitamin D on cognitive dysfunction in mice with systemic lupus erythematosus. Medical Science Monitor, 25, 4716–4722. https://doi.org/10.12659/MSM.915355 . - DOI - PubMed - PMC
  38. Yuan, F., Xu, Z. M., Lu, L. Y., Nie, H., Ding, J., Ying, W. H., et al. (2016). SIRT2 inhibition exacerbates neuroinflammation and blood–brain barrier disruption in experimental traumatic brain injury by enhancing NF-kappaB p65 acetylation and activation. Journal of Neurochemistry, 136(3), 581–593. https://doi.org/10.1111/jnc.13423 . - DOI - PubMed


Created by admin. Last Modification: Tuesday February 23, 2021 16:49:01 GMT-0000 by admin. (Version 7)

Attached files

ID Name Comment Uploaded Size Downloads
15097 Vitamin D and the brain 2011.pdf admin 23 Feb, 2021 191.02 Kb 684
15096 BBB 3.jpg admin 23 Feb, 2021 36.03 Kb 471
15095 BBB 2.jpg admin 23 Feb, 2021 57.69 Kb 400
15094 BBB 1.jpg admin 23 Feb, 2021 43.70 Kb 409