Loading...
 
Toggle Health Problems and D

Vitamin D levels in cells, not blood, is important (IVF follicular fluid in this case) – Aug 2021


Low vitamin D levels in follicular fluid, but not in serum, are associated with adverse outcomes in assisted reproduction

Arch Gynecol Obstet. 2021 Aug 8. doi: 10.1007/s00404-021-06174-9
Kahindo P Muyayalo # 1 2, Su Song # 3, Hui Zhai # 4, Hong Liu 1, Dong-Hui Huang 1, Hui Zhou 1, Yang-Jiao Chen 3, Ai-Hua Liao 5

Purpose: To assess the relationship between serum/follicular fluid (FF) vitamin D (VD) status and assisted reproductive technology (ART) treatment outcomes among infertile patients.

Methods: A prospective cohort study, including 132 infertile patients scheduled for their first ART treatment cycle, was carried out in a Reproductive Medical Center. Serum and FF samples were collected to assess 25-hydroxy VD [25(OH)D] levels. Low VD level was defined as 25(OH)D concentration of less than 30 ng/mL.

Results: Most infertile patients had low VD levels in serum (88%) and FF (90%). We observed a moderately positive correlation between VD levels in serum and FF (r = 0.34, p < 0.0001). Compared to the group of patients with low VD levels in the FF, those with sufficient VD levels had a significantly higher number of retrieved oocytes (p = 0.03), normal fertilization (p = 0.01), and high-quality embryos (p = 0.001). Moreover, patients with sufficient VD levels in the FF also had significantly higher implantation rates than those with low VD levels (76.92% vs. 46.58%, respectively, p = 0.01) and clinical pregnancy rates (92.31% vs. 61.54%, respectively, p = 0.04).

Conclusion: These data collectively revealed that low VD levels in serum and FF were common among infertile patients.

VD levels in FF, but not in serum, were associated with:
  • embryo quality,
  • normal fertilization,
  • implantation rates, and
  • clinical pregnancy rates.

Further studies are mandatory to determine the molecular mechanism and VD's potential therapeutic benefits in infertile patients.

References
  1. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G (2016) Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev 96(1):365–408. https://doi.org/10.1152/physrev.00014.2015 - DOI - PubMed
  2. Di Rosa M, Malaguarnera G, De Gregorio C, Palumbo M, Nunnari G, Malaguarnera L (2012) Immuno-modulatory effects of vitamin D3 in human monocyte and macrophages. Cell Immunol 280(1):36–43. https://doi.org/10.1016/j.cellimm.2012.10.009 - DOI - PubMed
  3. Van Etten E, Decallonne B, Verlinden L, Verstuyf A, Bouillon R, Mathieu C (2003) Analogs of 1alpha,25-dihydroxyvitamin D3 as pluripotent immunomodulators. J Cell Biochem 88(2):223–226. https://doi.org/10.1002/jcb.10329 - DOI - PubMed
  4. Irani M, Merhi Z (2014) Role of vitamin D in ovarian physiology and its implication in reproduction: a systematic review. Fertil Steril 102(2):460–8 e3. https://doi.org/10.1016/j.fertnstert.2014.04.046 - DOI - PubMed
  5. Du H, Daftary GS, Lalwani SI, Taylor HS (2005) Direct regulation of HOXA10 by 1,25-(OH)2D3 in human myelomonocytic cells and human endometrial stromal cells. Mol Endocrinol 19(9):2222–2233. https://doi.org/10.1210/me.2004-0336 - DOI - PubMed
  6. Wehr E, Pieber TR, Obermayer-Pietsch B (2011) Effect of vitamin D3 treatment on glucose metabolism and menstrual frequency in polycystic ovary syndrome women: a pilot study. J Endocrinol Invest 34(10):757–763. https://doi.org/10.3275/7748 - DOI - PubMed
  7. Asadi M, Matin N, Frootan M, Mohamadpour J, Qorbani M, Tanha FD (2014) Vitamin D improves endometrial thickness in PCOS women who need intrauterine insemination: a randomized double-blind placebo-controlled trial. Arch Gynecol Obstet 289(4):865–870. https://doi.org/10.1007/s00404-013-3055-x - DOI - PubMed
  8. Lasco A, Catalano A, Benvenga S (2012) Improvement of primary dysmenorrhea caused by a single oral dose of vitamin D: results of a randomized, double-blind, placebo-controlled study. Arch Intern Med 172(4):366–367. https://doi.org/10.1001/archinternmed.2011.715 - DOI - PubMed
  9. Wise LA, Ruiz-Narvaez EA, Haddad SA, Rosenberg L, Palmer JR (2014) Polymorphisms in vitamin D-related genes and risk of uterine leiomyomata. Fertil Steril 102(2):503–10 e1. https://doi.org/10.1016/j.fertnstert.2014.04.037 - DOI - PubMed - PMC
  10. Nair R, Maseeh A (2012) Vitamin D: the “sunshine” vitamin. J Pharmacol Pharmacother 3(2):118–126. https://doi.org/10.4103/0976-500X.95506 - DOI - PubMed - PMC
  11. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281. https://doi.org/10.1056/NEJMra070553 - DOI - PubMed
  12. Burgaz A, Orsini N, Larsson SC, Wolk A (2011) Blood 25-hydroxyvitamin D concentration and hypertension: a meta-analysis. J Hypertens 29(4):636–645. https://doi.org/10.1097/HJH.0b013e32834320f9 - DOI - PubMed
  13. Satirapoj B, Limwannata P, Chaiprasert A, Supasyndh O, Choovichian P (2013) Vitamin D insufficiency and deficiency with stages of chronic kidney disease in an Asian population. BMC Nephrol 14:206. https://doi.org/10.1186/1471-2369-14-206 - DOI - PubMed - PMC
  14. Ota K, Dambaeva S, Han AR, Beaman K, Gilman-Sachs A, Kwak-Kim J (2014) Vitamin D deficiency may be a risk factor for recurrent pregnancy losses by increasing cellular immunity and autoimmunity. Hum Reprod 29(2):208–219. https://doi.org/10.1093/humrep/det424 - DOI - PubMed
  15. Rosen CJ, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA et al (2012) IOM committee members respond to Endocrine Society vitamin D guideline. J Clin Endocrinol Metab 97(4):1146–1152. https://doi.org/10.1210/jc.2011-2218 - DOI - PubMed - PMC
  16. Kebapcilar AG, Kulaksizoglu M, Kebapcilar L, Gonen MS, Unlu A, Topcu A et al (2013) Is there a link between premature ovarian failure and serum concentrations of vitamin D, zinc, and copper? Menopause 20(1):94–99. https://doi.org/10.1097/gme.0b013e31826015ca - DOI - PubMed
  17. Grundmann M, von Versen-Hoynck F (2011) Vitamin D—roles in women’s reproductive health? Reprod Biol Endocrinol 9:146. https://doi.org/10.1186/1477-7827-9-146 - DOI - PubMed - PMC
  18. Ranjana H (2017) Role of vitamin D in infertility. J Public Health Policy Plann. 1:8–10
  19. Human Fertilisation and Embryology Authority (HFEA). Fertility treatment in 2013: trends and figures. 2016. https://www.hfea.gov.uk/media/2081/hfea-fertility-trends-2013.pdf . Accessed 5 Jan 2020
  20. Centers for Disease Control and Prevention, American Society for Reproductive Medicine, Society for Assisted Reproductive Technology. 2015 Assisted Reproductive Technology National Summary Report. Atlanta (GA): US Dept of Health and Human Services; 2017. https://www.cdc.gov/art/pdf/2015-report/art-2015-national-summary-report... . Accessed 28 Mar 2020
  21. Chu J, Gallos I, Tobias A, Tan B, Eapen A, Coomarasamy A (2018) Vitamin D and assisted reproductive treatment outcome: a systematic review and meta-analysis. Hum Reprod 33(1):65–80. https://doi.org/10.1093/humrep/dex326 - DOI - PubMed
  22. Ciepiela P, Duleba AJ, Kowaleczko E, Chelstowski K, Kurzawa R (2018) Vitamin D as a follicular marker of human oocyte quality and a serum marker of in vitro fertilization outcome. J Assist Reprod Genet 35(7):1265–1276. https://doi.org/10.1007/s10815-018-1179-4 - DOI - PubMed - PMC
  23. Hornstein MD (2019) Vitamin D and infertility: the evidence. Fertility Reprod 1(1):31–33 - DOI
  24. Lv SS, Wang JY, Wang XQ, Wang Y, Xu Y (2016) Serum vitamin D status and in vitro fertilization outcomes: a systematic review and meta-analysis. Arch Gynecol Obstet 293(6):1339–1345. https://doi.org/10.1007/s00404-016-4058-1 - DOI - PubMed
  25. Albuquerque LE, Saconato H, Maciel MC (2005) Depot versus daily administration of gonadotrophin releasing hormone agonist protocols for pituitary desensitization in assisted reproduction cycles. Cochrane Database Syst Rev 1:CD002808. https://doi.org/10.1002/14651858.CD002808.pub2 - DOI
  26. Xiao Y, Wang Y, Wang M, Liu K (2018) Follicular flushing increases the number of oocytes retrieved in poor ovarian responders undergoing in vitro fertilization: a retrospective cohort study. BMC Womens Health 18(1):186. https://doi.org/10.1186/s12905-018-0681-2 - DOI - PubMed - PMC
  27. Brinsden PR (1999) A textbook of in vitro fertilization and assisted reproduction: the bourn hall guide to clinical and laboratory practice, 2nd edn. CRC Press, London
  28. Liu X, Zhang W, Xu Y, Chu Y, Wang X, Li Q et al (2019) Effect of vitamin D status on normal fertilization rate following in vitro fertilization. Reprod Biol Endocrinol 17(1):59. https://doi.org/10.1186/s12958-019-0500-0 - DOI - PubMed - PMC
  29. Abuzeid MI, Bolonduro O, La Chance J, Abozaid T, Urich M, Ullah K et al (2014) Cumulative live birth rate and assisted reproduction: impact of female age and transfer day. Facts Views Vis Obgyn 6(3):145–149 - PubMed - PMC
  30. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP et al (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96(7):1911–1930. https://doi.org/10.1210/jc.2011-0385 - DOI - PubMed
  31. Muyayalo KP, Huang XB, Qian Z, Li ZH, Mor G, Liao AH (2019) Low circulating levels of vitamin D may contribute to the occurrence of preeclampsia through deregulation of Treg /Th17 cell ratio. Am J Reprod Immunol 82(4):e13168. https://doi.org/10.1111/aji.13168 - DOI - PubMed
  32. Chu J, Gallos I, Tobias A, Robinson L, Kirkman-Brown J, Dhillon-Smith R et al (2019) Vitamin D and assisted reproductive treatment outcome: a prospective cohort study. Reprod Health 16(1):106. https://doi.org/10.1186/s12978-019-0769-7 - DOI - PubMed - PMC
  33. Firouzabadi RD, Rahmani E, Rahsepar M, Firouzabadi MM (2014) Value of follicular fluid vitamin D in predicting the pregnancy rate in an IVF program. Arch Gynecol Obstet 289(1):201–206. https://doi.org/10.1007/s00404-013-2959-9 - DOI - PubMed
  34. Boz I, Teskereci G, Ozekinci M (2020) High prevalence of vitamin D deficiency in Turkish women undergoing in vitro fertilization: a descriptive study. Health Care Women Int 41(2):147–158. https://doi.org/10.1080/07399332.2019.1569015 - DOI - PubMed
  35. Xie Q-W, Zhang M (2013) White or tan? A cross-cultural analysis of skin beauty advertisements between China and the United States. Asian J Commun 23(5):538–554. https://doi.org/10.1080/01292986.2012.756046 - DOI
  36. Zhang W, Stoecklin E, Eggersdorfer M (2013) A glimpse of vitamin D status in Mainland China. Nutrition 29(7–8):953–957. https://doi.org/10.1016/j.nut.2013.01.010 - DOI - PubMed
  37. Aleyasin A, Hosseini MA, Mahdavi A, Safdarian L, Fallahi P, Mohajeri MR et al (2011) Predictive value of the level of vitamin D in follicular fluid on the outcome of assisted reproductive technology. Eur J Obstet Gynecol Reprod Biol 159(1):132–137. https://doi.org/10.1016/j.ejogrb.2011.07.006 - DOI - PubMed
  38. Ozkan S, Jindal S, Greenseid K, Shu J, Zeitlian G, Hickmon C et al (2010) Replete vitamin D stores predict reproductive success following in vitro fertilization. Fertil Steril 94(4):1314–1319. https://doi.org/10.1016/j.fertnstert.2009.05.019 - DOI - PubMed
  39. Anifandis GM, Dafopoulos K, Messini CI, Chalvatzas N, Liakos N, Pournaras S et al (2010) Prognostic value of follicular fluid 25-OH vitamin D and glucose levels in the IVF outcome. Reprod Biol Endocrinol 8:91. https://doi.org/10.1186/1477-7827-8-91 - DOI - PubMed - PMC
  40. Mnallah S, Kacem Berjeb K, Braham M, Khrouf M, Chtourou S, Merdassi G et al (2017) Impact of vitamin D deficiency on ICSI outcomes. JFIV Reprod Med Genet. 5:201. https://doi.org/10.4172/2375-4508.1000201 - DOI
  41. Fabris A, Pacheco A, Cruz M, Puente JM, Fatemi H, Garcia-Velasco JA (2014) Impact of circulating levels of total and bioavailable serum vitamin D on pregnancy rate in egg donation recipients. Fertil Steril 102(6):1608–1612. https://doi.org/10.1016/j.fertnstert.2014.08.030 - DOI - PubMed
  42. Franasiak JM, Molinaro TA, Dubell EK, Scott KL, Ruiz AR, Forman EJ et al (2015) Vitamin D levels do not affect IVF outcomes following the transfer of euploid blastocysts. Am J Obstet Gynecol 212(3):315 e1-315 e6. https://doi.org/10.1016/j.ajog.2014.09.029 - DOI
  43. Neville G, Martyn F, Kilbane M, O’Riordan M, Wingfield M, McKenna M et al (2016) Vitamin D status and fertility outcomes during winter among couples undergoing in vitro fertilization/intracytoplasmic sperm injection. Int J Gynaecol Obstet 135(2):172–176. https://doi.org/10.1016/j.ijgo.2016.04.018 - DOI - PubMed
  44. Abadia L, Gaskins AJ, Chiu YH, Williams PL, Keller M, Wright DL et al (2016) Serum 25-hydroxyvitamin D concentrations and treatment outcomes of women undergoing assisted reproduction. Am J Clin Nutr 104(3):729–735. https://doi.org/10.3945/ajcn.115.126359 - DOI - PubMed - PMC
  45. Merhi Z, Doswell A, Krebs K, Cipolla M (2014) Vitamin D alters genes involved in follicular development and steroidogenesis in human cumulus granulosa cells. J Clin Endocrinol Metab 99(6):E1137–E1145. https://doi.org/10.1210/jc.2013-4161 - DOI - PubMed - PMC
  46. Cunningham TK, Allgar V, Dargham SR, Kilpatrick E, Sathyapalan T, Maguiness S et al (2019) Association of vitamin D metabolites with embryo development and fertilization in women with and without PCOS undergoing subfertility treatment. Front Endocrinol (Lausanne) 10:13. https://doi.org/10.3389/fendo.2019.00013 - DOI
  47. Farzadi L, Khayatzadeh Bidgoli H, Ghojazadeh M, Bahrami Z, Fattahi A, Latifi Z et al (2015) Correlation between follicular fluid 25-OH vitamin D and assisted reproductive outcomes. Iran J Reprod Med 13(6):361–366 - PubMed - PMC
  48. Paffoni A, Ferrari S, Vigano P, Pagliardini L, Papaleo E, Candiani M et al (2014) Vitamin D deficiency and infertility: insights from in vitro fertilization cycles. J Clin Endocrinol Metab 99(11):E2372–E2376. https://doi.org/10.1210/jc.2014-1802 - DOI - PubMed
  49. Garbedian K, Boggild M, Moody J, Liu KE (2013) Effect of vitamin D status on clinical pregnancy rates following in vitro fertilization. CMAJ Open 1(2):E77-82. https://doi.org/10.9778/cmajo.20120032 - DOI - PubMed - PMC
  50. Rudick BJ, Ingles SA, Chung K, Stanczyk FZ, Paulson RJ, Bendikson KA (2014) Influence of vitamin D levels on in vitro fertilization outcomes in donor-recipient cycles. Fertil Steril 101(2):447–452. https://doi.org/10.1016/j.fertnstert.2013.10.008 - DOI - PubMed
  51. Jeppesen JV, Anderson RA, Kelsey TW, Christiansen SL, Kristensen SG, Jayaprakasan K et al (2013) Which follicles make the most anti-Mullerian hormone in humans? Evidence for an abrupt decline in AMH production at the time of follicle selection. Mol Hum Reprod 19(8):519–527. https://doi.org/10.1093/molehr/gat024 - DOI - PubMed
  52. Arefi S, Khalili G, Iranmanesh H, Farifteh F, Hosseini A, Fatemi HM et al (2018) Is the ovarian reserve influenced by vitamin D deficiency and the dress code in an infertile Iranian population? J Ovarian Res 11(1):62. https://doi.org/10.1186/s13048-018-0435-7 - DOI - PubMed - PMC
  53. Gregori S, Casorati M, Amuchastegui S, Smiroldo S, Davalli AM, Adorini L (2001) Regulatory T cells induced by 1 alpha,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J Immunol 167(4):1945–1953. https://doi.org/10.4049/jimmunol.167.4.1945 - DOI - PubMed
  54. Velthut A, Zilmer M, Zilmer K, Kaart T, Karro H, Salumets A (2013) Elevated blood plasma antioxidant status is favourable for achieving IVF/ICSI pregnancy. Reprod Biomed Online 26(4):345–352. https://doi.org/10.1016/j.rbmo.2012.12.012 - DOI - PubMed
  55. Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37(4):277–285. https://doi.org/10.1016/j.clinbiochem.2003.11.015 - DOI - PubMed
  56. Agarwal A, Gupta S, Sharma RK (2005) Role of oxidative stress in female reproduction. Reprod Biol Endocrinol 3:28. https://doi.org/10.1186/1477-7827-3-28 - DOI - PubMed - PMC
  57. Dalto DB, Matte JJ (2017) Pyridoxine (vitamin B(6)) and the glutathione peroxidase system; a link between one-carbon metabolism and antioxidation. Nutrients. https://doi.org/10.3390/nu9030189 - DOI - PubMed - PMC
  58. Nunez-Calonge R, Cortes S, Gutierrez Gonzalez LM, Kireev R, Vara E, Ortega L et al (2016) Oxidative stress in follicular fluid of young women with low response compared with fertile oocyte donors. Reprod Biomed Online 32(4):446–456. https://doi.org/10.1016/j.rbmo.2015.12.010 - DOI - PubMed
  59. Olszak-Wąsik K, Bednarska-Czerwińska A, Olejek A, Tukiendorf A (2019) From, “every day” hormonal to oxidative stress biomarkers in blood and follicular fluid, to embryo quality and pregnancy success? Oxid Med Cell Longev 2019:1092415. https://doi.org/10.1155/2019/1092415 - DOI - PubMed - PMC
  60. Nagy RA, van Montfoort APA, Groen H, Homminga I, Andrei D, Mistry RH et al (2019) Anti-oxidative function of follicular fluid HDL and outcomes of modified natural cycle-IVF. Sci Rep 9(1):12817. https://doi.org/10.1038/s41598-019-49091-3 - DOI - PubMed - PMC
  61. Jain SK, Micinski D (2013) Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. Biochem Biophys Res Commun 437(1):7–11. https://doi.org/10.1016/j.bbrc.2013.06.004 - DOI - PubMed - PMC
  62. Tavakoli F, Namakin K, Zardast M (2016) Vitamin D supplementation and high-density lipoprotein cholesterol: a study in healthy school children. Iran J Pediatr 26(4):e3311. https://doi.org/10.5812/ijp.3311 - DOI - PubMed - PMC
  63. Ansari MGA, Sabico S, Clerici M, Khattak MNK, Wani K, Al-Musharaf S et al (2020) Vitamin D supplementation is associated with increased glutathione peroxidase-1 levels in arab adults with prediabetes. Antioxidants (Basel). https://doi.org/10.3390/antiox9020118 - DOI - PubMed - PMC
  64. Francis EC, Hinkle SN, Song Y, Rawal S, Donnelly SR, Zhu Y et al (2018) Longitudinal maternal vitamin D status during pregnancy is associated with neonatal anthropometric measures. Nutrients. https://doi.org/10.3390/nu10111631 - DOI - PubMed - PMC
  65. Leffelaar ER, Vrijkotte TG, van Eijsden M (2010) Maternal early pregnancy vitamin D status in relation to fetal and neonatal growth: results of the multi-ethnic Amsterdam Born Children and their Development cohort. Br J Nutr 104(1):108–117. https://doi.org/10.1017/S000711451000022X - DOI - PubMed
  66. Gernand AD, Simhan HN, Klebanoff MA, Bodnar LM (2013) Maternal serum 25-hydroxyvitamin D and measures of newborn and placental weight in a U.S. multicenter cohort study. J Clin Endocrinol Metab 98(1):398–404. https://doi.org/10.1210/jc.2012-3275 - DOI - PubMed
  67. Aghajafari F, Nagulesapillai T, Ronksley PE, Tough SC, O’Beirne M, Rabi DM (2013) Association between maternal serum 25-hydroxyvitamin D level and pregnancy and neonatal outcomes: systematic review and meta-analysis of observational studies. BMJ 346:f1169. https://doi.org/10.1136/bmj.f1169 - DOI - PubMed
  68. Morley R, Carlin JB, Pasco JA, Wark JD (2006) Maternal 25-hydroxyvitamin D and parathyroid hormone concentrations and offspring birth size. J Clin Endocrinol Metab 91(3):906–912. https://doi.org/10.1210/jc.2005-1479 - DOI - PubMed
  69. Eggemoen ÅR, Jenum AK, Mdala I, Knutsen KV, Lagerløv P, Sletner L (2017) Vitamin D levels during pregnancy and associations with birth weight and body composition of the newborn: a longitudinal multiethnic population-based study. Br J Nutr 117(7):985–993. https://doi.org/10.1017/S000711451700068X - DOI - PubMed
  70. Wei SQ, Qi HP, Luo ZC, Fraser WD (2013) Maternal vitamin D status and adverse pregnancy outcomes: a systematic review and meta-analysis. J Matern Fetal Neonatal Med 26(9):889–899. https://doi.org/10.3109/14767058.2013.765849 - DOI - PubMed
  71. Rudick B, Ingles S, Chung K, Stanczyk F, Paulson R, Bendikson K (2012) Characterizing the influence of vitamin D levels on IVF outcomes. Hum Reprod 27(11):3321–3327. https://doi.org/10.1093/humrep/des280 - DOI - PubMed


VitaminDWiki comments

In 2018 the founder of VitaminDWiki asked if it were technically possible to measure vitamin D levels in cells
In 2019 the question was asked again - and the answer then was yes, but it cost about 3X of the serum test
In 2021 most doctors and researchers still only rarely consider the cell levels of vitamin D
5 genes can restrict Vitamin D in the blood from actually getting to the cells
in Visio for 2023
The Vitamin D Receptor is perhaps the most important gene
   (the most likely to be deactivated AND the most easily reactivated)
Many diseases have "learned" how to protect themselves by deactivating the Vitamin D Receptor
Many Cancers for example
80-100 ng often gets Vitamin D to the cells even when there are gene restrictions
A normally good level of Vitamin D (e.g. 30 ng) can be restricted by genes however


Vitamin D Receptor category has the following

530 studies in Vitamin D Receptor category

Vitamin D tests cannot detect Vitamin D Receptor (VDR) problems
A poor VDR restricts Vitamin D from getting in the cells

See also: 48 studies in the Resveratrol category

It appears that 30% of the population have a poor VDR (40% of the Obese )
Several diseases protect themselves by deactivating the Vitamin D receptor. Example: Breast Cancer
- - - - - - - -
The Vitamin D Receptor is associated with many health problems

Health problems include: Autoimmune (19 studies), Breast Cancer (24 studies), Colon Cancer (13 studies), Cardiovascular (23 studies), Cognition (16 studies), Diabetes (24 studies), Hypertension (9 studies), Infant (22 studies), Lupus (6 studies), Metabolic Syndrome (4 studies), Mortality (4 studies), Multiple Sclerosis (14 studies), Obesity (17 studies), Pregnancy (24 studies), Rheumatoid Arthritis (10 studies), TB (8 studies), VIRUS (37 studies),   Click here for details
Some health problems, such as Breast Cancer, Diabetes, and COVID protect themselves by reducing VDR activation

55 health problems associated with poor VDR


A poor VDR is associated with the risk of 55 health problems  click here for details
The risk of 48 diseases at least double with poor VDR as of Jan 2023  click here for details
Some health problem, such as Breast Cancer reduce the VDR

VDR at-home test $29 - results not easily understood in 2016
There are hints that you may have inherited a poor VDR


How to increase VDR activation


Compensate for poor VDR by increasing one or more:

IncreasingIncreases
1) Vitamin D supplement  Sun
Ultraviolet -B
Vitamin D in the blood
and thus in the cells
2) MagnesiumVitamin D in the blood
 AND in the cells
3) Omega-3 Vitamin D in the cells
4) Resveratrol Vitamin D Receptor
5) Intense exercise Vitamin D Receptor
6) Get prescription for VDR activator
   paricalcitol, maxacalcitol?
Vitamin D Receptor
7) Quercetin (flavonoid) Vitamin D Receptor
8) Zinc is in the VDRVitamin D Receptor
9) BoronVitamin D Receptor ?,
etc
10) Essential oils e.g. ginger, curcuminVitamin D Receptor
11) ProgesteroneVitamin D Receptor
12) Infrequent high concentration Vitamin D
Increases the concentration gradient
Vitamin D Receptor
13) Sulfroaphane and perhaps sulfurVitamin D Receptor
14) Butyrate especially gutVitamin D Receptor
15) BerberineVitamin D Receptor

Note: If you are not feeling enough benefit from Vitamin D, you might try increasing VDR activation. You might feel the benefit within days of adding one or more of the above

Far healthier and stronger at age 72 due to supplements Includes 6 supplements that help the VDR


VitaminDWiki - Fertility and Sperm category contains

142 items in Fertility or Sperm in VitaminDWiki

See also:
Overview Women and Vitamin D
Overview Pregnancy and vitamin D    Fertility and Vitamin D – several articles
Endometriosis
Ensure a healthy pregnancy and baby - take Vitamin D before conception
IVF OR "IN VITRO FERTILIZATION" etc. in 18 VitaminDWiki titles


VitaminDWiki - (Vitamin D greatly improves Fertility__

Increased male Vitamin D increases fertility

Decreased Fertility if decreased Vitamin D Receptor


VitaminDWiki pages with IVF or IN VITRO FERTILIZATION in title (13 as of April 2022)

This list is automatcially updated
{LIST()}


{filter field="title" content="\"IN VITRO FERTILIZATION\" OR \"IVF\""}
{filter type="wiki page"}

{OUTPUT(template="table")}
{tableparams allowtableexpansion="n" shownbitems="y" title=""}
{column sort="title" label="Title" field="title" mode="raw"}{column}
{column label="Modified" sort="modification_date_major" field="modification_date_major"}
{OUTPUT}
{FORMAT(name="title")}{display name=title format="objectlink"}{FORMAT}
{FORMAT(na

Title change made April 2022 caused the visitor count to reset.
There have actually been 4281 visitors to this page since it was originally made



Created by admin. Last Modification: Wednesday April 27, 2022 18:52:10 GMT-0000 by admin. (Version 15)